MASSACHUSETTS INSTLTIUTE OF TECHNOLOGY

Project MAC

Computation Structures Group Memo 63

Management of Names in a Computer System

Jack B. Denuis

November 1971

This material appeared as the fifth module of an outline for an under-
praduate subject on operating systems. The outline was prepared by a
Task Force of the Committee on Computers in Electrical Engineering
(COSINE) of the National Academy of Engineering with support from the
National Seience Foundation, Copies of the complete outline "An Under-
graduate Course on Operating Systems Principles' may be obtained from
National Academy of Engineering, Washington, D.C.

Management of Names in Computer Systems

Name management in computer systems concerns meeting the following impor-
tant system objectives concerning the use of memory to hold the procedures and

data structures involved in computations:

1. Long-term storage of information.

2. Controlled sharing of access to data bases and procedures.

3. Creation, deletion, growth and shrinkage of information objects
during the course of computations,

4. Program modularity, the ability of users to comstruct programs by
linking together subprograms without knowledge of their internal

aoperation.

These objectives must be met at the system level because they concern use
of shared resources {(space in main memory, peripheral storage devices and shared
procedure or data bases). In each case questlons of naming arise: objects of
informatior must be named for reference by computations; decisions to share
objects and procedures should not result in conflicts in the meanings of names.
Tu this module, the student should learnm how issues af naming objects arise, and
he should learn the concepts and schemes through which the system objectives
listed above can be achieved, The instructor should emphasize that there is as
yet no single, generally accepted solution to the problem of meeting all four
syaten objectives, Thus the instructor must concentrate on develeping an ap-
preciation of these issues, and the merits and limitations of known approaches

to their resolution.

Basic Concepts

In a program, names are the symbols that specify the objects operated on
by the program. In source language programe names are the identiflers of wvariables,
atructures, procedures and statements. When a program is compiled, most identifiers
are replaced with numerical names (relative addressea)} so that efficient accessing
of instructions and data is possible: labels become addreases relative to the
base of the machine code of the procedure, identifiers of local variables become

addresses relative to the hase of the procedure's activation record, Tdentifiers

of external objects {e.g. other procedures and files) cannot be replaced by
the compiler, and therefore must be retained in essentially unaltered form in
the compiled procedurs.

A complled procedure is assigned a position in the address space of a com-
putation (by a loader or a Llinking routine) so that it may be executed with other
Procedures during a computation. When this is done, symbolic references between
procedures are usually replaced with names in the Fform of addresses that locate

the procedure within the address gpace of the computation.

Context

By the nature of programmers and machines, the same name often will have two
or more valid meanings. Some examples are: The same identifier may be used in
distinct FORTRAN subroutines or ALGOL blocks; the address field of an instruction
in the machine code for an ALGOL procedure must refer to different instances of
variables for distinct activations of the procedure; machine language programs of
different users may occupy the same memory locations at different times, the
addresses of these locations having different meanings accordingly.

In each of these cases, the different meanings of a name are distinguished
by additional information avilable to the compiler, loader, or hardware when the
name 1s interpreted. This additional Information is called the context in which
the name iz used. (Exercise: In each of the examples above, what are the con-
texts of the names?)

The econtext of 2 name need not be known at all stages of a name's use or
transformation. For example, the compiler of a procedure cannot act on external
names (those referencing other procedures, data Structures, or fileg); it must
leave such names in essentially the same form as they appeared in the source
program. The conktext necessary for correct interpretation of these names is
often not known until the procedure 1s assigned to the address space of a compu-
tation, or perhaps not even until execution is under way.

Distinct contexts for names used by different users are often provided by
physically separating the information belonging to one from that belonging to
another. This arrangement makes gharing of information (other than system infor-

mation) difficult. If each user's information is catalogued in a "directory"

but still is physically separated from other information, program modulas can
be shared only by the tedious and wasteful process of copying them from one

directory to another.

A Fundamental Principle

In the discussions of dynamic structures and sharing of procedures to follow,
there are illustrations of an important principle concerning the interpretation

of names by a computer system:

The meaning of a name must not change during any interval within

which independent procedures may use the namwe to refer to the same object.

This means, for example, that the positions of objects within the address
space of a computation cannot be changed if these objects are referred to by
independently specified procedures. The difficulties in using overlay schemes
[9, Dennis], [13, Lanzano), [15, Pankhurst] for handling allocation of main
memory stem from violation of this principle: Because overlay gchemes involve
assigning two or more objects to overlapping areas in addrees space, the mnames
(address) of such areas change in meaning during computation. To avoid chaos,
each procedure making a change in the allocation of memory must inform all other
procedures of the new arrangement of objects in address space. This requisite
communication ig, however, incongistent with the objective that procedures be

independently written.

File Systems

Computer systems generally provide for long term storage of information in
the form of files. A file is an organized collection of data usually kept in
peripheral sturage devices such as magnetic drum or disk, or magnetic tape. The
file management part of an operating system provides users means for generating
and using files and manages the allocation of files te available space on storage
units, Each user of the system is provided with a directory, in which his files
are indexed or cataloged by names of his own choosing. In a number of systems,
the objects indexed in a directory may include other directories as well as files,
thus giving each wser ability to create a directory tree for organizing his col-

lection of filed procedures and data bases in a hierarchy. A particular object

-4~

is specified by a sequence of names, a Ppathname, that selects a path from a

root of the directory hierarchy to the desired cbject., The file gystem provides
also for protection and controlled sharing of files. These general concepts of
file system orgsnization are discussed in [3, Daley and Neuman], [6, Dennis
and Van Horn] and [1, Clark]). Since the hierarchy of directories defines a
mapping from pathnames ro objects, the file System may be regarded as defining
an address space for files. Tn MOSt computer systems the address space defined
by the File system is logically distinct from the address space for the compu-
tational memory, Hence, procedures and portions of files must be copied between
the computational address space and rhe file address space during the course of
4 computation, an object being directly accessible only 1f it is in the computa~
tional address Space,

Files themselves may be structured in several ways !

1. As a string of bits, characters or words.

2, Ag a sequence of records,

3. As an indexed collection of records, each record having a unique
key. The records may be accessed by key or in the sequence defined
by a natural ordering of the keys.

Files structured as ordered deks of words are often managed as sequences of
blocks of fixed size for convenient allocation to free storage space (note the
analogy with the use of Paging to implement a linear address gpace in main memary).
The block structure of files 18 2 matter of implementztion and is made invisible
to user computations. The idea of "record” ig an historically important way of
delimiting fragments of data, originating in the use of punched cards. Files of
records are stored on contiguous areas of atorage devices (disk and tape) and
are most suitable for sequential pProcessing as is common practice in business
applications. The indexed sequential file is important in systems that access
data bases in '"real time." Hash coding techniques are used to locate the record
for an arbitrary key without searching the file | 1, Clark], [8, IBM]., 1In dis-
cussing file s8tructure, the instructor should distinguish carefully between
struecture that is seen by the user (the abgtract structure of the file) and
structure for implementat on purposes that is hidden (or should be hiddern)} from

the user,

Files may be of arbitrary size within wide limits, and may grow or shrink
during processing; thus a file system provides facilities for manipulating
dynamic structures. Modular programming may be done using program medules that
obtain inputs from files and store results in other files. TFile directories
provide long term storage for procedures and data and may include protection
and ghared access contrel features. Thus a general purpose file system would
seem ta achieve all four system objectives gtated earlier. Yet, there are

serious limitatioms.

1, A data file (or the portion of it being processed) must be copied
into the computational address space o gain the advantage of
accessing it through the hardware addressing facilities of the
computer. The implied loss of efficiency will be severe for com-

pute-limited computaticns if files are used as the basic objects.

2. Procedures or program modules retrieved from the file system must
he loaded into the computatiomal address space prior to execution.
In most systems all procedures must be loaded in advance of execu-
tion, wasting address space and making it impossible to activate
procedures whose names are not known until retrieved from data
bases or typed In from a terminal. If procedures may be loaded

dynami.cally, the copying and linking steps will be time consuming.

4. There are few generally accepted standards for the structure and
naming of £iles and for the primitive file operations implemented
by file systems, Existing standards relate teo COBOL, a language
for data processing applicatioms. Conventional file systems are
not a suitable base for efficient implementation of procedures ex-
pressed in ALGOL, FORTRAN or PL/L.

4. Claghes of identifiers (file names) appearing in indeﬁendently
written procedures are not avolded. This matter is discussed further

in a later paragraph,

Segmented Address Space

These four limitations result ar least in part from the distinction between
the computaticnal memory and the file memory, and can be relieved by using the
virtual memory concept to remove this distinction. This has been achieved by

combining use of file directories with a large segmented address space. The

address space is divided into a large number of segments, each being potentially
large enough to hold any object (pracedure or data file) indexed in the file
directories. Reference by 2 computation to information in the address space is
made by a pair of values (segment nunmber, word number), segment numbers being
assigned to procedures and data files when they first are referenced by a compu-
tation. After the first reference, the given procedure or data object is bound
to a particular segment of address space and, thereafter the object may be ref-
erenced efficiently as a resident of address epace rather than by a search of
its pathname in the directory hierarchy.

Two metheds are in use for implementing a segmented address space. In one
{ 4, Denning], [9, Iliffe], [10, Iliffe and Jodeit], [16, Randell and Kuehner],
the segment number is used as an index in 2 system-managed table of "degseriptors"
or "codewords," A descripter (codeword) locates the origin of a segment within
the main memory if space in main memory has been allocated for the segment, or in
peripheral memory otherwise., The other method divides segments (linear name
spaces in their own right) into pages and uses two levelsg of system tables to
map (segment number, word number) pairs into msin memory locations [4, Denning],
[5, Dennis], [2, Daley and Dennis]. In both schemes the system tables also
contaln acecess control and protection tags,:

The use of a segmented address space 1a valuable for providing independently
Written procedures space for large dynamic structures, and for rermitting any
object to be shared by computations if desired., These ideas are examined in the
following paragraphs, |

In current systems, the advantages of segmented address spacesa have not
compensated for the difficulty and complexity of their efficient implementation.
For example, the mechanisms required for linking procedures together in the
address space of a computation are intricate [2, Daley and Dennis] and should be

considered an advanced topic.

Dynamic Structures

A dynamic data structure is an organized collection of information that
changes in extent during a computation. TIwo types of such data gtructures are
in common use: 1) variable-size tables, such as symbol tables, stacks, or
matrices; and 2) linked-list structures [7, Foster]. Both types (or combina-
tions thereof) require gome mechanism for managing the address space in which
they reside. With respect to the first type, there are two approaches, depending
on the size of the address space and the nature of the mapping to memory locations
1f addresses are virtual. If the address space is suffieiently large, each
erructure may be assigned to a separate segment of address space large enough so
the structure may grow and contract without conflicting with other structures.
Since large parts of the address space will be unoccupied, this approach is of
interest only when a2 virtual memory mechanism ig present to map the cccupied
parts of address space intc memory (e.g. a segmented address space).

1€, on the other hand, a large address space is not available but the struc-
tures involved in a computation will fit into memory space, a system af routines
may be provided for managing the agsignment of parts of structures in the available
space, Schemas for dynamically allocating contiguous blocks within a relatively
small address space are described in (12, Knuth, pp 435-455], and are similar in
function te the routines discussed below for managing linked skructures.

A linked list structure is a collection of items, each consisting of a datum
and a pointer {or pointers) to other items. The pointers are addresses that
locate items within the address space [7, Foster]. A particular datum Is
accessed by following a chain of pointers from a single item that serves as the
root of the structure. The system routines which access the structure on behalf
of a program have three functions: 1) Free storage-management, i.e., handling
allocation of new items, deletion of old items, and maintaining records of free
space; 2) garbage collectiom, i.e., identifying items which have been deleted
but not yet returned to the pool of free items; and 3) compaction, i.e., the
relocation of live items in the address space so that the live items occupy a

contiguous region [1i, Jodeit)}, [12, Knuth, pp 435-455].

Compaction is used when the structures must be placed into as small a
portion of address space as possible. Since the compaction process invalidates
the addresses in the items until it is completed, no accesses can be permitted
to the structure during compaction.

This is an important illustration of the general principle stated earlier,
Compaction changes the names (addresses in this case} by which components of data
Structures may be referenced by computations, If two computations access the
data structures concurrently, both must be halted during compaction and, moreaver,
any addresses (pointers to data structure items) held in private working storage
of either computation must be corrected. This is why compaction is avoided in
the design of storage allocation schemes for multiprogram operating sygtems,
Compaction is often used to limit linked structures to a small contiguous portion
of virtual address space to improve performance of single process computations on
4 paged computer.

Linked list structures are the standard representation of data in certain
Programming languages such as LISP; but they are often usefyl in providing ef-
ficient storage of complex structures for any application. For this reason,
facilities for manipulating lirked structures are provided in languages such as
PL/I and ALGCOL 68.

Modularity

The construction of a computer program can be greatly simplified if its ma jor
parts are already in the form of program modules that can be easily combined with-
out knowledge of their internal operation, The student should learn the character-
istics of computer hardware and software essential to modular programming, end
understand how practical syetems achieve or fail to achieve these necessary prop-
erties.

Iwo fundamental requirements for successful modular construction of programs
are;

1. Program modules to be used together must employ consistent repre-
sentations for all information exchanged among them,
2. A universal scheme must be eatablished by convention for interfacing

program modules with one another.

Modularity can be achieved for a particular group of system users if they
adopt uniform conventions among themselves fof data representation and inter-
module communication. Such standards can be developed and agreed upon for any
computer system, but seldom without some compromise between degree of generality
and efficiency of program exectuion. Modularity achieved through use of shared
files in the mamner described earlier is an example. Different uger groups,
however, are likely to adopt conflicting conventions, and programs which do not
honor such conventions are unusable as modules.

Thie discussion of the limitations of imposing conventions on existing sys-
tems should be followed by study of system characteristics that permit any program
written for execution by the system to be used as a module in the constructiom of
larger programs.

The requirement Ffor consistent representation of intercommnicated data is
met if all modules are expressed in the same source language, processed by the
same compiler, and use only the data types provided by the language. Otherwise,
this requirement cannot be satisfied without extreme care in the design and implemen-
tation of the language processors and execution enviromment [18, Wegner],

{14, McCarthy et al].

The moat important form of program module is the procedure. For modular
programming, a procedure’'s author must be free to choose whatever names he de-
sires for cobjects referenced by the procedure -- instructions, variables, data,
structures, and other prccedures -- without clashing with independent choices
made by the authors of other procedures. To aid in understanding the soluticn
of this and related naming problems, the notioms of "argument structure' and
"procedure struckture’ may be introduced.

The information which does not vary from one activation to another of a pro-

cedure P ig called the procedure strueture of P. Tt consists of

1. The code (machine language) of procedure P.

2. The procedure structures of other procedures that are used by P in the
same way {n every activation of P.

3. Any data structures (e.g., own data in ALGOL 60, or STATIC data in PL/1)
that "belong" to the procedure in the sense that all activations of P re-

fer tc the Bame instances of the gtructure,

-10-

The parts of the procedure structure must he referenced directly by names appearing
in the code of the procedure. These names are chosen by the author of the pro-
cedure and should be of no concern to the user of the procedure; the context in
which these names are interpreted must therefore be distinct for each distinet
procedure.

The information which may change from one activation ko anocher consists of

1. The input data.
2, The output data,

3. The activation recard {(working storage),

The argument structure condists of the input and output data, Conceptually, the

components (simple or compound} of the argument structure can be assumed numbered

by distinct integers 1,2,3.... In his cading of the procedure, the author may
associate symbolic names %19%93Xq, ... with these numbered components, Similarly,
the user of a procedure may associate his own symbolic names yl,yz,y3, --. with

these numbered components. Thus the ordering and strueture of the components is
fixed and part of the interface specification, but both author and usey are free to
choose names for them ag they please,

The names used in a procedure to reference its activation record are local and
the procedure's author must be free to choose them as he pleases. Since these names
refer to different data in different activations, the context in which these name s
are interpreted must he different for each activation. Furthermore, the working
storage must be ahle to expand to meet the storage requirements of the activation,
which may be arbitrarily large.

If one procedure may be called from geveral independently written procedures,
nonlocal references (as in ALGOL 60) have no meaningful interpretation. Algo, ex-
ternal references (as in a FORTRAN implementation) only make sense in a global
context, where name clashes are possible. Thus modular programming must be done
without the aid of gide effects -- all input and output data of a program module
must be conveved as components of the argument structure,

Implementations of ALGOL 60 pravide distinet working storage areas for nested
Procedure activations and therefore handle recursive Programs, the amount of working

storage being specified upon procedure activation. Thus limitation 2 and, to some

-11-

degree limitation 1, are overcome. In systems that offer ALGOL 68 or FL/1,

means for representing and manipulating linked structures are provided, thereby

removing limitation 3 for an important class of data structures. Yet clashes

between names {of external procedures and files, for example) are still possible

and limit the degree to which modular programming is possible, This problem is

discussed in [6, Demnnis and Van Horn, pp 151-1541, [Ll7, Vanderbilt, Chapters 2and3].
Clashes could be avoided by providing kwo contexts for the interpretalion of

"external' nmames occurring within procedures., Context for procedurss and files

that are part of the procedure structure would be provided by a procedure directory

associated with the procedure In execution. Context for procedures and files named

in the argument structure would be provided by an argument directory selectoed by

the calling procedure. 1In this way, all names would be interpreted in appropriate
contexts, and all possibilities of name clashes avoided, Although this idea is
not implemented inm any current system, some similar scheme will be necessary in
future systems if modular programming is to be achieved.

With these concepts as background, the class can study the extent to which
modular programming is permitted by various classes of systems. In a FORTRAN
enviromment, each subprogram has a single, permanently-assigned, fixed activation
record. Context Ffor naming the parameters of a call is typically provided by the
return address, a list of parameters being in some fixed location with respect to
each point of call. Internal references within a subroutine are assigned meaning

within the body of the subroutine only, Some limitations of this are:

1. Working storage is not expandable.

2, BRecursion is not implemented.

3. There 15 no means for representing dynamic objecta.

4. External references made by subprograms are interpreted within the
{global) context of the loader's symbel table; thus a name clash will

oceur 1f two subprograms use the same name to refer to distinet objecte.

-12-

Sharing

To permit sharing of procedures and data among users of a computer system,
it is necessary to have a systemwide naming scheme so that one user can ref-
erence objects owned by others, One method for deoing this uses a gystemwide
directory tree and allows directories to contein links to other directories

[3, Daley and Neumanmn].

As an advanced topic, the instructor may discuss implementations in which a
single copy of a procedure or data object in main memory is used by all compu-
tations sharing access to the object. There are three motivations for doing this:
1) conserve main memory, 2) avoid redundant copies of information, and 3) reduce
overhead required to move extra copies in and out of main Memory .,

In most systems sharing of code in main memory ie limited to supervisor and
library programs; it is implemented by reserving for these shared objects a certain
known portion of each user's address space.

If, on the other hand, every procedure in a computer system must be regarded as
potentially shared among computations, the implications for addressing mechanisms
of the system are far-reaching [5, Dermis], Not only is it necessary to separate
data and procedure information by means of "pure procedures,” but a satisfactory
means of transferring control betrween procedures is needed [2, Daley and Dennis].

If control transfer instructions contain abgolute addresses in the address
gpace of a computation, a shared procedure must be agsgigned to the same position in
the address space of every computation that uses it. It follows that each address
space must be sufficiently large to hold all potentially shareable procedures,
Since there is no way for the system Fo know which procedures users may wish to
share, it is attractive to implement a single address space for all computations
in the system. No such system has been constructed, and it remains to see whether
Such an implementation would he practical,

Now, suppese control transgfer instructions contain addresseg relative to the
base address of the procedure in which they appear. A procedure may now be assigned
different positions in the address spaces of differant computations, but the
pProcessor must contain a base register containing the base addregs of the procedurs
in the applicable address space; all control transfer instructions are interpreted
relative to this base register. Provision must be made for reloading the base
register whenever control is passed between procedures, and a scheme for proper Ly

Implementing external references muist be worked ocut. One complete scheme ig

~13-

deseribed in [2, Daley and Dennis]. Because addresses have different meanings

for different eomputations, this scheme has some serious disadvantages. Com-~
munication between computations is difficult, since directory names rather thau
addresses must be used to identify objects in messages. Also, once a procedure has
haen zssigned a position in the addreds space of a computation, it is not legitimate
for the system to delete it untll Fhe nser can guarartee that no further attempt to
access it by its assigned address will be made, As a result, occupancy nf address
space will tend te increase as a computation references new objects; thus a »vro-
gram that runs for an extended period, contimially accessing new information, will

have to manage its own use of address space.

Name Management -- Topie Qutline

Motivation
System objectives concerning storage and access to procedures
and data bases.
issues concerning treatment of names by system,

Objective to appreciate issues and understand merits of known technigues.

Basic Concepts
Forms of names: identifiers, addresses; translation of names by
compiler, loader, and system.
Context for interpretation of names; examples.
A fundamental prineiple: meaning of name must not change while in
use hy independent procedures.

Fxample: overlay schemes.

File Systems
Files, directory hierarchies.
Structure of files, their representation on stovage devices, implementation,
Achieving svstem objectives by use of files to represent datsa.

Limitation of file systems.

Segmented Address Space
Segments, two-component addresses, binding procedures or
data to address space.
Implementations
with base registers

with paging

Oynamiec Structures

Twe types: arrays of variable 2ize; linked structures.

Management of address gpace for dynamie structures:
free space management, garbage collection.

Compaction, a violatian of tche naming principle,

Desirability of large segmented address space.

Modularity
Fundamental requirements
consistent data representations
interfacing conventiong
Concepts for modular use of procedures
procedure structure, argument structure

Limitation of systems for modular programming
FORTRAN

ALGOL. 60
ALGOL 68 or PL/I

Sharing

Use of links in directories for permitting controlled access.
Motivations for shared use of information in main memory .,
Implementation alternatives

comon address space for all computations

distinct address spaces with relative addressing;

the problem of linking.

References

1.

B

12,

14,

Clark, W. A. The functienal structure of 0S/360, Part T1I: Data Macazewenf,

IBM Systems Journal, Veol. 5, No. 1 (1966), op 30-51.

paley, R. C., and Dennis, J. B. Vietual memory, processes, and sharing in

MULTICS. Comm. of the ACM, Vol. L1, No. 5 {May 1968), pp 305-312.

aley, R. C., and Neumann, P. G. A general-purpose file system for secondary

storage. AFIPS Conference Proceedings, Vol. 27 (Fall 1965), pp 213-229,

Denning, P. J. Virtual memory. Computing Surveys (ACMY, Yol. 2, No. 13
{September 1970), pp 153-182,

Dennis, J. B. Segmentation and the design of multiprogrammed compuier sysfoos.

J. of the ACM, Vol. 12, We. 4 (October 1965), pp 589-60Z.

nennis, J. B., and van llern, E. C. Programmirg semanties for mulelp: o

computations, Comm. of Ehe ACM, Vol. 9, No. 3 (March 19€6), pp 143150,

Foster, J. M, List Processing. Macdonald aud Co., Londeon, 1967.

TBM. 08/360 Concepts and facilities, Pregramming Languages and Systems.
S. Rosen, Fd., McGraw-Hill 1967, p 398,

11iffe, J. K. Basic Machine Principles, American Elsevier. 1968,

Iliffe, J. X., and Jodeir, J. G. A dynamic storage allocation schems.

The Computer Journal (October 19623}, pp 200-209.

Jodeit, J. G. Storage organization In programming systems.

Comm. of the ACM, Vel. 11, No. 11 (November 1968), pp 741-746.

¥Knuth, D. E. The Art of Computer Programming (Vol. L).
Addison-Wesley 1968, Chapter 2,

Lanzanc, K. C. Loader standardization for overlay programs.

Comm, of the ACM, Vol. 12, No. 10 {October 196%), pp 541-550.

McCarthy, J., Corbato, F. J. and Daggett, M. M. The linking segment subprogran
langnage and linking loader. Comm. of the ACM, Vel. 6, No. 7 (July 1963).

pp 391-395, [Also appears in Programming Languages and Systems,

§. Rosen, Ed., MeGraw Hill 1967.]

15,

17.

-16-

Pankhurst, R, J. Program overlay techniques. Comm. of the ACM, Vol., 11,
No. 2 (February 1%68), pp 119-125,

Randell, B., and Kuehner, €. J. Dynamic storage allocation systems.

Comm. of the AGM, Vol. 11, No. 5 (May 1968), pp 297-305.

Vanderbilt, D. H. Controlled Information Sharine in a2 Computer Utility.

Report MAC-TR-67, Project MAC, M,I.T

+s Cambridge, Mass., October 1959.

Wegner, P. Communication between Independently transiated blocks.

Comm. of the AQM, Vol, 5, No. 7 (July 1962), pp 376-381,

