MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Project MAC

Computation Structures Group Memo 66

Translation of a Block Structured Language

Into the Common Base Language

Edward Flinker

This is a thesis presented to the Department of Electrical Engineering
for the degree of Bachelor of Science, January 1972

D

INTRODUCTICN

Two of the major problems teoday's computer user
is faced with are:

1, Low level of programming generality
{ability of computer system to sup-
port modular programming)

2, Diffjiculties in transferring procedure
and data structures from one computer
facility to another

One of the ways to solve the above difficulties
is by introducing an intermediate representation con-
mon to all scurce languages, Such an intermediate
form has been proposed by Prof, J. Dennis of Computa-
tion Structures Group (Project MAC, M.I.T.) who calls
it Common Base Language. Basic definitions of Common
Base Language can be found in Referenceld! and 2 of
this paper. The Base Language 1s not a block-struc-
tured language. 1 will attempt to simulate block~-
structured programs written in a source language
through translation into the Base Language and then

executing it by the Base Language interpreter.

COMMON BASE LANGUAGE

Pt =€ ¥

Definitionrpf Common Base Language consists of
two stages:

1. Translation of high-level language
Programs into Common Ease Language

2. Interpretation of the program ex-
pressed in Common Base Language

ad 1. There will exist a different translator for
each high-level language. We may think of
Common Base Language as being a machine lan-
guage and of trenslator as being a compiler
for a given high~level language

ad 2. Interpreter is a nondeterministic state tran-
sition system defined by means of giving all
states reachable from a given state. A state
of the interpreter represents the totality of
programs, data and control information present

in a computer system (2},

WFPL (What For (?) Programming Language)

{procedure)::={proe>{body><end)

{proc)
{end)

s :={idn) : PROCEDURE ({var_list}>);|{idn)»:PROCEDURE;
:=END {idn);

dvar_list) ::={idnd|{idn),{var_list)

{body)
{stmnt)

{assignd
{cond)

<{equal)
{exp)
{returnd
{idn)
{letter)
{1it)
Qigit)
{op?
{ae1)

s i={stmnt [{stmntY{podyd

t= d + GOTO {idnd:
B e Ty T S oes o2

23 ={idn)=Lexp);| {idn)={idn) ({var_list));
::=IF {equal) THEN {stmnt);

;1 ={exp) ={exp)

::={11it}y] {3dn) | {exp) {op) {exp)|({exp))

:: =RETURN {{idn));
::={letter) | (1dn) {letter)| (idn){digit)
::=Al11 capital and lower case letters of the alphabet
1:={digit) [{11t){digit)
:=0]1|2|3{4I516]718{9

si= af=|*| /1x

:=DECLARE ({var_list)});

+0
.

[L)

Por the purpose of this paper I designed
a language (WFPL) whose BNF grammar is depicted
above, WFPL -permits nesting of procedures.
Procedures in WFPL return values; they d¢ not
return procedure applications, WFPL permits

nonlocal references anrd recursion.

Translation of the following three programs is done
on an intuitive rather than a formal basis, The mesning
of the presented WFPL programs is also intuitive. The
meaning of Base Language programs, however, is defined
in terms of the states of the Base Language interpreter.
Translation for each praogram is follawed by presenting
states of the interpreter during execution., Each of
the states is praceeded by a list of Bage Language
instructions, the execution of which causes this state,
For simplification, I present only the data structures
Sinee the procedure structure does not change during

“execution,

PROGRAM 1

1 P1:PRCCEDURE;

2 DECLARE (a,b,c);

3 a=4;

4 b=Q1(a);

5 Q1:PROCEDURE (n);
6 DECLARE (m,n,k);
7 m=1;

g8 k=m4+n:

9 RETURN (k)

10 END Q1;

11 END P1;

The program above does not contain non-
local references, The problem invelves
passing of a parameter to procedure Q1, 'This
i3 done in statement number 4, The other
problem is reiurning of a computed wvalue (k)

to calling procedure P1 in statement 9.

Ple

TRANSTATION FOR FROGRAM 1

——)
e | ——rprEate n

const 4,a

p——2 ~=1link n,1,a

—— 3 ——move Q1,91

L—s

4 apply ql,n
—= 5 == select n,R,b
delete n

p— 7——delete qt

Qle

—— 0 ——const 1,m
poemse | = gelect A,1,n
2 add m,n,k

—~— 3 ——1link A,R,k

L— 4 ——e preturn

Procedure Structure
for Program 1

L(P1) I
l |
a 1 n
Q1
1

The state after:; const 4,a ; create n ;

link n,1,a ; move Q1,q1

L(P1)T L{QT)I

The state after apply ql1,n . Execution of this
instruction cauvses instruction select n,R,b in P1

to be made dormant.

L(21) L{Q1)

text of
Q1 1

Entering text of Q1,

The state after: const 1,m ; select A,%1,n

S L(r1) L{o1

lw)
Y

_)],
n "
$
text ol |
Q1 1 1

©

The state after: add m,n,k ; link 4,R,k,

1

=10~

L(P1)T

1

!
text o l
Q3
i
@

Upon return instruction the execution in P1
starts with the dormant instruction.

The state after: return ; seleect n,R,b .,

L(P1)r

@ ;

The state after: delete n ; delete q1 ,

-11=

PROGRAM 2

P2:PROCEDURE;

DECLARE (x,y,%,z};

xX=4;

¥y=5;

z=Q2(x);

Q2:PROCEDURE (n);

DECLARE (r,n);
m=n+y;
RETURN (m);
END Q2;

END P2;

= O W ®m <1 N N AR

—_ Ll

The program above, in addition to the features
of Program 1, contains a nonloeal reference to
variable y in statement number 8, The nonlocal
variable referenced by a procedure has to be
passed to it in a similar fashion as formal para-

meters of this proecedure.

-12-

TRANSLATION FOR PROGRAM 2

0 consat 4,x

—— 1 const 5,y
e 2 —— cTEate N

— 3+— 1link n,1,x
— 4
P2 #—rdQ—9 ——move Q2,g2

— 6 —— apply q2,n

link n,2,¥y

7 select n,R,z
b 83— delete n — 0 select A,1,n
e § e delete g2 —— 1 —— select A,2,¥y

Q2 = 2 add n,y.m
== 3— 1link A, R,m
—— 4} ——— Teturn

Procedure Structure
for Program 2

-1%=

L
]

Q2 rr,

“ []
text of l

Q2 1 2

©

The state after:

G}

eanst 4,x ; const 5,y ; create n

link n,1,x : link n,2,y ; move Q2,g2 ,

L(PZ)T
y q|2 | 1{
text of
Q2 1 2
:)

L(Q2) r

P—

)

The state after:

apply q2,n , Instruetion

select n,R,z in P2 is made dormant.

—14-

L(P2)I L{QE}[
x y q2 n A n v m
t
=
@ ' | |
o)

e
Entering text of 2. The state after: select A,7,n ;

geleect A,2,y ; add n,y,m ,

L(PE)I
x ¥ a2 n i
tex% of | l
< 1 2 R
O———

5
Upon return instruction the execution in P2 starts with the

dormant instruction. The state after: return ; select n,R,z .

=15

L{P2) ¢

© O ©

The state after: delete n ; deletes q2 .

[0+ TR Y o A WL » [- SURR TS B | B

- A b s
Vo ol Y o OO

-10=

PROGRAM 3

P3:PROCEDURE;
DECLARE (x,z);
x=33
z=Q3{x);
Q3:PROCEDURE (n);
DECLARE (n,m,k,y);
IF n=0 THEN GOTO ALPHA;
m=n-1;
k=03(m);
y=n¥*lk;
GOTO BETA;
ALPHA:y=1;
BETA:RETURN (y);
END Q3;
END P3;

The program ahove contains recursive
proecedure Q3, Procedure Q3 calls itself
in order to compute factorial of its para-

meter.

P3ia

-17-

TRANSLATION FOR PROGRAM 3

— 0 const 3
— 1——create n
—— 2 —-move Q3,q O ———select A,1,x
—— 3—1ink n,1,x e | =~a—coOnst 1,0NE
——4 ——1ink n,2,q —— 2 ——subtr x,0ONE,m
5 apply q,n —— 3——1if m=0 then goto 13
}—6 -—select n,R,z 4 create n
hore | e delete n ——=5 ——1ink n,1,m
8 ——delete q — 6 —1ink 4,2,q
Q3 - 7 link n,2,g

re—— 8 ——apply q,n
po—— 9 —— gelect n,R,k
——— 10 ——=mnlt x,k,y
———11e——=1ink A,R,y
p—— 12 ——return
=13 «w——const 1,y
—— 14 ——1ink A,R,¥y
—— 15 ——return

Procedure Structure
for Program 3

L(e3)

-18-

:
—

Text ol
Q3

Q,

The state after:

const 3,x ; create n ; move Q3,3 ;

link n,1,x ; link n,2,q .

L(P3) T

L(Q31)I

!

text of Q3

N\

The state after:

apply q,n . Instruetion seleect n,R,2

in P3 is made dormant,.

-19-

L(P3)y L(Q?ﬂ)r

text of

(:::>_ Q3 ext o
3]

Entering the first invocation of Q3. fThe state after:

select A,1,x ; const 1,0NE i Subtr x,0NE,m ; create n :

link n,1,m ; link A,2,q 3 link n,2,q .

ey

=

lav)

"

T

9

o

—_— —

&

W

p————
—t

£

=

£

N

NI

St

X q n A x ONEm g n

(S
3

1
text of '
™~ Q3 Text o; !

3 —
The state after: apply - .q,n . Instruction select n,R,k is
made dormant,

e

-20-

L(P3)p L(Q31) T L(Q32) ¢
|
n

T RN
q n A x ONE m Q n

1

1 2
1
ext of (:::) ext of (:E:) fifl:;;_”

Q3 Q3 Q3

Entering the secomnd invocation of Q3.

L

The state after: select A,1,x ; const 1,0NE ; subtr x,0NE,m g

create n ; link n,1,m ;3 link A,2,q ; link n,2,q .

»
?

g,n
+R,k is made dormant.

appl

-219=

The state after:
Instruction select n

O [o29)
§o_ X9 O 40 1x9}
. T
—— |O|
2 T T
Y
u b w N0 X Vu b wm 3No
| | Y S O T I
_ (Gem ._nmmgq T 7

-2D_

Entering the third invocation of Q3, The state after:
seleet A,t,x ; const 1,CNE ; subtr x,ONE,m ; const 1,y ;
link A,R,y .

L{G33) !

L(G32)
-]
ONE
®

L(G3Dr
ONE
©,

~ X

_ o N

»]
- E
2re 1 }58
Y St

-25—

L(PB)I L{Q31)? L{Q32) ¢
- | T 1 I N A I | 1
X g n Ax ONE m ¢ n? X ONE m 9 n X oy
[— | —
1 2 - 12 R 1_fR
OlL | OlL
ext text aof text of
of Q3 Q3 Q3
&))),

The state after return. We return now from the third to
the second invocation of procedure Q3. We continue with
the dormant instruction., The state after: select n,R,k ;
mlt x,k,y ¢ link A,R,y .

-04=

text of
Q3

W

ro
v

4 [
C:::) text of

Q3

The state after return. We return now from the

second to the first invoecation of procedure 13,

-25-

L{P3) Y L(Q31)e
| T T T 1 I]
X g . A x ONE] n k ¥
?
T | I
] 2 R 1 2 R
) 1 .
fex; of Text of
Q3 Q3
o ol

@

¥e continue now with the dormant instruetion. The
state after: select n,R,k ; mlt x,k,y ; link AR,y .

T

L{P3) 7

| {

q n

}
—t—
1 2 R

Q3

O 6

The state after return. We return
now from the first invocation of
procedure Q3 to the main procedure 21,

L(P3}I

3

)
= o]

2]

O

@_

The state after seleet n,H,z .

-27-

We continue in procedure P1 with the
dormant instruction. The state after:
delete n ; delete q ,

-28-

A5 we can see from the presented examples for each
invoecation of a procedure we have to include in the

calling procedure's data struciure the following com-

ponents:
1, Text of the called procedure
2. n-component which contains as its elements

- parameters passed by the calling procedurs,
all nonlocal references in the called pro-
cedure and text of the called procedure (as

in case of recursion).

It is important to realize that in case of recur-
sive call the text af recursive procedure is passed to
itself as a parameter. The data structure for a pro-
cedure is created on "demand" (automatic storage). A

variable is not allocated as long as it has no value

agsigned to 1it,

-29~

REFERENCES

Jack B, Dennis, Programming Generality, Parallelism

and Computer Architecture. Computation Structures

Group Memo No. 32, Project MAC, M.I.T., Cambridge,
Mass., August, 1968,

Jack B, Dennis, On the Design and Specification of

2 Common Base Language. Computation Structures

Group Memo No. 60, Project MAC, M.I.T., Cambridge,
Mass,, July, 1971,

