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Petrl Nets have provided the meana to describe complex asynchronous
ayétema such as production facilities and computer central procesaing
unit control. 5ince this model provides a relatively natural way ta
describe asynchronous events, as opposed to more traditional models
such asg finite state machines or Turing machines, it. is inevitable
that & lot af research effort has been aimed at understanding these
systems, A, Holt, Commoner, and Genrich anong others have been the
prime movers in this area. Furthermore, due to the close relationghip
of Petri Nets and mathematical systems known as vector additi;n systems,
others such as Rabin, Karp, and Miller have indirectly'contributed.

Since general Petri Nets are so powerful, they are also haxd to
analyze, Therefore several subclasses of Petri Nets have been identified
and studied. In order of decreasing power, these are Simple nets,

Free Choice nets, Persistent nets, Marked Graphs, and State' Machines
{not neceasarily strict inclusion at each level), . -

Although it seems intuitively obvious that Petri Nets should be
better to describe certain aystems and events, it would be nice to know
how these nets fit into the more classical systems of automata: finite
state machines, stack machines, Turing machines, counter machines, ete.
With éacﬁ one of the clagsical machines has been ldentified the "languages"
accepted or generated by these machines, Therefore, to compare Petri
Nets to these machines, we either have to show a way of simulating one
of the more classical machines, or else recognizing or accepting a
particular class of languages.

Petrl nets, you w;ll recall, are labelled, bipartite directed grapha,
where the nodeﬁ of one partition are called "places" and of the other
partition arercalled Ytransitions”. Furthermore, aasaciated with the
net is a function from the places to the non-negative integers called
the "iuitial marking" which intuitively means the "number of tokens
occupying each place". Each transition, when it "fires", abaorbs a
token (from its "input places") through each of its input arcs, and
places a token on each of its output arcs which then "transmit" them

to the places at the head of each arc, Obviously, a transition whose

input places do not contain emough tokens ceinot firve, and is therefore



said ‘to be "digabled", Conversely, the transition ig "enebled"., Since
we have not ruled out the Possibllity that the set of input and thq set
of output places are not disjoint, a transition may sbsorb a tokenifrom
a place as it fires and put it right back again, If the input and output
places of a transition are disioint and parellel arcs are allowed, Petri
nets of thig definition are isomorphic to vector addition systemg, which
wé describe next,

Vector addition systeﬁs consist of a "apace" NP, P a posftive integer,
a set of vactora_l!:zp, and an origin I NP where N is the szet 'of non-
negative integers and Z ig the set of integers, The "reachability gat"
of a vector addition system (T,I) denated by'RS(T.I)c:Np is the set
of all points constructed recuraively by 1) L€ BS(T,I) and 2) P€ RS{T, D)
if and only if Q ERS(T,I) and P=Q+t where t€T, Pe NP. Intuitively,
P €R3(T,I) implies that P can be reached from I by a path of vectors
from T which never leaves the first guadrant (Np), Thus, in the isomorphiam

of Petri nets to V,A. systems, the transitions correspond to Vectors,

the initfial marking to the "origin® vector, the forward marking class

to the reachability set, and the places to the dimensions of the space.

Due to this isomorphism, T will uge terms from both models interchangeably,
A question that might come up in regard to Petri Nets is: glven twe

‘differvent Petri nets with the same number of places and a 1-1 correspondence

of the places, is the maxking cla.s of the first equal to the marking

class of the second? 1In several c#ses the answer ig easy to compute.

If the vectors sre all positive, i.e. t €T such that tz 0, the answer ig

easy, Furthefmore,llinear algebra tells us that if all of the vectors

are linearly independent, the angwer is also easy., If the system is

fiuite, the answer may not be easy, but can cbviougly be computed,

However, Rabin has shown thig question to be undecidable, in general ,

In fact, another gimilar question, which appears @agiar, i3 also cone

jectured to be undecidsable: given a point PEENP, is P& RS(T,I)? “Karp

and Miller. have shown a weaker question to be decidable; given a point

PE'Np, is there a poiat ¢ €BRS(T,I) such that Q= P?



Thus, although some results are known about Petri nets in their
full generality, one may question the appropriateness of this atrack,
Aithough it would be nice to know that a particular Petri net was free
from deadlock, we know that most Petri nets are subject to this phenomenon
and the question is not that it 1a possible, but how to avoid it.
Furthermore, it 1is etill not easy to see how reachability sets can tell
~ug about gimulating Turing machines or géneﬁéting languages.
__ Jack Dennis has suggested a different tack. From an initiéi marking,
there exlsts a set of legal firing sequenceg, i,e, strings of symbols
from [tll: € T]*, wvhere the position in the sequence of a particular letter
t, tells when the transition named t fired. This is an obvious hint
to consider the language of legal firing sequences for a net and to try
to characterize the aet _of languages thus generated by all Petri nets.
There are several observatioms that follow immediately. Any prefix
of a legal sequence is also a legal sequence. Therefore, if we were to
congider a generalized posgibly infinite "state machine" acceéting this
language, all states would be accepting except for a single non-accepting
"dead" state. Thus if one aymbol in the sequence was illegal, the
whole string would be illegal, Contineing with this medel, we notice
__that the points of the reachability set of this system are isomorphic
to the accepting states of the state machine for the language. Furthermoré,
the transitions enabled at a particular point can be identified with the
labels on the arcas from the corresponding state in the state machine
to another accepting state, This isomorphism will be extremely useful
in determining the characteristics of languages "generated" by Petri nets.
Congtruct a 1abe11ed directed graph called a "reachability graph"
from the points in the reachability set such that the points in this set
are also the points in the graph, and the legal transition vectors will
be the ares in this graph. That is, if P,Q€ BRS(T,I), and P+t=Q, then
we include a directed edge from P to Q labelled with "t" in this "reachability
graph' we are constructing. The reachability graph, treated as a noa-
determiniatic state machine, accepts only and all those legal firing
sequences for the net. The reachability graph is deterministic if we

add the constraint that if no letter on the outgoing trangitions matches



the letter input or generated, the machine transfers to tha "dead" state
which does not appear in the reachability graph.

Consider a point P on a directed circuit of the reachability graph.
The existence of this cireuit implies the existence of a firing sequence
in the original net which, when started with the initial marking P, returns
the net to the marking P. Stnce the initial marking is the same as
the final marking, it must be that the sum of the vectors in the firing
gequence ig zero., Furthermare, if we sum the vectors around ;; undirected
cycle--with the convention that we will subtract instead of add wvectors
contrary to the direction of summation--it should be clear that thie
sum is also equal to zero, Thus, the cycles of the reachability graph
of & Petri net satisfy Kirchoff's voltage law,

In any greph, directed or undirected, the settof edge-disjoint
unions of cycles form a vector space. The reachability graph of a
Petri net is no different and therefore we in#estigate a basis of this
space. The gize of the basis of the cycle space (of a connected graph)
is equal to the number of edges minus the number of vertices, plus one.
Thus, if we were to consider all of the equations from Kirchoff's valtage
law for & reachability graph, this would be the maximum number of
independent equations. In practice, however, many of these equations
are linearly dependent. For example, if the Petri net under consideration
is & Marked Graph, only one equation holds i.e.éé;tﬂo. This implies

that the only way to leave a particular point in p-space and return
through a legal saqueﬁce of firings is to fire all transitions exactly
once. Furthermore, I conjecture that a Petri net is persistent if and
only if the set of Kirchoff equations has rank=1l., It follows that the
coefficients in this equation are precisely those which appear in Patil's
counting theorem.

We are now ready to consider an interesting problem. We will consider
various types of eguivalence which might be defined for Petri nets and
investigate the properties qf these definitions. A4s we quoted eariier,
Rabin has considered equivalence in the sense of equality of reachability
. sets and shown this type of equivalence to be undecidable.



Another type of equivalence might be the equality of the set of
legsl firing sequences, To me, this seems to be a more natural type of
equivalence in the sense that the nets are specified more- by what they
do than by how they achieve it. For nets with bounded markings, i.e.
those with a finite reachability graph, the problem Ls ctrivial. Since
we already have our finite state machine for the net language, reduce
the machine and compare it to the reduced machine for anather net and
see if they are equal. We already know from automata theory that the
reduced deterministic finite state machine is a canonic form for finite
state languageas. However, this approach does not seem to give us any
ingight into the wvarious kindé of Petri nets with the same firing

sequences.
' A model tﬁat would be extremely useful would be a canonic form for
Petri nets in the sense that sny two nets with the same firing sequences
would have the same canonic .form. This canonic form might lead ta some
minimal Petri.net with the same "behavior”.

However, the problem for general Petri nets did not geem to have an
obvious method of attack so Professor Dennis.auggested the regtriction
of the problem to marked graphs. This approach proved fruitful, and a
canonic formm for live marked graphs is presented in the next section.

Before the presentation of the caronic form, I will reiterate the
definition of marked graphs.

Definition & Marked Graph is & Petri net In which every place has exactly

one input arc and one output arc, Since the places have one arc input

and one output, we will omit the drawing of the place and regard the tokens
as residing on one long arc between the place's input transition and

cutput transition. Furthermore, we will draw the transitions as points
rather than lines, Thus, marked graphs are labelled directed pseudo-multi=
graphs in which varlous numbers of identical "tokens" are associated with

the arcs.

There are exactly two simple rules which when applied, reduce’a
live marked graph to canonic form.



A 1) eliminate marked self-loops.

2) consider each arc,x from & to b in the marked graph. @2onsider
all directed paths from a ta b not Including x. If the token length
of x is strictly less than the token length of all other pathe, keep
x in the marked graph else eliminate x along with its marking. (The
token length of a path is the number of tokens on that path).

These two rules imply that in a canonic from marked graph% token
length satisfies the triangle inequality--TL(@¢)<STL(a8D)+TL(5E). The
proof of this canonic form is given in a paper "A Canonic Form fox
Marked Graphs" by this author.

A further result is the proof that marked graphs are cloged under
& type of homomorphism called "partial erasing identity homomorphisms".
These homomorphisms either erase all of a particular symbol in a firing
séquénce or preserve it untouched. This ia equivalent to clasaifying
certain trangitions in a Petri net as "interesting' or not "interesting"
and considering firing sequences of interesting transitions. A corollary
to this result shows, however, that deleting non-interesting vertices
'in a safe marked graph may reduce it to an uﬁsafe marked graph. (A safe
Petri net is one in which no reachable marking assigng more than one token

-to any place).

I will be working on extending these types of results to obher types
of Petri nets such as "state machines", free choice nets, etc, The hope

in this work is to understand the capabilities of Petri nets betcer.

-

-



APPENDIX: A CARONIC FORM FOR MARKED GRAPHS

In this paper I will describe and prove a canoniecal form for marked

' graphas; i.e. a form which preserves "behavior'", suitably defined.

Furthermore, ¥ will show how this canonic form can be extended to subsets
of the vertices of a graph.
As you will recall, marked grapha congist of a set of vertices {or

transitions), a set of directed arcs between various vertices, and an
"initial marking" which assigns a (pnsaibiy different) non-negative
integral number of indistinguishable "tokens" to each arc. That is,

a marked graph consists of a labelled, directed pseudo-multigraph with
the arcs initialized with various numbers of tokens. Finglly, there is
a "firing rule" which allows the assignment of tokems to change. Thus,
if a vertex v in 2 marked graph fires, it absorbs one token from each
incoming arc and adds one token to each output arc., Obviously, if there

is an incoming are with no token, v is saild to be not enabled or disabled.

A fivring sequence iz a time history of vertex firings in a marked graph

from some initial marking arranged in a string g sich that the ith symbol a5

is the label of the transition that fired at time t=i. A firing vector E

is a vector of non-negative integers whiéh describes a firing sequence
where Z; is the number of times tramsition i appears in the sequence.
Finally, a live marked graph is one in whith every vertex can be made
to fire an arbitrarily large number of times,

Since at any point in the history of a marked graph many different
vertices are enabled, the choice as to which to fire next is non-d=teministic,
Therefore, there exists a set of many different flring sequences for
each marked graph. Since this set geems to describe completely the
"behavior” of the graph, we will be looking for a canonic form which

preserves this set of sequences.

"Suhas Patil ﬁa;msuggéétéiuihat mﬂrked"graphs can only sequence transikions
and that Lf transition t is to be constrained to fire after transitiom s, there
must be a directed path from s to £, 1 have firmed up thias notion into the
canonic form exhibited here.

Definition The minimal-arc form (m.a.-form) for 2 live marked graph is obtained

by applying the following rules repeatedly to the graph until neither rule
applies. .
1) Eliminate marked self-loops along with their markings.

?) Congider an arc x from a to b in the graph. Consider all directed
paths from a to b not including x. If the token length of x is strictly



less than the token length of all ather paths, keep x else eliminate x
along with {ts marking from the graph., (The token length of = path 1g
the number of tokens on that path.)

Thearem I The minimal-arec form for a marked graph is canonic--i.e. it
satisgfies these criteria:

a. the m.a.-form of a graph G has the same set of firing sequences as G.

b. if two different graphs G,G' (with the same vertex set) have the
same set of firing sequences, then they also have the same canonic form.
Proof: We will first show that rules 1) and 2) for the m.a,-form datisfy
criterion a when applied one at a time. By then proving criterion b,
we will show that the order of application of rules 1) and 2) do not
affect the derived m.a..-form.

Consider the effect of rule 1) on a marked graph#l which has a
gelf-loop x on vertex v. That is, consider another marked graph 77'=Rtx,
We know that in merked graphs the number of tokens around & circuit
is constant and the self-loop is no exception. Therefore, the loop is
always marked. Consider the set X of input arcs to v in#' where JX|=m,
The criterion thnt v is enabled in%) can be expressed as

/\ (M(x )>o)]A My >o = /’\(M(x )>0)

But the right hand side 1s just the criterion that v is enabled in™P.

Therefore, the elimination of x cannot affect the enabling of v either way.

But since x is an incoming arc for only v, neither can it effect the enabling

of any other vertex. Therefore, W and®' exhibit the same firing sequences.
To prove rule 2), again consider two marked graphs 239 where P=ilx

due to rule 2). Thus x is an arc from a to b and there existg a directed

path P guch that the token length of P, L(P), is less than or equal to

the token length of x, L(x)=M(x). Again we know that in a marked graph,

the token count of a (non-directed) cvele is constant, providing that we

subtract rather than add tokens on arcs whose divectionm is opposite to

the direction of the cycle. SinceP{x is such a cycle, we know that

L(x)-L(P)=c20. This implies that even if we were able to exhaust the

tokens on P through firings of ?ﬂ we would still have a res:.due of ¢

tokens on x. Thus, if «>0, these are extra tokens and can he throwm



away without affecting the firing of 2. Now we have L{P)=L{x}. Since
X is input to vertex b, the tokensg on X can only directly affect the

firing of b The enabling equation for b is

'I/\ ({ {m}>o‘§1/\ H\)())o N ﬁ(_ik,\!‘po

&=
where v is the last arc of P But M(v)sM{x). Therefore the enabling

equation for b can be slmpllfied to

;/ /t"(xg)o}_//% ,%}}D

Since the ellminatlon of x cannot affect the enabling {and hence firing)
of b, it cannot affect the behavior of the net. Therefore ¥and ' have
the same set of firing sequences.

To complete the proof, we must now show that given two m.a.-form
marked pgraphs '3?,5'7' over the same set of vertices, if the sets of firing
sequences are equal, the graphs must be the same. Thesefore, we will
exhibit a simulation of 2 and™' simultaneously which proves that ??and
¥ are really the same.

Assuming ™Mand ™' are really different, either they differ in at
least one arc, ot they differ in the initial marking, or both, Assume
that # has an arc x from a to b that”' does not have. Furthemmore,
either x is marked or x is not marked. If x is marked, either there
exists a firing sequence which will exhaugt x of tokens or there does
not. Assume that x can be cleared of tokens by some firing sequence
(zpplied to both M andMT'). Then before b can fire again, a must fire
to provide x with a token, But this implies the existence of a blank
path from a to b in¥M . FPor if all paths from a2 to b were marked, b could
fire without firing a (since"' ig live), which is a contradiction.

With x blank in“®, fire every vertex with th_e exception -of a until
no more vertices in a's component can fire (except a), This firing cannot
continue forever due to the persistence of marked graphs, Now fire a,
Either b is enabled or b is not enabled. Assume that b is not enabled.
This implies the existence of a blank path from a to b other than x before
we fired a. But a blank path would violate our canonic rule number 2).

Therefore b must be enahled. But b cannot be enabled in %" because the token



has not advanced far enough along the path from a to b. Therefore #Yand
' must both have the arc x, By similar reasoning, all the arcs of ¥
and W' are the same.
We now will prove that the markings are the same, too. Agsume
that M(x) in 2 and M'(x) in“ such that M(x}>M'(x), Obviously, if
we simulate M, simultaneocusly with the same firing sequence, the
discrepancy M(x)-M'{x)=c will persist. Without firing a, fire every
vertex until no vertex (besides a) in a's component can fire. Either
X 18 empty in‘®', or else there exists a blank path from a to b (which
viclates canonic form). Therefore x is empty in, However, there are
c tokens left on x in'%, Again, we can fire b in¥ to get rid of thoege
tokens, but this would differ fromP'. Therefore, there must be some
blank path between a and b in‘”Iwhich disables b, Bur a blank path would
violate canonic form in””. Therefore the markings of #and ' mugt alsgo
be the same. But thig igc a contradiction, because we assumed that 4Y¥and
M7 were different m.a.-form marked graphs with the same set of firing
sequences. Therefore the m.a,-form is canonic. QED
I will now show how to extend this result to 4 kind of homomorphic
image of a marked graph., This image will turm out to alse be a marked
graph.
Suppose that we have a marked 2/ with 20 vertices, say. However,
we are interested in only 5 of these vertices, Is it possible to come
up with a marked graph®)' of only 5 vertices whose "behavior" mimica
the corresponding 3 vertices of %7 Consider the set of firing sequences
S associated with. If we call the 5 "interesting” vertices the included
vertices and the other 15 excluded vertices, we can define a get of
sequences h(5) such that all aymbals for excluded vertices have been
deleted, Thus h is a homomorphism from the transitrion set T to I U{N}
where IST is the included set of vertices and A is the empty string.
h is the identity function for included verices and the "eragure" functien
for excluded vertices.
The following theorem will show that live marked graphs.are closed

vader this clags of "partial-erasing identity homomorphisms".



Theorem II Given a live marked graph and a designated subset of its
vertices, it is possible to reduce the net in such a way that its only
vertices are those in the desighated subset and the firing sequences
are the game as those of the original graph with the symbols for the
non-designated vertices removed. Furthemmore, this reduced graph is
unique by Theorem I.
Proof: Consgider amn excluded vertex v in the original marked graph
with its set of incoming arcs X, |X|=m, and its outgoing arcs Y, | ¥|=n.
Advance the simulation of Mto a point where v is enabled. We must
remove v from ¥ in such a way that to the preceding vertices, v locks
like it is enabled, and to thesucceding vertices, v looks like it hag
already fired, This is achieved by the following reduction process:

1) duplicate each input arc (along with its marking) n times, such

that xié X becomes x, l<jsn.

j,
2) duplicate each output arc (along with its marking) m times such
that yiE Y becomes yij’ lgjzm.
3) eliminate v and splice x; s Lo in calling this new arc Z, .

1
ij)=H(xi}+M(}fj) .

4) reduce the graph to m.a,-form.
Consider the graph#)7and the graph#' which is P with v properly

Notice that M(z

cut out. We will call the set of M's firing sequences S, and the set of
#''s firing sequences S'. We firat show that h(S)sS'. That is, given
a firing sequence g€ S, h(g)&s’. Obviouély, if we gimulate?" using o,
the simnlation will proceed until we reach a "v" symbol in g. AL this
peint in ﬂﬂ, v was enabled and then fired. But this means that each
of the succesgsors of v would be enabled by v's firing and the ares
output from v's predecessors would be relieved of some tokens. But
we have adjusted things in #' such that firing v's predecessors enabled
v's successors and firing v's successors cleaned up the tokens that
firing v would have removed. Therefore h({5)=S'.

We now show that 5'ch(S), This means that given a firing sequence
for“#", we can insert "v" in appropriate places to transform it imto a

firing sequence for/#. Assume that g' ts such & firing sequence for 7.



Start simulating P/with 0'. Either the simulation works or at some point
it camnot continue, TIf the simulation works, we are done, If the
simulation stops, it must have heep because we were trying to fire
4 successor w of v and at least one of itg input arcs was misging a
token. This must be because®y' is exactly the same as“’)except those
arcs between the predecessors and successors of v. I claim thet v is
now enabled so that we can fire it and contimue with the gsimulation.
Why? Because w waa able to fire in4. But w in9 had,besides all of
its other inputs, all of v's inputs. Therefore {f W were able to fire
in#', v must have been able to fire in7, Therefore fire V. w mugt
now be able to fire because all of its inputs from vertices other than
v were not affected and w was able to fire in%'. Thus, we can continue
with the simulatiom.

Since h(S)cS' and S'Ch(S), h(S)=s'. QED
Corollatry The image of a safe marked graph may not be gafe.

Proof: Reduce o \\p to . - _____;l
’--{;. aJ:‘* b QED

In this paper, then, I have exhibited a canonic form for marked
graphs and shown that marked graphs are ¢closed under vertex-deleting

homomorphisms.,



