MASSACHUSELITS INSTITUTE OF TECHNOLOGY
Project MAC

Machine Structures Group Memorandum MAC-M-188

Memo No. 7 October 1964

AUTOMATIC SCHEDULING OF PRIORITY PROCESSES
by

J. B. Dennis

An increase of several orders of magnitude in the frequency of
allocation and scheduling events will be required in future MAC systems.
In this light it is appropriste to cnnsidér implementing some of the’
more critical and heavily burdened executive functions with special
system hardware. One candidate is the assigmment of processors to
processing units, and 1s the subject of this note,

Our cbjective is to make the switching of attemntion of a processing
unit from one task to another sufficiéntly efficient that strong interac-
tion between user programs and external events {e.g., light pen tracking),
and the inclusion of supervisory tasks in the same operating scheme as
user tasks is reasonable. The proﬁuseal made in this note could be imple-
mented on present day multi-processor hardware so as to realize switching
time on the order of ten to one hundred microseconds depending on the degree
of elaboration.

In designing machine features to perform such an executive function,
one must be careful not te limit the flexibility of process scheduling

that is pogsible through software implementstion. It is felt by the writer,

(2)

that the scheme proposed can perform rational scheduling on s time scale
that could not be approached through a programmed procedure. However, it

is only intended that the proposed mechanism be uvsed to implement scheduling
of processes at the highly dynamic end of the spectrum, (i.e., at the
highest levels of a Corbato' multi-level queue)l. Further, the mechanism
would only apply to processes which have vestiges of their dats in main
memory. The dumping and retrieval of information, and the hendling of

the lower levels of the process queue are presumed to be accomplished by
supervisory processes, themselves scheduled by the mechaniam to be
described.

We assume the reader is acquainted with the concepts of memory
segmentation cutlined in MAC Terlz. As discussed by Dennis and Glasers,
we suppose that a definite number of ifo functions are defined for the
multiprocessor computer system under comsideration. These i/o functions
are invoked by procedure steps we shall call ifo instructions. Here we
will adopt a more common termonology and gay that a process is dormant
during execution of an i/o function. Parallel performance of if¢ functions
and computations are presumed to be accomplished through the use of fork
meta- instructions to initiate independent processes anmd quit meta-
instructions to terminate processes. (See Witzenhausen 4).

We assume that a process can have only one associated ifo function
in progress at a time (i.e., parallel processing is achieved through
forking), and an ifo function is not called by any other process while a
previous call is in progress. Under these assumptions all queuing in the
system takes the form of active processes awaiting executiaon, and dormant

pProcesses awaiting completion of i/o functions.

(33

The State Word of a Process (Processor)

The gtate word of a process is the information that nust be placed
in the registers and indicators of a processor to place a process in

execution. As shown in Figure 1, the state word includes the contents

of processor arithmetic logical and index registers (general registers),
the gtates of modal and conditional indicators, and the address word
(attachment tag and word address) of the next procedure step to be
executed. The state word must also inclede datas specifying the

sphere of protection within which the process operates and the set of
system names (segment name, ifo functions names, and sphere names)
currently "attached" to the process. It is evident that switching g
processor from one process to enother involves solely a substitution

of state words,

Process Priority

Let there be n levels of priority numbered 0,1, esasni~l where one
process has precedence over another if the first has the higher priority
number. A process has an initial priority dgtermined by the event that
created the process (i/o function completion, fork, or return from a
sphere entry as discussed below). The priority of a process decreases
as execution time accumulates according to the following rules. Let s guactum
be the unit by which execution time 1s measured. Then a process assumes
priority K~1 after execution for 2 n-kquanta with priority k. (This can

be implemented quite easily hy a mechanism described later in this note).

general registers

indicators

procedure address word

sphere of protection and

system nawme specifiers

Figure 1 The process state word.

(4)

The priority of a processor is the priority of the process it is

executing,

The Process list

The process list is made up of process entries belonging to five

subsels called the free list, the execution set, the dormant set, the

dead sct, and the queue list, Each process entry containg space for

a process state word, twe pairs of pointers that link related entries,
and two Indicators = lock out and deactivate, One pair of pointers
links all queue list entries of the same priority to the correspbnding

entry of a gueue priority table. The other pair of pointers links all

process list entries belonging to a particular sphere of protection to

the descriptor of the sphere. The use of the indicators will be discussed
when we introduce a more specifié implementation. The structure of the
process list 1is shown in Fig. 2. The free list is a set of vacént process
entries linked to a word at a fixed location, called the free list tie. The

execution set contains process entries for thogse processes currently

being executed by prncessors of the system. The state word of each

ﬁﬂi JGOR wemg fee > - LR

H issor came Irom a process entry of the execution set, and will be
returned there any time the processor is preemted for a distinct process,
through the mechanism to be described. The dormant get consists of
process entrieg that retain the states of processes that havé encountered
ifo pauses. The dead set contains process entries that represent

the states of processes that have called for action by protected service

descriptor of a sphere of
protection P
+ -+

ring of process
o - entrics in sphere P
queue priority table -

| pProcese queue ring k
k

- -+

- + -+

)\ v
RN ‘_queue ring }
e 1] e LR

a dormant process

a process in
execution

L

+ -4
free 1ist tie

1~] —

free process entries

-» 3

Fig, 2 Structure of a process 1ist.

(s5)

routines, or have been terminated by exceptional conditions. The queue

list consists of a linked ring of process entries for cach distinct
priority number, Each ring may be empty, or contain an ordered set

of state words of processes available for execution. 1In the latter
instance, one of the palr of entries in the ring that are linked to

the queuc prio;ity table is designated as the tail of the ring, and the
other, the head. Any state of the queue list has an associated gueue

priority equal to the priority of the highest occupied ring.

ifo Function Table

The i/o function table contains an entry for each distinct ifa

function as shown in Fig. 3. The table is indexed by ifo function
number, the hardware designator by which the i/o function ig called intp
cperation., Each entry of the table includes:

1} a busy indicator

2) a pointer to ar entry of the prbcess list

3) a priority number.
The i/e function number forms part of the descriptor of gn i/o function

name when it is "attached" to a process.

Execution of i/fo Functions

To perform an i/o function, a process must first "attach the

corresponding i/o function name by the use of an attach meta-instruction.

P P
A
~,

‘ 10 I0

A arhiter

P procesgor

M memory

10 I/0 controller
Figure 3 Modular computer systen

(6)

—
Once this has been done the i/o function has been deemed valid in
the effective sphere of protection and the attachment tag has an
associated descriptor that conteins the appropriate 1/o function
number. If F is an i/o function name and a is an attachment tapg, programming
and 1/o procedure step would be as follows:
attach F,a
execute ifo, a
The effect of the execute ifo instruction is;
1) The i/o function number of the descriptor in attachment register
—

2 is used to index the i/o function table,
2} The state word of process is entered into its associated process
entry in the execntion set, and the entry is made dormant.
3} A pointer to the newly created dormant process entry is placed
in the device table entry snd the busy indicator is set.
(If the busy indicator was already set an i/o synchronizing
exceptional condition has occurred.)
4) The ifo function is initiated.

5) The processor is free to pick up the top process im the queue list,

(7)

i/o Compeletion - Activation of Dormant Processes

Upon completion of an i/o function, the corresponding dormant
process emtry must be placed in the process queue at the appropriate
priority level. This involves only a few steps.

1) The pointer to the dormant process entry and the priority

number n are read from the i/o function table.

2) The process list pointers are modified to place the dormant

process entry at the tail of level n of the process queue,

k) If the queue priority is less than n it is set to n,

4) The busy indicator for the i/o function is reset.

Process Switching by Processors

Each processor continually compares its own prierity number

with the process gueue priority that indicates the priority number of

the highest priority process in the process queue. Unless the latter
mumber is higher, execution of the current process proceeds normally.

If it is higher, the processor state word is dumped intoc the
corresponding process entry, of the execution set and the enfry
is placed in the queue list ring for the present priority number
of the process. The processor is mow free to take up the top process
in the queue list by loading its state word and adjusting the gueue
list pointers to place the process entry in the execution set. The
quene priority must be updated if necessary. If g high priority précess
enters the queue, an arrangement must be made to insure that the processor
of lowest priority is the one interrupted. Otherwise needless process swapping
would cecur.

Forks and Quits

A fork meta instruction causes a process entry to be mgde in the

(8)

Process dqueue from an eatry in the free list with priority equal to that

of the process exccuting the fork. A quit meta instruction leaves the
processor [ree to pick up the top member of the pProcess queue as above return-
ing the execution set process entry to the free list. In these cases, it

is necessary to adjust the pointers so that process entries pertaining

to & particular sphere cf pfotection remain correctly linked. These
connections are necessary so that the éystem can be "aware" of all

processes operating in a particular sphere of protection and can delete

them if requested to do so.

Comments

Several essential features have been omitted from the scheme described

in this note for the sake of simplicity:

1) Since different system entries will need to reference the
process list occassionally, some form of lockout is necessary
to resolve race conditions among those entities, The lockout
indicators are included for this purpose,

.2) In some applicatioms it will be necessary to permit a processor
to execute g single process without interruption for an extended
period,

3) For reliability it should be possible to implement several
cancurrently operating queues in a large system.

The latter considerations arc satisfied through system partitioning as

described at the end of this note.

(9

Hardware Implementation

We suppose the computer system contains modules of four clagses.

1} processors

2) memor Les

3) arbiters {(syatem controllers)

4) ifo controllers.

We suppose there would be many units of each class in san actual
system and demand an implementation with general application, Communication
among these modules is assumed to be only as indicated in Fig. 3. Note
that the only physical links teo a processor are those it has to the
arbiters. One of the functioms of the arbiter is to resolve conflicts
that arise when two or more processors address the same memory module. The
arbiter also performs the synchronizing and decision functions required
to implement the scheduling system outlined above,

The i/o controllers also communicate with memory solely through
the arbiter modules. All signalling of initiation and completion of 1/o
functions must be done through the arbiters. Therefore it is matural
to make the arbiter the focal point for implementation of a process
switching scheme. We suppose there may be a process list associated with
each arbiter of a system. Since modification of the process list can be
accomplighed by procesgors and ifo controllers through the normal memory

access mechanism, the special features required in the arbiter are;

(10)

1) A means of recognizing when a Processor is to be switched from
one process to another and signalling the processor to take
action,

2) A means of signalling the start of ifo [unctions to ifo
controllers and transmitting to the i/o controllers the codes
of the functions.

The occurrence of process switching is dependent on the priorities of
processes currently being executed by processing units, and the
priority of the top eptry in each process queue, Therefore logic levels
representing these data must be continually available to the arbiter,

To previde these levels, each processor has a priority counter (PC)

of 2k - 1 bits, the contents of which determines s k-bit processor
priority number (PP) equal toc the number of adjacent ones preceeding
the first zero in scanning from left. The PC is decremented by one
for every N ﬁemory reference by the process being executed, N defining

the guantum of process execution time. Decrementing stops when the PC

reaches zero. Each arbiter has a k-bit queue priority register (QP) that
contains the priority number of the top process entry in the associated
Process queue.

Description of Operation

Normally the decision logic of an arhiter module is in the guiescent
state with its queve priority register QP containing the priority number
of the top entry in the associated process queue. ‘The decisiﬁn logic of
an arbiter compares the QP with the processor priority PP from each processing
unit. Whenever any PP is less than QP, and the decision logic is quiescent,

the process swap signal (PS) is raised to each Processor for which the

(11)

difference QP ~ PP 1s maximal. When a processor is recelving a process
swap signal from any arbiter and is also interruptable, it attempts

Lo execute a process swap accept memoty access to the srbiter module

transmitting the PS5 signal. If several arbiters have raised PS signals
to the same processor, the processor selects one by a simple priority
rule. The arbiter's priority logic for controlling memory access will
determine which of posaibly several competing processors is successful in

accepting the sway. At the completion of the successful process sway accept

access, the decision logic is in the busy state. An unsuccessful
process swap accept cycle cccurs if the decision logic is found to be
busy, and the processor continues execution of its current process.
The processor accepting the swap enters master mode and performs the
following actlons by executing a normal instruction sequence.

1) stores the processor state word in the corresponding process
entry in the execution set.

2) locks (by setting a lack bit indicator) the levels (PP and QP)
of the process queue that must be rearranged in recording the
new process list status.

k)] .places appropriate new priority numbers in PP and QP by means
of restricted instructions:

QP ———> PP
K ——> QP

where K < QP is the new process queue priority number.

4)
5)
6)

7)

8)

(12)

returns the arbiter decision logic to the quiescent state.
alters the process queue pointers to record its new status.
uniocks the_process queue levels that were locked in {2),
loads the processor state word from the execution set process
entry created by (5),

leaves master mode to establish e¢xcention of the new process.

Initiation of ifo Functions

The initiation of ifo functions by execute i/o procedure steps

must be arranged such that there is no possibility of interference

among several processors calling for digtinct i/o functions during

simultaneous execution by distinct procassors.

The execution of an execute i/o instruction must accomplish

the following.

1
2)

3)

Enter the process state word as a dormant entry of a process list,

Obtain the i/o controller tag and the ifo function index from

the descriptor associated with the attachment tag 8. These data
specify the i/o controller involved, and select a particular i/a
function where the i/p controller handles multiple i/p functions.
Tnform the designated i/o controller of the location of the newly
created dormant process entry, and tramsmit to it the i/o function

index.

To be consistent with the implementation af process swapping

described above, step 1 above (creation of the dormant process entry).

(13)

is performed by a processor operating in master mode - with suitable

locks on the process list. Step 3 requires communication between the
processor and the designated ifc controller and must be mediated by an
arbiter for the system structure ghown in Fig. 3. To accomplish step 3

the processor initistes a start i/o memory access that presents the i/fo
controller tag, the ifo function index and the address of the formant entry

(the dormant process pointer) to all arbiters accessible to the processor.

An arbiter with any start i/o acceas requests pending selects one by
a simple priority scheme and raises the ifo request line to the 1ij/o
controller designated by the corresponding tag.

As scon as an i/fo controller sensing any raised ijo request lines
to itself becomes free, it selects one request and executes an accept ifo
memory acccss to the corresponding arbiter, 1Inm consequence, the i/o controller
becomes busy and receives from processor via the arbiter the i/o function
index and the dormant process pointer. At this point the start ifo
access of the processor has been completed and it is free to pick up
the top entry on the process queve (via master mode programmings}. The
i/o controller remains busy until it is prepared to accept a subsequent
ife command. An i/o controller performing a single 1/o function may
remain busy until the functiom is completed., A multiple function ifo
controller should remain buay for as short as interval as possible -
presumably only long enough to permit acting upon or gqueueing the

command .

(14)

Performing i/o Functions

An i/o countroller has access to the process state word of any process
executing an i/o function performed by it. Thus, it may reference
information in the state word for transmission to output devices and
enter information into the state word Crom input devices. Further, the
state word, through the descriptors of attsched segments, permits the
i/o controller to monitor block transfers or rendom addressing of a

segment by an 1/o device,

Completion of i/o Function

Upon completion of any i/o function, and i/fo controller ig
required to place the prucess entty indicated by the dermant pProcess
pointer in the process queue at the priority level specified for

this ife function, and change the queue priority QP as NECessSary.

System Partitioning

For flexibility end reliability it_is desirable to be able to
partition a large computer system into fragments each of which isg
capable of performing all bhasic system functions. Partitioning can be
done physically by decisions as to which modules are interconnected,
logically by programmable registers that determine which physical
interconnections are allowed to be used, and functionally by only

programming for subsets of permitted logical interconnections. Physical

(15)

partitioning drastically decreases the flexibility and time scale on

which system resources may be shifted among different system goals.
Functional partitioning is completely flexible but particularly prone
to catastrophic failure in the event of programming errors or hard-
ware failure.

Here, we propose a form of logical partitioning which is a compro-
mise between utmost flexibility of an entirely programmed system and the
complete lack of interaction that weuld result from physical partitioning.
We establish two levels of partitioning

partitioning of memory

partitioning of control.

Memorv Partitioning

Each arbiter of the system has sole control over access to a certain
protion of total system memory. Partitioning is established by enabling
or disabling access to an arbiter for memory references by 2o indicator

for each processor or ifo contreller comnected to the arbiter.

Control Partitioning

Control partitioning is established at each arbiter by indicators
that determine which processors and i/o controller participate in the
manipulation of the process queue associated with the arbiter.

The partitioning indicators are set by master mode instructions

(perhaps with some safeguard against accidental use).

(16)

References

1} F. J. Corbato, gt.al., An Fxperimental Time-Sharing Svstem,
AFIPS Proceeding, Vol. 21, pp. 335-344 (National Press, Palo
Alto, California 1962).

2) J. B. Dennis, Program Structure in a Multi~Access Computer,
Project MAC Technical Report MAC-TR-11, (M,I,T., Cambridege, Mass.,
1964).

3) J. B. Dennis and E. L. Glaser, The Structure of On-line Infor-
mation Processing Systems, a paper prepared for the second
Congress on the Information System Sciemces (MITRE Corp.,
Lexington, Mass., Novemher 1964),

4) J. Witsenhausen, A Note omn Asynchronous Parallel Processing,
Project MAC Memorsndum AC-M-186 (M,I,T., Cambridge, Mass., 1964).

