-MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

Computation Structures Group Memo 72

An Approach to Proving the Correctness of

Data Base Operations
by

Igor T. Hawryszkilewycz
Jack B. Dennis

This paper was prepared for presentation at the ACM SIGFIDET Workshop
on Data Description, Access, and Control, Denver, Colorado,
November 29 - December 1, 1972,

. Qetober 1972

The work herein wes carried out at Project MAC, MIT, and was sup-

ported in part by the Advanced Research Projects Agency, Department

of Defense, under Office of Naval Research Contract Nonr NQOOL4-70-A-0362,
and in part by the Postmaster-General's Department, Australia.

An Approach to Proving the Correctness
of Data Basé'Operatious

I. T. Hawryszkiewycsz
J. B. Dennis

ABSTRACT

Work on the development of?a precise semantic model for data base
systems ia presented. Our wmodel is intended to provide a formal basis
for investigatiﬁg suitable semantic principles for data base systems
where many users may be perfurming tasks concurrently, and where data
bases are shared among users. The application programs of system users
are assumed to be expressed in terms of a modified relational data base
model. The semantice of primitive data base operations are expressed in
terms of semantic routines that.spacify transformationg of abstract data
structures which represent states of the data base system. Our approach
to establishing correctness of sem~ntic routines in the presence of con-
current system activities {s described. '

The work herein was carried out at Project MAC, MIT, and was supported
in part by the Advanced Research Projects Agency, Department of Defense,
under Office of Naval Research Contract Nonr NO0OQ14-70-A-0362, and in
part by the Postmaster- General's Departmant Anstralia,

1. Introducticlm

We are working toward defining a preéise semantic model for data
base systems whefe-many users may be performing tasks conecurrently, and
vhere data bases may be shared among usefs. :Dur approach 1s illustrated
in Figure 1, and makes use of several notions discussed previously by
Dennise tlT; :We guppose that data bases take the form of collections of
domains and‘relations according to the relational model of Codd [4].
Oparﬁtidns on data bases will be modelled in terms of transformations of
abstract data structures by sequences of abstract operations. The objec-
tiva 18 to extend the semantics of the relational model to situations in
which concurrency and sharing occur, and to specify these semantics in
térﬁs of a lower level abstract language. One advantage of thia approach
is that eorrect implementation of the semantic specification will auto-
matically ensure correct operation of a data base system.

Coﬂd' ‘ubrk in [2] has shown that the relational wodel can represent
thé type of struc:ures outlinad in the CODASYL Systems Committee Report

ﬂ[3], and he claims [4]} that this model exhibits a greater degree of data

~indepen4ence than the group, tree or plex structures described in the

OODASYL'RepOrt.- Thus. our work 1s applicable to a wide class of data bases.
We, assume that the reader is familiar with the relational model of

. Codd [2] " In this paper we first deseribe our abstract objects and basic

operations, This {s followed by a discussion’ of our representativn of do-
mains and relationa, with some examples demonstrating our method of seman-
tic definition. " : '

,.amwoz tenjdesuo]) -1 2andj

guojjwIadQ
I%ea3sqy

uorlejuasazday
IoeI1asqy

ucTaBjuasIaday
109aA8qQY

aangomalg
TBUOTIRTSY

Ban3onigg

TRUOTIIR]9Y vop3uedg

Ten3vy

. BanIoNAI§ -
BIBG

2. Abstract Objects and Operations on Abstract Obiects

Our abstract objects are directed acyclic graphs. The arcs between

the nodes of the graph are called branches. A special class of nodes that

may not have branches emanating from them are known as elementary objects.

Each elementary object has a value which may be (for illustration) an in-
feger, a representation of a real number, or a string, Each branch of an
object is labelled with a string or an integer.

In our semantic definftions for primitive data base operatiohs, we

use two claases of variables -- structure variables and selector variables.

The value of a structure variable ranges over the nodes of abstract ob-
jects. The value of a selector variable ranges over the set of possible

branch labels. By a selector expression.we mean either an Identifier of

a selector variable or an actual branch label denoted by a strinmg enclosed
in single quotes. The value of a selector expression is a branch label.
If P is an identifier of a structure variable and Xip seen X are selector

expressions, then
P, Ef e Ege aee oK

is a structure expresgsion. The value of a structure expression is the

date base node reached from node P by tracing the path with successive
branches labelled with the values of X1y eees X0 The value of a struc-
ture expression ig undefined if n» such path exists. If E is a structure

exprogsion and x is a selector expression, then
E{x)

is a branch expression, the value of which is the branch of the object
that emanates from thenode identified by the value of E, and has the

value of x as its label.

To illustrate this notation, consider the abstract object shown in
Figure 2, Suppose node nl is the value of the structure variablz P.
Then P.'a" will refer to node n2, If 'b' is the value of selector vari-

able x then both P.'a'.'b" and P.'a'.x refer to node n3.- P.'a'('b') and

-

P.'a"(x) will both refer to the branch Iabelled with the string 'b' and
emanating from node n2, '

To refer to the value of an elementary object we use the function
val. Applicat1on of val to a structure expression that refers to an
elementary object givesa the value of the elementary cbject. If the
structure express;on does not refer to an elementary object then yal is
undef1ned For example, in Fig. 2 val(P.'a'.'c') = 3, but val(P.'a") is
unﬂgfincd. ;' '

3The.bpe:ations and tests we shall use to build the routines that
deﬁiﬁe_data Base operations in terms of abstract objects are explained
in Table 1.. Two Boolean variables, called lock and block, are associated
with ééch ﬁode of an abstract object. The lock variable for a node n is
uséd}to_exclﬁde concurrent processes from simultaneous access to the ob-
ject;hgving n as its root node. The block variable will be used in the
gemantic foqtines to limit alteration of objects that represent parts of

data*bésés”éhared among system users. The lock and block varisbles of a

. node - are referred to by writing lock(P) or block (P) where P is a struc4

ture expre331on that refers to the node,

nl

Fiéure 2, An abstract object.

selt{P,x)

empty(P) -

del(P(x))

. append(P,x).

cfeété(P)
Link(P;Q,x)

oo

lock(P)

'unlnck(P).v

principal(p)-

block (P}
isblock (P)

 Table 1. Abstract Functions

= T, if there is a branch 1$be11ed with the value of se-
lector expresgsion x, and, emanating from the node to
which P refers |
= F, otherwise |
T, -if there are no-branches emanating from the node:to
which P refers,

= F, otherwise

The branch labelled with the value of the selectof expression
x and'emanating from the node to which P refers is deleted.

A branch labelled with the value of selector expression x

is attached to the node to-which P refers.

A new node is created and assigned to B. The block and lock
variables are set to F. ‘

A branch labelled with the value of x is created.” It

emanates from the node to which P refers and terminates

' on the node to which Q refers.

If the lock vﬁriable assoclated with P is T, fhen the process

. walts until it becomes F. It is then set to T and the pro-

cess continues., TIf it is F then the process sets it to T

and continues. '

The lock variable associated with P is set to F,

= T, 1f the program that invoked this command belongs to
,usér‘ﬁ; '

= F, otherwise. . A

 The block variable associated with P is set to T.

T, if the block variable associated with P is T.

F, otherwise.

3. Representation of Domains

We propose a’ model for the semantics of a data base system through which

a number of users gain access to and manipulate relatloual data bases by

running application programs expressed in terms of primitive data base op-

erations. A state of the data base system congists of the current contents

of a collection of relational data bases, the user application-programs, and

informatiog gbout the state of execution of each application program,

In pur model we represent the data base component of the system state
asg an_hbstraéé:objeqt and define a set of primitive data base operations by
_ronl:iﬁtges-that perform transformations of the abstract state.

. any atate of the data base system, the data b#ses in existence

‘are defined,with respect to a collection of domains and a collection of
relations that involve these domains. Here we discuss the representation
of'domainé, access to domains, and the formation and sharing of domains,

In supseqﬁent paragraphs we discuss the représentation of domain values
and pf;félatiqns as abstract objects, =

t:f?@ﬁéfvaihé'of a domain is a set of strings, Domain values are subject
. to mp@ifitaﬁiqn by the action of application'programs, ILf D is the set of

dcmainﬁfariahles that exist at some moment in operation of the data base sys-

tem, the collection of domain v values may be represented by a value function

v,: D +)

:where § is the set of all strings useable as names of domain elements and
(’(s) is the power set of S. ! _
Let U be the set of ugers of the data base system. We model the ability

' of users to gain access to demains by a set N of access pairs:
i

N g {({u, n){ju €U and n € 8} ,-

For an access pair (u, n}, n is the name by which user u refers te some

domain variable d € D. The correspondence of access pairs to domain vari-
e —— B ——

. ..ables i Ls represented'ﬁy tﬁé access function U

AD{ N-»D

e Rt T I I S, - e e

T I . -7-

which associates a domain variable with each access pair for which AD
is defined.

We now propose an abstract representation for the domain structure.
This is shown in Fig. 3. Here the access function is expressed by the
paths between the user nodes and domain variable nodes. The value func-
tion is expressed by the paths from the domain variable nodes to the value
objects. Thus in Fig. 3 user uy refers to domain variable d2 using the
name nl, whereas user uy refers to the same ﬁomain variable by the name n&.

Let us now discuss the semantics of operations onm the domains. There
are two classes of operations -- those concerned with the access function
and thouse concerned with the value function.

In this paper we will only discuss some of the primitives concerned
with the domain access function, These primitives allow us to control the

sharing of domains and are discussed in the next section.

e = — - uger nodes

Flgure 3. Representation of access to domains,

Table 2. Semantic ﬁefinitions of Access

declare domain (P,pl,dl)
if principal{pl)
then lock(P.pl); _
if selt(P.pl.'domains®, dl)
then unlock (P.pl); return F:

else append(P.pl, 'domains’, d1);
append(P.pi.'domains'.dl, 'names'Jy
unlock (P.pl); return T; - B
else return F;

end;

create domain (P,pl,dl,d2)

if principal(pl)
then lock(P.pl)
if selt(P.pl.'domains', d1)
then if selt(P.pl, 'domains’, 42)

then unlock(F.pl); return F;
else block (P.pl. 'domains',dl, 'names');
append (P.pl, "domains’,d2);
link (P.pl. 'domains'.d2,
P.pl.'dhmains'.dl.'nawes','names');
unlock (P.pl);: return T:
else unloek(P.pl); return F;

€lse return F;

end

‘Table 2 (continued)

share demain (P,S,pl}dl,p2,d2)

if principal(pl)
then lock(P.pl);.
. if selt(P.pl.'domains', d1)
' then 1f selt(S.pl.p2, d2)
" then unlock (P.pl); return F;
else link(S.pl.p2, P.pl.'domains'.dl, d2};
unlock{p.pl); return T;
_ elgse unlock(P.pl); return F;
. else return F;

end;

borrow domain (P,B,pl,d2,p2,d3)
iggpfinCipa1(p2)
. then lock(P.p2)
| if selt(B.p2.pl, d2)
then if selt(P.p2.'domains', d3)
then unlock(P,p2); return F;
glgg link(P.p2. 'domains',B.p2,pl.d2, d3);
unlock (P.p2}; return Ti

~ else unlock(P.p2); return F;
elce return F; '

Cend;

-10-

pn

_declare domain (P, 'pl","dT7)

-
==

domains

xl

ntames

names

ergats domatin (P, pLY, d1"; 47D

Y

names

Figure S

-z

3.1 Sharing Qﬁ'Domains

In a shared data base system we must provide a method for making in-
formation available to a number of users and.yet control this sharing of
information in a way that actions of one user de not interfere with the
correctness of actions of other users.

One appruach that can be used here is to introduce the concept of
awnership,‘#hich implies that some users may have ownership rights with
respect tp:cértain'objects in the system which other users do not have.

IWe may consider the following simple notion of ownership:

ALY fIf a user owns a variable then he has owmership rights to the
ﬁariable.

{2) If a user has owmership rights'wi;h respect to a variable he

. maf access, or alter the value of the variable, and may give

.ownership rights with raspect to the variable to other users.

* This notion of ownership is realized by the primitives declare =~

domain, create domain, share domain and borrow domwain. A declare domain

operation will create a new domain variable, whose value is initialized
to the empty set, and an access pair that defines the name by which this

user refers to the domain variable. The create domain primitive creates

a new domain variable, whose value is the same as some existing domain
variible, and creates a new access pair by which the user refers to the

new domain variable. ,

The declare domain and create domain primitives are defined in terms

of abstract operations in Table 2, and their’ effects on the abstract

structure are shown in Fig., 5, The effect of the declare domain needs no

_explanation, but the create domain needs some elaboration. One of the

effects of create domain is that the value structure is now shared by the

two domain variables and the block variable bfithe value node is set ko

T. -The blocking ensures that primitive operatfﬁﬁs, which subsequently

-

-12-

change the value of a domain variable, do not alsc change the value of
some domain variable that shares the value structure.

For example, in Fig. &(a) the value structure that is defined by
node B is shared by two domain variables. This value may be considered
to consist of two parts, S1 and 32‘ Suppose the user who refers to one
of the domain variables by the name 'n', changes the part Sl. The re-

sulting structure is showm iIn Fig. 4(b). The value appearimg to the user

Figure 4(aj . Figure 4(b)

who refers to the other domaiﬁ vafiable by the name 'n2' remains unchanged. -
Thus he retains sole ownership to this domain variable, The node that de-
fines the structure 52 wou}d now become blocked so that a similar effect
results if 82 jis altered.
Sharing of domains is represented in our data base system by the
function '
Fyt Ux U &y
where Y =5 x 8

L =13-

where Y is a set of neme pairs and G?(Y) is the power set of Y. FD'maps
each pair of users (ul, uz} to a set of name pairs. Each element
(nl, n2) of this subset is a name pair which indicates a domain variable

that user u, wishes to share with user u

1 2° ﬁl is the name by which u, re-

fers to this domain variable, The share domain primitive has the effect of

adding one pair to the subset defined by some user pair. Each name, n,,

is a name that user, u,, will use in the borrow domain primitive to access.

the domain variable that has been made available to him by a_ share do-““_

.
main prlmltlve. The borrow domain primitive will also create & new ac-

- CBEB p&ir.(uz, na), which will define the name by which user u, wishes to

acceds the shared domain variable, and a reference from this access pair
ta the domain varlable.

Bharing is represented in our abstract'state by 1nc1uding a share

'stchtnre;defined by the nodes $ and B, and shown in Fig. 6. P in this

EigureAis';hat part of the state that defines the domaina and relations
curreﬁﬁly aécessible to the users in some relational data base. S and B
repfegent that part of the state defined by'the relation Fb. A usger uy
makes a domain variable to which he refers by the name ny available to
user u, » by linking node S. 'ul','u2’ to the domain variable node with a
branch labelled n2. u2 can now gain access to this domain variable by
the expression B.'u2',"ul','n2’ and create a branch to this variable in
the P gtructure, R '

- Tablie 2 defines the primitives share domain and borrow doma’u, which

are used to transfer ownership rights and the-effect of them is 1llus-
trated in Fig, 6. For convenience in Table 2 ﬁe have used the structure
variables P, § and B as bound variables. Application programs will be
constructed using primitives where these variables are free, and implic-
icly refer to appropriate parts of the abstract data structure.

We note that given these semantics it is ?écessary that a user have
gole ownership of a domain if we are to ensure that the value of the do-

main may not be changed by some other user. This is an unsatisfactory

domains

[a N
[

Ti2mes

di

named

domains

names

After
Step 1

p2

pl P2

p2
Initial pl
State :

Step 1: ghare domain (P,S,'pl','dl’,'p2','d2")

Step 2: bprrow domain (P,B,‘g;',fﬁZ','pg{,{d3’)

Figure 6

-15-

restriction, a8 a user will often wish to grant other usérs access to a

domain with assurance that the domain value camnot be altered by other

users who, however, mey have access to the domain, Hence, we require a

second kind of ownership, which allows a user to:

{1} access the value of a domain, but not alter jit.

(i) give the same ownership rights to some other uszer,

Two approaches are possible to the specification of this extended

notion of owmership:

(1) Extend our objects so that a variable with value W or R is

associated with each node, We can then have the structure

shown in Fig. 7.

We can defipe our semanties in such a way

that a program accessing the value structure through the branch

Figure 7

user nodes

user nodes

*
other users

procedure

Figure 8

write
procedurse

-16-

dlx cannot altér the value as R is associated with its domein
variable node. ‘A program accessing the value through dly can

change the value, as W is associated with its domain variable

+ node. .
fii} We can ass‘ocia'.i:-e with each domain in the structure, thé actual
' operators that a borrower is allowed to use. This is illus-
trated in Fig. 8. We associate a domain access structure with
the domain variable. TUser ul is the only user allowed to use
the write primitive. All other users can only read the value
of the domain variable,

1t is not clear at this stage as to which is the more satisfactory
altermative, This will become clear as our work proceeds and we develop

a complete zet of primitives.

- - —domain variable nodes - — —

Approach 1

Approach 2

Figure 9. Repreéentation of domain value.

-];?_

3.2 Representation of Domain Value

Two approaches for the representation of domain values are illustrated
in Fig. 9.

Conceptually we must have the ability to obtain any domain element by
glving its name, or all domain elements in some conventional order. 'The
first abilitcy -- directlaccess by name -- is needed, for example, to answer
an interrogation as to whether a specified element exists in the domain. The
second ability is needed when every domain element must be examined in or-
der to perform the operation requested,

By adopting approach 2 in Figure 9 we can describe the semantics of
direct access in terms of a sequential search. Approach 1 is better suited
to explain the semantics of direct access but is unsatisfactory for ordered
sequential access. We feel that a composite approach is required that al-
lows primitives such as:

"obtain the name of the next element of domain d"

"for all items in the domain d , . ."

This would require the definition of a conventicmal crdering of the elements

of domains which could be the natural order of the elements of §.

4. Representation of Relations

For the representation of-the:relations of a data base we are-égain

conce ned with representation of access to relations and to their values.

. Access by system users to relations by name is the same as access to do-

mains, and makes use of operations analogous to declare domain, create

domain, share domain, and borrow domain. Let R be a set of relation

variables, and let the relation access function be

AR:_N + R

el o eh m o e e e e m A m e m R

o ———— o — e o G S U S U

-18-

New problems arise in representing values of relgtions, for the ele-
ments of a relation may be acceased over various pathé and a representa-
tion should permit efficient access to relation elements over all access
paths that are expected to be heavily used during system operation.
Furthermore, it should Sa posaible to easily change the repregentation to
include additional access paths if new ugses of the relation are intro-
duced subsequent to data base formation, These requirements are similar
to facilities provided {n the language LEAP [6].

The relation value function for R is

VR: 3-4‘ﬁ3
where ?{ is the class of all n-ary relations on domains in D where =n 2'2:
*ﬁ? = | vfn, n=12,3,...
¥ Ol (L PREPP IV JCCHARRERE M AV) LR
‘{9 ((dl’ sery dn}) = ‘f’({<els reey eII}Iei £ v(di)})

In the above,‘*?n is the set of n-ary relations, where a relation for our
purposcs 1s a pair conglsting of au ordered n-tuple of demain variabies and

a set of n—tuplesfg ({dys «+.,d %) called relation instances where each
1 n : .

" component of a relation instance is an element of the value set of the cor-
responding domain variable. _
We have devised an abstract representation for relation wvalves that
is able to represent as many potential access paths as appropriate. The
representation has three parts as shown in Figure 10. The access struc-

ture identifies the domains of the relation and their order. The descrip-

-19-

relatiqn variable mnode

Access
Structure

Association
Structure

Description
Structure

Figure 10

directory objéct

relation instance object

Figure 11

order object

-20-

tion structure contains information about how the set of relation in-
stanceg 1is represénted in the agsoclation structure,
The association structure is composed of the three kinds of objects

illustrated in Figure 11:

(i) _ the directory object: Branches emﬁnating from the root node

' of this object are labelled with item names. All the item

hames are elements of the same domaln.

(ii) the relation instance object: Each branch is labelled with

' an integer that identifies a domain éﬁd terminates on an ele-
' mentary object whose value is an element of that domain.

"(iii) the order object: A finite number of branches termiﬁate on

relation instance objects, The branch labels are consecutive

_';integers 1, ..., N.

Lét us now consider how these objects may be used to represent the
association’ structure. Suppose & user can access the relation shown in
the, following table. '

Relakion RL

Figure 12 ghows one pogaible representatiOn'for this relztion. The
4CCESS structufe indicates that the relation has three domains which (in
this relation) have the names D1, D2, and D3; the access structure also
‘has links to the domain variable nodes that represent the values of these
domazins. In Figure 12 the association.structu;e‘represents the set of re-

lation instancesé by an order object having omne ‘component instance object
: y] g ! mp

-21-

to domain variable
nodes of d1,d42,d43

%Y

relation value node

n2

level

Figure 12,

-22=

"E1 sanddg

O OO OC
SN Y QO

ey
)
5
(= PO
Ly v
) CN
oA £
AW Ay
71 "81d
. se
m&n feanamnals

£5900°¢ : - SWrEs

=25~

for each relation inatance of the relation. The description structure
states that the two levels of the association structure are composzed of
an order object (type has the value ord), and relation instance objects
{type has the.value rel).

The integer-labelled branches emanating from node nl in the descrip-
tion structure indicate by Boolean values which domains are represented
in cnrresponding relation instance objects o# the association structure;
in Figure 12 all three domains are represented, as is necessary to com-
pletely represent the relation.

The association structure of Figure 12 does not permit easy access
to just those relation instances having specified domain elements in cer-
tain positions. Efficient access to a rglatinn uaing elements of one or
more domains as kevs may be provided by using directory objects at one or
more levels in the association Etructure. In 1llustration the relation RI1
may also be represented as in Figure 13 in which the top level of the as-
sociatfon structure is a directory object (type value is dir in the
deseription structure), Since fhe domain DI element of a relation in-
stance from the path over which it 1s reached, the branch labelled 1 of
each relation instance object in Figure 12 may be omitted.

N, VR

5. Correctness of Data Base Systems

The correctness of semantic routines éucﬂ as those presented in
Table 2 for the domain access and sharing primitives of a data base sys-
tem may be studied as follows: The meaning of each data btase primitive
is defined by the change it makes in the accéss functions and value func-
tions for .domains and relacions. We may consider the access and value
functions tﬁ;t apply to some moment in system operation te form a data
base state and regard execution of a data base opefaticn as performing
a tran51tion between a pair of data base states.

" For example, the operation declare domain (P, u, n) can be defined as

the fpllowiﬁg transformation on the data base state.

DDy d -- a néw domain variable d 1s created
HI4'N U {u, n) -- a new access pair is created
. AD'* Ap U {{u, n), @) -- the new domain variable is associated

- with the new access pair
'_VD'J.VD U {d, & .- rthe initial value of the new domain
- variable becomes the empty set

jR, AR,FDand Vp are unchanged.

‘Given a data base state Bys execution of a data base operation a

resuits in a new data base state s, where
8, = Ta(Bl]

and Ta is the state trans formation for operation a. The semantic routine

for operation a specifies a sequence A

z =2

a al’ Zéz, s z

ak

of transfurmatlons to be applied to the abstract object t, that representa
the data base state 8 Let4j be a relation that contains a pair {s, t)
if ¢ is an abstract object that represents ‘the data base state s ac-

n

-25=-

cordirg to some scheme ‘such as we have outlified above. Let,{f- be the
converse of). Relation ifis one-too-many because thefe aré many wayﬁ_‘ﬂ
in which one relation might be represented depending or the anticipated
use. '

The semantic routines are correct if two conditions are satisfied:

1) ‘The tranaforﬁation of t, defined by the sequence z, is con-

sigtent with the transformation of 83 by T 2’ that is
8y = T,(8)) = I e, (O(s,)))

for all choices of the initial state gy This condition is
111ustrnte¢rhy the commutation diagram in Figure 14.

Yo

Abstract Rep Abatract Rep-

resenl:atioy) ‘ resentation

o B D!

('Data_;;;;h] Ta'

State =

rFSata Base
State

- Figure 14
2) Let a2 and b be data base oﬁératibns executed concurrently by
two users with the data base system in state 8;. There are &wo

Yeorrect' outcomes (whick need not be distinct):

32‘ = ('l' (91))

B3 = Ta (1 (s1))

Regardless of how the elements of z, and z, are mergad to z,
the sequence of abstract transformations applied to some ob-

Ject t, such that (51; tl) € Jj; the result

-26- o

t2 = z(tl)

e T,

p——y

.is a representation of one of 8, OF 84] that ig, eilther

(sz; tz} € IT or (53, tz) € ;ff '

We are studying the cholce of primitive data base operations suited

to data base systems in which there are concurrent activities and sharing

of information among userd, and the design of gemantic routines such that

concurrency may be effectively employed while meeting our conditions for

correctness.
References
1. J. B. Dennis, On the exchange of informatiom. Proceedings 1970 ACM-

6.

SIGFIDET Workshop on Data Description, Access and Control.

E. F. Codd, Normalized data bage structure: A brief tutorial.

Proceedings 1971 ACM-STGFIDET Workshop on Data Description, Access,

and Control.

Feature Analysis of Geperalized Data Base Management Systems.
CONASYL Systems Committee, May 1971 (availeble from AQM). '

2. F. Codd, A relational model of data for large shared data banks.
Cogm. of the A@Y, Vol. 13, No. 9 (June 1970).

J. B. Dennis, Programming generality, parallelism and computer archi-
tecture. Information Processing 68, North-Holland, Amsterdam 1969,
pp 484-492.

P. D, Rovner and J. A. Feldman, The LEAP Lagguage and Data Structure.
Report DS-6898, M.I.T. Lincolr Laboratory, January 1968.

L
.

—3?..

