MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

Computation Structurea Group Memo 74

A Contour Model Evaluator for A-Caleulus Expressions
by

S. Nimal Amerasinghe
and

D. Austin Henderson, Jr.

Work reported herein was supported in part by Project MAC, an

MIT reaearch program sponsored by the Advanced Research Projects
Agency, Department of Defense, under Office of Naval Research Con-
tract NOO14-70-A-0362-0006 and National Science Foundation Contract

GJ004327. Reproduction in whole or in part is permitted for any
purpose of the United States Governmenkt.

F February 1973

For some time, the semantics of certain programming languages (1, 2]
have been defined in terms of the A-calculus (AC) [3]. Programs are trans-
lated inko M-calculus expressions and expresasions are 'evaluated' to yield
a resulting '"value of the program."

Recently, a new model for explicating language semantica has been re-
ceiving attention; the Contour Model (CM) has certain intuitive appeal in the
way it handles the scope of variables,

This note demonstrates that corresponding to any A-calculus expreasion
there is a CM algorithm whose ewaluation in the CM mimics the SECD evaluation

of the AC expression.

*»C Expressions

For an exposition of this subject see [3]. It explains that an expression

in the A-calculus is:

1. an identifier
2. a constant
3. some primitive function of two expressions; we will ugse omly
addition and <
the application of one expreasiom to ancther
5, a A-expression, consisting of
a. an idencifier

b. an expression.

Although there are many ways to write AC-expressions, we will use a prefix-polish
fully-parenthesized notation. Thus, for example :

{yOx - (x+1)) 3}

is: the application (y};::j-u
o . of the h-expression (A}, having
the identifier x, and

the expression,
the sum of
the identifter, x, and
"fff***fﬁﬁ.canstant, 1

to the constant, 3.

Another example is:

(YOE - [(¥E3) + (vE4)]) Ox * (x +)]

Different kinds of parentheses are for clarity only, and have no gemantic content.
We will also usually omit the ¥'s.

M Algorithms
For an exposition of this subject see [4] or [5].
The significant points for our purposes are :
1. contours contain local variables, code to be evaluated, and

"nested" contours.

2, entry into a contour causes "new' local variables to be created:
copies of those in the algorithm.

3. on entry into a contour, all lgbel variables are closed in the

ereated contour.

Relation to Previous Work

- In [6], McGowan discusgses the relationship betwsen these two models. Ha
introduces an intermediate language, which he calls *IL.' Ha éives an algorithm
for translating AC-expressions into IL programs, He then defines a modified €M
evaluator which uses an IL program as its algorithm in place of a (M algorithm
demanded by the regular CM.

This note gives an algorithm for translating a AC-expression into a M-
algorithm; this algorithm when evaluated by the regular M evalator, will mimic the

actions of the SECD-machine evaluator on the original AC-expresaion.

Qrder of Evaluation

The Church-Rosser theorem of the A-calculus states that a particular order
of evaluation, the Normal Order, is most successful at yielding values for
AC-expressions and also that thia order is 'canonical’ in the sense that any other
order of evaluation, if successful, yields the same values as that ylelded by
Normal Order evaluation.

The SECD machine defines a particular, non-Normal Order of evaluation of
AC-expressions., Consequently there are AC-expressions which yield a value when
evaluated in Normal Order but which cause the SECD machine to execute a non-

terminating sequence of actions. An example is:

([« Oy » ¥)) (OE - tE)(AE - £t))]3)

See [2] for exposition of this point and further examples.

The effect of translating one of these 'pathological' expressions into a
CM slgorithm and then evaluating it ie, of course, identical te the SECD machines
activities: an infinita loop (Bee Appendix 1).

The Translation Algorithm

Step l: Identify subexpression.
Discussion: Start with mfuilly-parenthesized MC-expression. We will now

identify the subexpressiong which will correspond to contours.

Algorithm: Label with numbers the following sets of parentheses:
a. The outermost set

b. FEach set immediately enclosing a h-expression.

Example ¢

LZog - (@) + @2 3ox - @+ 1)t

Step 2: Depict nesting,

—_—

Discusaion:

Algorithm:

This is a formal step which can usually be omitted once
familiarity with the algorithm has been achieved. We ex-
plicitly depict the negting of contours and the codd for each,

4. (Create a "nesting” tree, labelling each node with the
name hi’ where i is the number of the parenthesis set
matched.

b. Beside each node, write the expression contained within
the parenthedis set matched, substituting kj for the
lmmediately contained labelled subexpresaiors ,

NIRRT

OE - ((£4) +: (£3))) MoAN M x+1)

Step 3: Create the algorithm.

Dlscusgion;:

Alporithm:

This step does all the work, For each node in the nesting
trea we create a contour; the contours are negted ag Indicated

in the tree,

Create a contour for each node in the nesting tree. Negt them

as indicated by the tree,

%, Contour name (corresponding to node li): c,.

b. Contour code: the code written beside the node in the
nesting tree,omitting,k vhere relevant; the ' {identifier)."
Replace implied y's with actual ones, and remove unnecessary
parenthesis,

¢. Contour parameters: 1if the node represents a A-expression,
use the ldentifier part of the A-expression as a parameter
variable, Otherwise,(top nade) none.

d. Contour "local variables: One for each immediately enclosed
contour (node which 18 a son in the tree}; its name should be

hk (where the node dominated ia kk) and its value should be

the label value

Fxample: €1
M ¢,
Ay G5

Cy
EHi
LTI
(v £4) + (y £3)
¢ 5

Nokes on Notation:

By replacing e + 1" with "+ x 1" it is possible to
have all code execution be purely right-to-left.

The laxity with which the code parts of the Contour
algorithm are defined reflects the looseness of code
specification in the Contour Model.

Execution of the Example

We give here only the final snapshot, with all contours retained. We uge
the lower left-hand corner of each contour to indicate the value returned. We
use the dotted arrows to indicate the call-return point of each contour; the
4rTow points to the 'y' in some code which caused the contour in question to be
created. A hidden skack mechaniam ia assumed to implement the right-to-left

evaluation of the prefix~Polish code,
cl

1
? T
hz Cz L 2
£ 03
k3 & c3
YA,
*-..z. 3- T) +14Y f+:f§
> _—l ¥
Flnda J /‘— 9 !‘
X ,_ T
r ,’ I
Lo %
i I x 3
I ‘\
i -]
i +x 1
‘ 4
N
3 .
\\ Cuj
_\ x 4
\'*"
+x1
9 5]

A More Complex Example:

AC-exprepglon:

([, (AE.£3)(x. (Fx) + 2 Ax.x+1])

Note the bindings of the 'f' identifiers.

EAL: let £(x) =x + 1
in
Let £(x)} = (fx} + 2
in
£3
Step L 12 3 34 I 425 51
{[M. (M . £ (x . (£x) + 23] x4 x+11]
-E‘;teg 2: _
/"1\ (Mg
N ?\gkﬁ] . /k%\ :r)us th . x +l]
i OF . £3) Ny N, Ox.(Ex) +2)
(
ANy c
Step 3: 2 2 x| |
?\.5 C5
+=x 1
y?\.zhs z r
M 1% £l] 3
~ 1%
v£3
yl\s }\.4
Gy
=] |
+ yEx2

Execution Record

Cl
1
A
2|(> [€'
A
5| *]S £]d]c (o
A C 3
3
y?\.zhs 31 4 £ L o
%
A ADIE
LI PO { / "(f3
h - A A
—— Tte L I 34 T T
] i L .
[6
S c!
1 i b
X x| 3
‘-.___"
+ vyEx2
,ﬁ
"6
6 -7
- r
¢ 5
- \ x 3
_‘"
+x1
4
&

Note that the 'f' in CA refers to the variable defined in C,, while the 'f' ip

2
Cé refers to the f defined there, This mimics the M-calculus variable scoping
rules.

-g-

Another Example, with function values

MC-expression:

{rg. (a. (ga)5) &41[My. (Ma. (g~ g)Px.x +a +y)}3])

PAL:
let g(y) =
let a =3
in
let gx) = x+a+y
in
E
in
' leta=4
in
[g(a)] (5]
Step 1:
12 3 3 24 5 6 6 7 7541
([hg. Ga. (ga)5) 4] Py.(ra. (g.g) Cx.x+taty) }3])

Step 2:

(g . 2g8]+] (ha . (ga)5)

[y . 7&5 3] {ha. ?\67&7} x.x+a+y)

10-

Step 3
Ay
~
4
g
y?\.z?\.4 7'.3 C3
a
YAy 4 Yygas
y
X
5 Cs
C
v153 6 .E.L__l
C
7
XA .
Y™y

+x+ay

-11-

Execution Record

[}
¢

™ e
o & Ty
L) e -
o I
o I~
] &)
_ ™
[]
= ™~
(&)
™
I %)
y..____1-* L
o
Whad 2 _
b
G.,._. - -
P
1
&
-~

12

A Comment

The translation algorithm we have presentéd here iz based on the essential
similarity of the "scoping" of identifiers in the A-calculus and the Contour
model: namely, "any identifier use refers to the most immedjately defining
expression/contour dafining that identifier."

The only thing to be noted is that the Contour model requires that all
functions used be named. Consequently, function denoting M€ expressions must be
supplied with names for translation into Contour algorithma. We do thia by intro-
ducing the identifiers '%i", which are distinet both from one another and Erom
any ildentifiers in the AC expreassion being translated. We conjecture that a
translation i3 impossible without the introduction of function namea. This
translation ia therefore 'satisfactory' only if such name introduction fs con~
sidered legitimate. There will be those who feel it is not,

Recursion
As explained thoroughly in [2], recursion is achieved in the A-caleulus by

using a so-called 'Fixed-point operator." Thus the recursive factorial Funation

f(x) =1ifx< 1, then 1
else f{x-1) fx

1s expressed as the fixed point of the AC expresaion:

Af. (M. (if x< 1 chen 1 elge E{x - L)} #a))
That is:
YOEf. (A2 . (if x < 1 then 1 else fix - Lye* x)))

where Y 18 a fixed point operator.
Stchra fixed point operatorv Y can itself be expressed as a AC-expression,
In fact there are many AC-expressions which implement Y; ‘'enesis

{r&. [Ag .gllMh . G(hR)]}

-13-

Thus we see that in one sensge, this paper méed say nothing more about re-
cursion; we know how to handle AC-expressions, and that is enough to handle the
AC-expressions of Y which cause recursive behavior.

However, knowledge of the Contour Model, in particular of its use in
explaining ALGOL semantics, leads us to ask,”In ALGOL we get recursion 'free';
why then do we have to stand on our heada to get recursiom in AC-expressions'?

We now demonstrate that we can indeed harness the "inherent recursion"

capabilities of the Contiour Model for A-calculus recursiaon,

Translation of Y(Af . Ax . —)

Step 1: In the original AC-expression, replace

YA . Ax . Y with

yﬁk*f LT

) nil

The “*" {5 a marker which will indicate Formation of a special recursive contour
in step 3. “nil" is an indicator of 'mo arguments." Thus, the creation of a
recursive function ig treated as the application of a apecial function cell to

no arguments.

Step 2: Use the previously-given algorithm to translate the resulting pseudo AC-

expression, marking (with '*') those contours generated from marked A-exprassions.

Step 3: Each marked contour will have the form
* C.
1

gl b
H

where v is the identifier which is being recursively defined. Alter the cell for
"w" to be

(identical to the eell for li).

Comment on Tranaglation

As contour Cj will be applied to no arguments, the altering of the v cell
from an argument Fform to a local label makes syntactic sense,

As we demonstrate in the following example, the function returned as value
of the application of Cj to no arguments is the function cell Ci closed in some
contour cj generated from algorithm gontnur Cj. The identifier in Cj will also
have this value. Any application of the returned function value will cause
creation of a contour nested within contour Ci. Hence, uses of the identifier v
within such applications will be resolved in 05, yielding the same function as
is being applied. Thus the returned funccion value is a recursive function,

We therefore have succeeded in harnessing the "intrinsic recursive"
capabilities aof the Contour Model for A-calculus recursion,

We now demonstrate the translation and execution just described.

-15-

Example of Recursive Evaluation

The demonstration uses the factorial function we looked at earlier:
12 2 3 4 43 1
[[M. f%] [YOf.[M . (f x< 1 then 1 else f(x-1) * x)])]]

Translation:
hz Cz .
A C 2
3 3 f
y?\.zyhsmﬂ y£3
* C3
£ C C
X ‘iﬂ 4
& x
LS
4
ifx=< 1
then 1
else
*yf - xlx

-1~

Evaluatdon:

1
¢y

o™
0
-. Lo}
[} = = 7
Ty =
[
-
x -]
" L]
™ !)
w 1
“ Y
x S c s
b o *
g v v “
LY = ' ’ f
sl A e
~of .))
cd : |
C..a. <
> , R
| .
r i
ug | h |
y / ,
* & Ill_
1 ‘N \
. 3
| N |
L - |
N T o
o |9 X | |
2] { , \
< S
K\.Il.,.. Pe.. -))
-y [|
<
~ P e - e oL oL
e A i)

-17-

Conclugion:

This note gives an algorithm for translating M-calculus expressions into
algorithms for the Contour Model. The algorithm depends on supplying names for
the functions in the A-calculus exprassion.

Although recursion is provided for by the A-calculus itself, it is more
appealing to provide for it explicitly in the Contour Model. Consequently, a
special rule for translating "Y(Mf . (Ax!l.)" is given which yields algorithms
causing the Contour Model evaluator to achieve the recursion effect of the
A-calculusg Y.

AC-expressgion

Contour Model
Algorithm

Incomplete
Record of
Execution

11 2

3

-18-

Appendix 1: Loop omn Pathological hC-Exggessicna

324 4 5 1
{{ Ox.0y.y)) Oe.te) (.t £)]1} 3}
¢
1% 2
A x
4 4
KS T, 3 _zi____J
AL yA, A E i
YY ZY 4 53
A C
£ t
vytt ytt
m C!
21j* 1G]
4]l G,]
s> IS
.l Y
Tl YRy YA, ,33‘::'4 c'
t CS t|e b 5 C"S
t)lcs|
‘/,f’ Yyttt Yyttt
i _ A R Y - -
- £,

-19-

References

Landin, P. J., "‘The mechanical evaluation of &xpressions, _Comput. J. 6, 4
(January 1964).

Wogencraft, J. M, and A. Evans, Jr., Notes on Programming Li uistics,
Department of Electrical Engineering, M.I.T., 1970 (Notes for course 6.231).

Church, A., ‘The calculi of lambda conversion, - Annals of Mathematical Study,

No. 6, Princeton, New Jersey, 1941.

Johnston, J. B., 'The consour model of block Structured Pprocesses, Proceedings
of a Symposium on Data Structures in Programming Languages, SIGPLAN Notices,
Vol, 6, No. 2, AQM, February 1971, pp 55-82.

Berry, D. M., "Introduction to Oregano, ' Proceedings of a Symposium on Data

Structures in ﬁfdngmMiﬁg Languages, SIGFLAN Notices, v°1--a,1§9."2, ACM,
February 1971, pp 171-190.

McGowan, C. L., 'The ¢ontour medel Lambda ¢alculus machine,’ Proceedings of an
ACM Conference on Proving-Assertions About Programs, SIGPLAN Notices,
Vol. 7, No. 1, ACM, January 1972, pp 110-115.

