MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

Computation Structures Group Memo 76

A Base Language Evaluator for A-Calculus Expressions

by

D. Austin Henderson, Jr. and §. Nimal Ameraginghe

Work raported herein was supported in part hy Project MAC, an MIT
research program sponsored by the Advanced Research Projects Agency,
Department of Defense, under Office of Naval Research Contract
Number NOO14-70-A-0362-0006 and National Science Foundation Contracs
Number GJ004327, Reproduction in whole or in part is permitted for
any purpose of the United States Govermment.

April 1973

A Base Language Evaluator for A-Caleulus Expressions

by

“;;+ D. Austin Hehderson, Jr. and S. Nimal Amerasinghe

As a sequel to CSG Memo 74 [11, we offer a scheme for tranglating expressions
in the A-Calculus [2] into procedures structures of the Bage Language [3, 4],
The Base Language (BL) interpreter, acting on these control structures, mimics
the SECD evaluation (5] of the corresponding A-Calculus (AC) exprassion.
See [1] for brief introductory discussions of AC expressions and their order

of evaluation.

The Stack

The SECD evaluator is organized around a stack of Partially completed re-
sults, All computations are carried out from or to this stack. The BL has no
such stack, a priori; we therefore estahligh conventions which maintain a struc-
ture fulfilling, by interpretation, the role of rhe SECD stack.

In each local 8tructure, the stack is selectad by $8. It has the following

structure:

]L(Ki)

§s
8

-2

th element on the

Thus the top-of-stack is selected by $8. S - T; and the n
stack (for top: n=0) by 85 - § - R" + T.

In the SECD evaluator, each function takes its arguments from the stack,
and returns its result by placing it back on the top-of-stack. The BL inter-
preter passes an argument structure which contains parameters and bindings for
external (free) variables of the function being called. We combine these twa
gsets of conventions by placing the external hinds on the top-of-stack and
pagsing the resulting stack as the argument structure. Thus just before apply is
evaluated the 1local structure inm part looks like: '

L)
$8
S
T R
externals
T R
[]
first argument
T
second argument N
\\.
‘-
T R
L th
N argument stacked stuff of
concern to this
function

and just before return is executed (in the called function) the local structure in

part looks like:

‘] B
result stacked gtuff of

N0 coneern to thig
function

Closures

Functions in the BL are reépresented by C-structures:

Procedure

bindings for external
Structure

(free) Variableg of
the funetion

We will use the same Structure for representing clogsures of A-expressions.

~dpm

At translation time, the external variables of each MA-expression is known,
and go BL instruction can be composed to appropriately determine the bindings
of these externals. Specifically when a closure 1is being formed, the externals
are gathered into the E~component of the C-structure: when the closure is
called, the E-component 1s placed on top-of-stack; at the beginning of the code
of a function, the E-component (top-of-stack) is torn apart and made part of the
local structure of the function, thus providing the external bindings necessary

for its evaluation.

Overview of Tramslation

It is convenient to describe the rules for translating a AB-expression into
a2 BL procedure struciture as a three-atep process,
1. Produce a hierirchical structure representing the procedures to be
produced and their nesting,
2. Translate the body of each procedure into a sequence of macco calls

3. Expand the macro calls into BL instructiona.

Hierarchical Structure {(Step 1)

This step is identical to part of the process used in the translation process
from AC-expressions to Contour Model algorithms., See Steps 1 and 2 of [1]. It
results in a tree of A-expressions reflecting the nesting of the given AC-
expression. The body for each expression is presented near the appropriate node
in the tree, and is expressed in Prefix-Polish form with all the apply operators
expressed.

Example:

[Do (+ Ox - 0x)3 x)]5)

12 3 k] 2 1
}Nl y?\.25
h'z Z&x-(+y>~.33x)

Ax - {ox)

Body Translation (Step 2)

The body of each node in the hierarchical structure is tranglated from
Prefix~Polish form to a Sequence of calls on a collection of macros, Thesge
macres embody the conventions usged to mimic to SECD evaluation,

There are two cases: the top level expression, and all other expresasions,
They differ in that the top-level expression doeg not need to concern itself
with parameters or externals, and needs to "output" a final result rather than
'return” it to a caller,

Cagse 1 (top level): The translation is:

crstack H create stack initially
{translate the body)

output i output" the final result

Case 2 (l-expressions): The translation ig:

setstack ; accegs and unstack externals
ext ({list of free variables)} 3 select externalg
arg i unstack and select arguments

{translate the body)

result ig 3 Teturn value to caller

Common body tranalation: Translation is donae right-to-left on the Préfix-

Polish string Tepresenting the body, The ruleg are as follows:

Tvpe of Thing Translation Purpoga of Macro
constants: value (constant) ; create comstant

push 8AC ; stack new value
variable: push {variable) s stack value of variable
A-expression: cloge (A-expr), ; compute a closure

({list of free
variables) }

push SAC 3 stack closure

applicacion: call apply a closure

CT3

primitive s{primitive oper- i execute primitive operator
Ooperator: ator macra)

Example: We use the example we started in Step 1. It uses two primitives
operators, additfon and the suceceasor function, + and . The corresponding

primicive macros are plus and sace. There are no free variables im this example.

hl: cretack
value 5
push SAC
close LZ’ {1
push $SAC
call
ocutput

A : set stack
ext { }
arg x
push x
value 3
push $AC
close h3, {1}
puah SAC
call
plus
resultglsg

l3: setatack
ext {]
arg x
push x
suce

resultis

Macro Expansion (Step 3)

The result of Step 2 is a series of macro calls.

This gtep involves ex-

panding these macros into BL inatructions. $AC is used to hold temporary results,

such as those produced by value and close.

Note that some macres are used in the definition of otherg, The macro

definitions are:

crstack
setstack

ext fel, €ry vany en} -

for each ei:
arg n
resultis

output

value p

zloge hi, [ei’ €ps veus en}

for each ei:

call

Create

create

share

create

pop
link
delete

pop
return

pop
priat

congt

delete
create
move

create
Link

select
delete

link

apply
dalete

$5 -8
3AC

SPAR, $S
SAC

SE
$E, e
SE

8AC
$AC

n, $AC

SAC

$AC

?»i, SAC- G- T
SAC+C - E

$AC-C-E, e e

§5 .8, T, 4F
58-8, T

§8 8, T, F-C -+ E
SF, $5

$F

push n

pop n

plus either:
or:

suece aither:
or:

gelect
delete
agseign
link

delete
gelect
select
delete
link

delete

pop
pop
add
push

pop
add

pop
add
puesh

add

§8, §, 3T
88, 8

n, $8+§ T
$8 -5, R, $T
5T

$5.8, T, n
$8 .S, R, ST
$8, S

$s, 8, ST

8T

SAL

SA2

SAL, $A2, $AC
SAC

$AC

88 -5 .T, SAC, §5:8 T

5A1
SA1, 1, 3Al
SAL

$5-8,T, 1, §8+8-T

A study of the actions of a program will indicate that these macros do in fact

enforce the stack and closure conventiona deseribed above.

The ghare primitive used in setstack is simply a way of remaming the $PAR

component of the local structure., Thus all the macros can be written in terms of

$8. Of course, $PAR could be substituted avery where for $8 to achieve the same

rasult. Notice that share is necessary because link provides sharing only at one

level removed from the local seructure.

primitive be used to accomplish both these kinds of sharing?].

[Queation:

Should a generalized ghare

Note that some care is taken to assure that the temporaries $AC and $T are

defined properly for the primitives of the BL as given in [3) and [4].

less inefficient in accomplishing
those actions. The final configurations of the stack are identical,.
Example: To complete the example used above the macros are expanded,
Integer selectors are added to the instructions generated, and the procedure
dtructures nested asg indicated by Step 1, to yield a single translated procedure

structure.

[] \

{instructions of l1> h2
UL N T R e S v
(instructions of A > h3
2
| 1 [1 I | [} !] I ! L} 1 {1
<instructions of A3>
Instructions of Klz

0 create 58.5 3 cratack
1 create SAC

3 const 5, SAC i value 5
3 select 38, 8, ST 3 push SAC
4 delete - -38, §

5 assign $AC, $5.8-T

6 Link $8.8, R, 4T

7 delete ST

8 delate $AC $ close hz, {1
9 create $AC

10 move hz, $AC-C T
11 create . SAQ(C-E

12 select 85, s, 8T 3+ push 3AC
13 delete .$5, §
14 assign :45AC;788+8.T
15 11nk $5-5, R, ST

16 deleta
17 select
18 delete
19 link
20 apply
21 delete
22 select
23 select
24 delete
25 link
26 delete
27 print

Instructions of hzz

0 share
1 create
2 selact
3 select
4 delete -
5 link

6 delete
7 delete
8 select
9 select
10 delete
11 link
12 delete
13 select
14 delete
15 agaign
L6 link
17 delete

=10-

$T

$8-8, T, SF
§8.8, T
$5:S, T, $F-C-E
$F, $s

$F

$5-8, T, $AC
$8+8, R, $T
§5, 8

$8, 8, $T
3T

SAC

S$PAR, 38
$AC

$8-8, T, $E
$8-5, R, $T
$8, 8§

33, 8, ST
8T

SE

$8-5, T, ¥
$S-8, R, §T
88, 8

388, s, &t
$T

$S, 8, $T
88, §

X, $8.8-T
$s:8, R, ST

5T

call

output = . » pop $AC

print SAC

getstack

ext { } -3y POp $E

; delete $E
arg x y POp x

push x

18
19
20
21
22
23
24
25
26
27
28
29
30
il
32
33
34
35
36
37
38
39
40
4l
42
43

consgt
select
delete
agsgign
link
delete
delete
create
move
Create
select
delete
aseign
link
delete
gselect
delete
link
apply

delete

gelect
select
delete
link
deleta
add

return

-11-

3, SAC
$8, 8, §T
88, 8

$AC, 35-8-T
$5S, R, ST
T

SAC

$AC

Asy SAC-C.T
SAC-C.E

$8, 8, sT
$8, S

$AC, $5-S.T
$8.5, R, ST
5T

$8-8, T, $F
$8-8, T

$5-8, I, $F-C.F

SF, §8

sF

$8.8, T, $ac
$8-5, R, sT

" 88, s

$5, S, $T
&T

$8-8-T, $AC, $S-§.T

we

aa

-

value 3
push $SAC

elge XS’ {3

push 3AC

call

'plus

Tesultis

5

* Pop $AC

add

=12~

Instructions of A :

3
0 share SPAR, %S : getstack
1 create $AC
2 gelect $S8-8, T, SE ; ext [} : pop .S
3 select $5+8, R, ST
4 delete §8, §
5 link 48, 8, sT
6 delete 8T
7 delete SE ; delete 8!
8 seleect §8'8, T, x H arg x ;. POP x
9 select 85.5, R, $T
10 delete 58, S
11 link $8, §, ST
12 delete ST
13 select $8, 8, ST i push x
14 delete 55, S
15 assign x, $8-8-T
16 Iink $8.8, R, $T
17 delete ST
18 add $5-8-T, 1, $8-8-.T H suce
19 return H resultis
Efficiency

A study of the above BL code reveals that a certain amount of optimization
is possible. For example, instructions 7 through 14 may be deleted from hz and
7 through 14 from h3. Both sets implement a "pop x'" followed by a '"push x", and
as x is only used once in each piece of code there is no need to have x ever
-appeaxr in the local structure., However, the translation rule is quite general,
and we are not writing an optimizing translator (compiler). Such non-optimal code

may be gquite common; this does not concern us here.

Mote Complex Examples

The reader may wish to check that this translation scheme iz succegsful
for gome more complex examples. The following examples are used in (1], and
afford interesting thres-way comparisons between the AC, BL, and CM.

{[Af - OAF £3) = - (Fx) + D= - = + 1]}

(Mg « (ha . (ga)5) Yy - a s g - g)0x - x + 2 +y)! 31}

Recurgion
SELHIS 1on

‘The BL 1s neither block structured: nor_"icherently” recursive. Explicit sctions
necessary to translate recursive programs go that references are correct; pamely,
that a C-structure can be referred to by the text of the function which 18 its
T-component., Two neans are possible for achieving this: gome identifier in the
E-component can references the C-structure (thus introducing a cycle to the inter-
Preter state), or the C-structure canp be passed as an argument to the function,
In either case, the C-gtructure is accegsible from the local structure of the
activation of the function, which means that it can be invoked recursively.
 As pointed out in [1], there is no need to deal specially with recursion when
translating AC~expressions for a recursion-making operator, Y, can be expressed
as a \C-expression itself. The rules we have will thus permit recursion as they
dtand. However, they do gco in g complex way including ereation at every level of
Tecursion of new C-structures which represent 'the same function, " See [6].

We can bypass this circumiccation by giving an explicit rule for translating

Y(AE - Ax .).

-14-

Transiation of YA + Ax -)

Step 0: In the original AC-expressgion, raplace
)

YO - Ax -

with R,'_ rx ¢

Step 1: Same as regular Step 1l with Rv treated as a special control symbol,
Step 2: Same as regular Step 2 except that there i3 & specfal case for
translating A-expressions when the hi 1s preceded by R .
R, li tranglates to reloge hi’ v, [{list of free variablesg)}
- push $AC
Step 3: Same as regular Step 3 with the following additional maecro:

rclose Ai’ v, [el, . en} expands to cloge hi’ {el, ceay en}
link $AC-C°E, v, SAC

Example: Consider the recuraive factorial function as given in [i]:
{[ME - E3T[YOAE - Px - (1f x ¢ 1 then 1 elge f(x - L)*x)]>)]]
becomes

12 2 3 3 1
{ [Af - £3] [Rf Ax - (if x £ 1 then 1 else flx - 1)*)]1)

M YAy Re Ay
Kz Moy F3
?\.3 AM - if x g1 then 1

elge * yvf - x1lx

For translation's sake,

Ax ¢

where 51
6y
hl translates:

lz translatesg:

ka translates:

61 translates:

52 translates:

-15-

we re-write kg as

5162 Bxxl
=1
=%vf ~ x1lx
crstack

relose LS’ £f, {3
cloge hz
call

output
as before

setatack
ext {f)

ATE X
value 1
puah SAC
push x

le

test 61, 52
regultis

value 1
push SAC

push x
value 1
push SAC
push x
minusg
push f
call
multiply

less than or equal

~-16-

The expansionz ars lengthy and straightforward and so are omitted. The
expansion of test includes compiling the obvious jumps to include the code for §

and 85, a8 follows: '
test 5., &, k pop $AC
ks if SAC goto £+l
k+5 {expansion of 51)
2 goto m
+1 {expansion of ﬁj)
m

Conclusion

This memo gives an glgorithm for translating A-calculus expreasions into
procedure structures for the Base Language so that the BL interprater simulates
the SECD evaluation of the AC-expressions. The algorithm depends on supplying
names for the A-expressions in the AC-expressions.

Although recusgion {s provided for by the A-calculus itself, it is more .
appealing te provide for it explicitly in the Base Language. Consequently, a
special rule for translating "Y(Mf . Ax « ————)" is given which vield algorithms

causing the Base Language interpreter to achieve the recursion effect of the A=-calculu
""" operator,

-17-

References
1. Amerasinghe, S, N. and Henderson, D, 4., Jr., A Contour Model Evaluator for

LYaluator
A-Calculus Expressions. Computation Structures Group Memo 74, Project MAC,

M.I1.T., February 1973,

Church, A., The calculi of lambda couversion. Annals of Mathematical Study,
No. 6, Princeton, New Jersay, 1941,

Dennis, I, B,, Oo the Design and Specification of a Common Bage Language.
Computation Structures Group Memo 60, Project MG, M.I.T., July 1971.

Amerasinghe, 3. N., The Handling of Procedure Variables in a Basge Language,
S.M. Thesis, Department of Elecerical Engineering, M.I.T., September 1972,

Landin, P, J., The mechanical avaluation of expreggions, Computer Journail,
Vol. &, No. 4, January 1964,

Wozencraft, J. M. and Evang, A., Jr., Notes gg_Proggamming Linguistica.
Notes for Course 6.231, Department of Electrical Engineering, M.I.T,, 1970,

'_.h

