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Vector addition systems were invenred by Michael Rabin in 1966 in order

to investigate several questions about Petri nets which were posed to him by
Richard Karp and Raymond Miller {Karp, Miller],. Alchough posed in a different
formalism, some of the questions they wanted to answer were (1) Given an arbitrary
Petri net, [Petri, Holt Commoner], is it live? (2} Given a rarticular marking of
a Petri net, is 1t in the marking class? (3) Are the marking classes of two

given Petri nets equal? (4) Given two Petri nets, is the marking class of the
first a subset of the marking class of the second? Karp and Miller conjecturad
that marking classes of Petri nets were always semilinear sets, which were well
known from the study of context free languages by Parikh and Ginsburg [Parikh,
Ginsburg, Spanier]. Since semilinear sets are also isomorphic to Presburger

Sets -- those sets definable by formulae of the first order functional caleulus
over the non-negative integers with only '"+'" and "=" -- agnd Presburger arithmetic
was shown to be decidable by Presburger in 1929, any elementary question about any
semilinear set is decidable using Presburger's decision procedure [Presburger].
Rabin destroyed this conjecture by.showing that semilinear sets are a proper subset
of vector addition systems, as well as show that a particular aspect of Petri nets
was undecidable, namely question {4) above,

Let N be the set of non-negative integers, Z be the set of integers,

NP be the set of p-tuples of non-negative integers, and 2P be the set of

p-tuples of integers, where p is a pogsitive integer. We denote by Nt the

sat of positiﬁe integers and by N: the set of positive integers less than

or equal to k, i.e. N; = {iEN|ISiSk}. We denote by the generie symbol

the p-tuple of zeros for any p€N+; the value of p will be clear from the

context in which 0 is used. If x.yézp, then x is greater than or equal to

¥y, (denoted x2y), if and only if xiéyi for all components i, lgisp.
Addition and subtraction of vectors will be componentwise.
Definition Let TENP be the initial wveector (or origin) and TCZP be a finite

set of periods of the vector addition system (T,I). We define the reachability
set of (T,I)--denoted by RS(T,I):
RS(T,1) = { xEnP | r{kEN,qtlér,ﬂtzer,...,qtker such that

= i< 20
x-I+t1+t2+.-.+tk and Vi k(I-l-t1+|:2+...+t:i 5 1




We construct a behavior graph for a VAS (T,1I) from the reachability set
RS(T,I) by adding arcs (x,y) from point x to point y labelled t, whenever
x+t=y and té€T, Finally, a period t€T ig gald to be enabled at a point

% in RS(T,I} Lf x+t=0.

Thus x€RI(T,I) is the sum of the origin plus a 1ineér combination of
periods in which all the partial sums are greater than or equal to 0.
RS(T,I) can be constructed recursively by 1) the initial wvector IERS{T,I)
and 2) x€RS(T,I) if and only if there exists a point ¥vERS(T,I) and & period
t€T such that x=v+t, Intuitively, x€RS{T,I) wmeans that x can be reached

from I by a path of wvectors gelected from T vhich never leaves the first

orthant (Np). These paths of vectors are isomorphic to directed paths

starting from I of the behavior graph of (T,I). Thus the terminal point
of such a path is equal to I plus the sum of all the labels on the arcs
of the path, It will be seen that vector addition systems are a natural

generalization of linear sets to be defined later.

Definition A linear set is the reachability set of a vector addition
system (T,I) in which the periods are all greater than or equal to zero;
. P -

i.e. T=N*. 1If § %QlRS(Ti’Ii) where (Ti.Ii) are linear sets of the pame

dimension p, Isisr, then 5 is called a semilinear set, because S iz a

finite union of linear sets.

These definitions are motivated by the fact that the expression
1‘-+n1t1+n2t2+...+nktk (k=|T]), as well as a}l ite partial sums, will always
be in Np, for any choice of the ni's from N. Linear sets are the generslization
of arithmetic sequences to many dimensions; these sets are periodic, hence
the name periods for t€T. The class of semilinear sets is cloged under union,
intersection, complementgtion with respect to Np, and projection; it ig
alse isomorphic to the class of Presburger sets -- those sets definable by
well-formed formulae of the first order functional calculus over W, with
the functiong and predicates 0, +, =.
Projection

Given a relation R of n dimenalons, i.e. g set of n-tupleg of elements
taken from some domain, it is oftem ugeful to coneider projections of R
onto a smaller dimensional subspace. However, if we conasider any dimension
reducing operation as a projection, there are at least two we would like

to consider. The first meaning is thgt of an intergection with a smaller



dimensional gubspace--for example, if our relation were the umit circle in
the Euclidean plane, a projection of this kind would be the intersection
of the x-axis with that cirele, yielding exactly two points {-1,1}.
This operation, which we will call sectioning, can be interpreted as a
restriction of the original relation (i.e. a subset), followed by a throwing
away of a coordinate from every tuple in the set toc produce a section
of the original relation.

The second type of projection we will consider ig that of finding
a domain of a relation. For example, a relation RFN5 can also be thought
of as a relatian RS(Ng)x(Nz) over two domains N3 and N2 rather than over
five domains, Thus, an algorithm which produces the set of triples which
is the first domain of the relation RF(NS}X(NZ) we will also congider
to be a projection, but ome which produces a domain. This projection
is a very natural operation which we do all the time in solving preoblems.
Sometimes we are given a relation RSNS. for example, and we notice that
really RFR'XN2 for some R'=N3. This i{s just what happens when we reslize
that the last two wvariables in the problem are extraneous--1,e. independent
of the other variables in the relation, We then project onto the first
3 coordinates to produce R', then solve the problem.
Definitions Given a relation RCDn over some domain set D and seme positive

integer n, a projection in the sense of domain, or simply a domaln, of R

will be a relation R' of dimension mén such that there exists a 1-1 function
s:N$+N: called the gelectian vector, and
R' = [ x€p" | HyER such that XY (1) ¥ism }.
Given a relation RED" for some domain gset D and gome positive integer n,
a projection in the senge of section, or simply a section, of R will be

—_— —— ———

a relation R' of dimension msn such that there exists a selection vector s
and a restriction vector r:(N:-range g§)*D such that
LI L - 3 = x +..
R'" = { x€0™ | %y€R s.t, X{=Ygc1y» 1SiSm and v r(§), JE(N -range s) }.

SBemilinear sets are closed under both section projection and domain

projection. Vector addition systems do not have such nice properties,
however. But in some instances, section projection of reachability sets
do still regult in reachability sets of new vector addition systemsg.

The next theorem gives one of these special cases and is not the most

general theorem which could be proved in this econtext.



Thegrem Given a p-dimensional vector addition system (T,I) for which
there exists an integer k, 1sk<p, such that 1,=0 and there exist two
periods t,t'€T such that 1) t,t' are the only periods in T which have
non-zero values in coordinate k and.2} tk=—1 and is the only negative
coordinate of t, t£=+1 and is the oaly peaitive coordinate of t', and

3) the set of non-zero coordinates of t intersects the set of non-zera
coordinates of t' only at k, then there exists a (p-1)-dimensional
vector addition aystem (T',I') whose reachability aet RS(T',I') is the
section projection of RS{T,I) in which the kth coordingte was restricted
to zero.

Consider the VAS (T ,I)} where T =T-{t,t'MU{t+t'}. The kth cocrdinate
of I and the kth coordinates °f.Ell the periods in T are zero, By induetion,
the kth coordinates of all the pointa In the reachability set RS(T ,I)
must be zero, Fvery point in the set RS(T ,I) ig included in the set
RS(T,I). Assume that there exists a point x€ERS(T ,I) but not in RS(T,I).
Consider the clegest guch point to I in terms of the number of vectors
from T needed to reach x. Clearly x cannot be I, becauwse I is algo in
RS(T,I). But every point along the path from I to x is alao im RS(T,I),
including x itself. This is because every period used in the path 1s either
a period of T or the period t+t'. All we must ghow is that at the point
y from which the period t+t' was used, the vector t could be used in RS(T,I)
followed by the vector t', Assume that t is not enabled at y. Then t+t'
would also not be enabled at y, since enabling depends only upon the negative
coordinates of t which all appear in t+t' due to the hypothesis. Therefore
t can be used in RS(T,I) to reach a point y'=vit which has a k coordinate
of +1. Since the only negative coordinate of t' im the kth, t' is ensbled
and can be used to reach the next point on the path in RS(T ,I) ta x.

Thus, by induction on the length of the path, every polant on the path
in RS(T ,1) is in RS(T,T). Therefore RS(T ,I) & RS(T,I).

Finally, ne point in the set RS(T,I)-RS(T ,TI) Bas a zero in the
kth coordinate. Assume that there exists a point x in (RS(T, T)=-RS(T ,1I))
such that xk=0' Then there exists a shorteat path of vectars from I to x.
Clearly, if t appears in that path £ times, then L' must also appear in



that path exactly £ times, since t,t' are the only periods in T which

have non-zero kth coordinates. But since x is not in RS(T ,I) it could

not have been reached by a path from I using the other vectors and t+t&',

No t' vector could appear in the path before the first t vector sgince t

is the only vector which can make the kth coordinate non-zerc. But at

the point just following the application of the t vector, the first t'
vector becomes enabled and pergists until t' ig finally applied. Therefore,
we could have moved the first t' vector forward in the path in order to
¢reate a new path in which t°' directly followed t. But then, we could

have applied t+t' instead of t,t' and shorterned the path, In this way,
every t' vector can be moved mext to a t vector, which shows that each

pair could be replaced by t+t'. This argument shows that x is indeed
reachable by a path of vectors from T, contradicting the assumption.
Therefore RS(T ,1) ig exactly the set RS(T,I) restricted to zero in the

kth coordinate. Finally, since a section projection is simply a restriction
followed by a domain projection, T' and I' are constructed by deleting

the kth coordinates of the periods in T and the origin T, QED

Given an n-dimensional vector addition system (V,1), we can construct
the corresponding Generalized Petri net by the method described in either
[Keller] or [Hack]. Hack also shows that Generslized Petri nets have reach-
ability sets (called marking classes in Petri net terminology) which are simple

linear transformations of marking classes of normal Peetri nets.

Most of the time we can also make the revarse construction: Glven
4 Generalized Pebri net, we can Produce a vector addition gystem having the
same reachability set as the marking class of the Petri net. The rest of the
time, we must increase the dimension of the Petri net slightly, but again a
simple linear transformation of the reachability set will give us back the

marking class of the given Generalized Petri net [Hack].



The major question to be answered is this: Is RS(T,I} far a vector
addition system (T.I) always a semilinear set? In general the answer is
no. BRefore we can prove this proposition, however, we will need more
machinery in order to program these reachability sets. We will lack at
a type of Turing machine studied by Minsky and others called register
or counter machines ((M's) [Minsky]. These machines are composed of a finite
state control coupled with n registers or counters, capable of holding
any non-negative integer. The finite state comtrol can increment or
decrement a counter by 1, or test it for zero and branch. A (M is fed
input by starting it with an input number in ome of the counters, zero
in the others; it leaves its output in one of the counters and may or
may not clear the rest. Minsky has shown that there exists a 2-counter
universal machine; that is, one capable of simulating any normal Turing
machine made op of a finite gtate control and an infinite read-write tape [Minsky].

Counter machine finite state control units are programmed in an
assembly type language consisting of only five types of inatructions:

1) ci*ci+l; .

2) ci*ci-l;

3) if ciaO then goto £1;

4) goto 4,3

5) stop; where ey denctes the contents of counter i and li denctes
2 lapel. These instructiona are assembled into a sequence in which each
tabel 1s replaced by a positive integer which specifies the position in
the sequence at which the instruction with that label can be found. The
special label "#+1" is always interpreted as "thisg imstruction plus one",
By convention, the CM is started on the first ingtruction in the sequence,

cailed the initial instruction.

We will be looking at restricted non-deterministic counter machines

(ANCM's) that are 1) restricted in that they cannot test for zero and are

?) non-deterministic in that they have a multiway branch instruction. Thus,

the only instructlons are:
' .
1) c, ci+1,
+ -] =
2} ctey 1;
3) goto ﬂl,ﬂz,...,zk;
4) stop;



Instructioné of type 3) are interpreted ag: split yourself into k
copies and in copy i goto Ei. If instructions of type 2) drive any
counter negative, then this copy of the non-deterministic machine will
fail--that 13 die or disappear. A simulation of a RN(M will produce
a (possibly Infinite) tree of instructions which were executed, the
troot of this tree being the initial instruction, A sequence of instructions
listing all the nodes of this tree which lie on any finite péth from
the root is called a computation. If such a path ends by failing, then
the sequence is a failing computation; if the path ends by stopping, then

the sequence is an accepting computation. Any computation which is not

accepting and not failing is called an incomplete computation.

If these machines were only deterministic RCM's, they would he

quite stupid. In order to compute almost anything useful, they would
have to test for zero, which they cammot do. However, Rabin noticed
that 1f they were made non-deterministic, it would not be necessary for
any particular copy to test for zero; if one copy feiled, other copies
could still go on to suecceed. That this is so can be geen from the
following example. We want to congtruct a 2-counter RNCM to copy a number
from its first counter into its second counter, OQur program for it will
be:
testigoto loop,end;
loop:cl*cl-l;

C 2“‘(: 2+1 3

Eoto teat;
end:* &top;

At test, we do not really test c; for zero, but just nop-deterministically
guess whether we are done or not. If we guess that we are not done when
©,=0, then the instruction "loop"™ will fail; 1f we guess that we are done

1
when cf>0, then we will not have copied all of € into <, by the time that
we stop; if we guess that we are dome just when c1=0, then the program will
have worked correctly (assuming it was intended to copy}. This example is

the motivation for our next definition.



Definition A counter configuration of an m-counter machine is an m-tuple

x=(cl,c2,...,cm). A function £:N'=N is said to be wegkly computable (w.c.)

on a restricted non-deterministic m-counter machine F (m>n) if for every

non-negative integer ksf(xl ..,xn) there exists a computation by F

X a

?2)

which leads from the counter configuration x=(x1.x2....,xn,0,...,o) to
= LRI ] ¥ LA | 1

i} (ul,uz, u k LY um) and conversely a computation fromkx te U
implies that kSf(x_,x ,...,xn). Generalizing, a function g:Nq*N is

12
weakly computgbhle on a restricted non-deterministic m-counter machine

G (mxn+k) if for every tuple of non-negative integers (kl’kz""'kk)s

g(xl.xz,....xn), there exists g computation by G from X=(x1,x ,...,xn,O,...,U)

Lo U=(u1,u2,...,un,kl,kz,...,kk,un+k+1,...,um) and converselyf a computation
from X to U implies that (kl’kE"" kk)sg(xl,xz,...,xn).

Thus, in cur example above, the machine weakly computed the identity
function. Tt should be easy to see that only monotonic increasing functions
are weakly computable; we will be considering only monotonic increasing
poelynomial functiens.

Theorem If f(xl,xz,...,xn) 1s a polynomial with positive integer coefficients,
then f ig weakly computable by some RNCM F.

Proof: We show how to write a program F which weakly computes £, The proof
will be by induction on the structure of the polynomial expresaion for f;

sums and products are weakly computable and the composition of monotonic
increasing weakly computable functions is weakly computable.

Let g(x,v)=x+y and h{x,y)=x'y.

Addition is weakly computable

g(cl,cz)-*c:,,:
loopx: goto loopy,*+1; guess whether c1=0
LT,
e ey 1;: pump ¢, into c3
c3“c3+1;
goto loopx;

loapy: goto end,®+1; guess whether c2=0

+ N .
c c2 1 pump c,, into c,

2

c3*c3+1;

goto loopy;
end: goto next function;



i.e. c_ is the result of pumping 1's out of ¢, for a while, then

pumping 1's out of <, for a while; the total number of 1's in c. is c

3 ]+c2.

Multiplication is weakly comput able

h(clscz}*caz
loopback:goto end,Decx, *+1;

- -]
cteg 1; pump €y back into €,

+ 1-
122 {‘.'2-!- H

goto loopback:

*cl—l; c, controls the number of iterations of

1
loopfor: goto loopback,%+1; Loopforward,

Decx: c

#+ =1-
<, c2 1; pump c, into c3 and s

4+ .
c3 c3+l,

p4*c4+1;
goto loopfor;
end s Boto next function;
i.e. pump <, into €310, 5 pump €, into ¢, repeat whole sequence
¢y times; total pumber of lfs pumped into c, is Scl‘cz.

Compogition of weakly computable functions is weakly computable.
2

Consider the polynomial P(x,y)=x5y +¢y3x2. Since we will require
7 copies of x, perform weak ldentity:
copyloopigoto end,*+1;
xtx-1; deflate x
xl*x1+1; vhile inflating X)X
xz*x2+1;
xy*x7+1;
goto copyloop;
end: goto next function;

23...,27

Similarly, make 5 weak copieg of y. Suppose y3x2 has been weakly
computed into counter z. We can weakly compute z'=4y3x2=4z by the following

programs:
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meltd: goto end,¥+1;

ztz=1} deflate z but _
z'tz'+1; inflate z' 4 times as much
zlez 413

z'tz'41;

z'¢z'+1;

goto multé;
end: goto next function;
We can use our definitions of addition and multiplication as schemas
or macros in order to weakly compute P{x,y) using 36 regigters (2 input, 1

output, 23 intermediate result, and 10 auxiliary registers for multiplications).

XSS-';_ 4 _j“x g

L o= /UM ""“fy

Given this example, it should be easy to see how to program any

pelynomial with positive integer coefficlents on these machines. QED

If we define the weak graph of a function f:ﬂnﬁﬂ, denoted G_., to

£

be the set Gf = [xENn+1 ] xn+fsf(x1,x2,...,xn)} then the following corallary

proves that the weak graph of a weakly computable function ie computable
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by a restricted non-deterministic counter machine started with all counters
clear, where computable here means that the domain projection of the set
of counter configurations onto the first n+l coordinates is exactly the
get Gf.
Corollary The weak graph of a weakly computable function is computable
on a restricted non-deterministic counter machine started with all counters
ZeTO,
Proof: Given a weakly computable function f:Nn+N. using the theorem
we can produce an m-counter RNCM F which weakly computes that function.
We show how to modify F in order to compute the weak graph of £, Assume
that F is given its arguments x in the first n counters and weakly computcs
f(x) in its (mHl)st counter. We add n new counters and relable all the
counters as follows: the new counters become the first n counters, the
values of £(x) will be computed in the ntlst counter, the input x will
be placed in the next n counters, and the rest of the counter will follow.
Since the machine will be started with all counters ZEY0, we muet insert
instructions at the beginning of F's program in order to guess a value
x with which the machine will weakly compute f(x). While the wmachine
is guessing the vector x, it makes two copies: the first copy in the
first o counters and the second in the n+?nd to 2rtlst counters. Onece
the machine has guessed the value x, it transfers to the program which
actually does the weak computation of f(x). This program will destroy
the second copy of x in order to compute f(x), but the Firgt copy is
left in the first m counters untouched. Thug, at all times, the First
n coordinates will contain a value x and the nt+lst coordinate will contain
a value <f(x). Furthermore, for all x, there exists a computation which
actually produces the value f(x) in the n+lst coordinate.

The inserted instructions at the beginning of the program loaok
like thig:

F':

Xt goto xz,*+1; stop incrementing xl?
clfc1+1; pump up lat copy
cn+2*cn+2+1; and 2nd copy same smount

goto xl;



Proof: We must show how to code C in the vector addition system (TC,I
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. . ?
x,! goto x3,*+1, stop incrementing x,?

cch2+l;

e
Cnt3 Cne3t
gato x2;

13

» o -
xn. goto end,®+1;
¢ +e +1;
n n
- -
ontl Conp
goto x 3

end: goto F3 compute f{c vea,C

o n+2’ “nt3’ 2n+1’
It should be clear that for any x€N , there exist computations of F'
which will weakly compute £(x) in counter n+l, Thus F' computes the

weak graph of f. QED

We now show how vector addition systems can completely mimic the
calculations of an BRNCM.

Theorem For every restricted non-deterministic counter machine C with

m ecounters and # inatructlomns, there exists a finite set of periods

TC :zm+£ guch that for every input E=(k1,k2,...,kn)ENm to C, there exists

an I -EN“H..E , where T —~=(k.,k.,...,k ,1.0,....0), such that the reachability
C,k C,k 1'2 m -
set RS(TC,IC,E)={(b1’b2"..’bm’-""..’-)EN I (bl)bggibl’bm) 13 a
counter configurgtion of cl; i.e. the domain projection of RS(TC,IC E)
Hd

onto the first m coordinates.

C,E)'
Since we are given the coding for the inirigal veector IC > we now ghow how
to obtain the period vectors tiETC. The basic idea {s this: each point

x in the reachability set will be an instantaneous description (1.d.) of

the state of a particular copy of C in the midst of a particular computation,
but between two instructions. We code the contents of the first m counters
of C as the values of the first m coordinates of x. We code the state of
the finite state control of C--i.e. the program counter--into the last £
coordinates of x. These last I coordinates will be used to mimic the

program counter for our simulated computatiom; each coordinate corresponds
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to a particular ingtruction in the program in a one-for-one manner. Therefore,

we call the last £ ecoordinates program counter coordinates. Since only

one instruction will be enabled at any peoint during the simulation of
any one copy of C, only one of the £ program counter coordinates will
ever be non-zero, for any x in the reachability get, A 1 in the {th
pProgram counter coordinate of a point % in RS(TC,IC,E) indicates that
the copy of the RNGM whose 1.d. is coded by x is initiating the ith
instruction of C.

Each instruction of types 1), 2), and 4) of C will be coded in a
one-for-one manner as a single vector in TC' An instruction of type
3). oc C is coded as k different vectors im TG’ vhere k ig the number
af labels in that branch instruction. When the jth instructiom is to
be Initiated, we wili be at an 1.d. x=(x1,x2,...,xm,U,O,...,l,O....,D)
where the 1 appears in the jth program coumter coordinate. Therefore,
if j:ckhck-l; then we code the corresponding vector
tJ: (0,...,—1,0,...,0;0,-..,-1,1,0,....0) where the first -1 appears in
poeition k in order to decrement L and the -1,1 appear in the jth and
j+lst program counter coordinateg so that the -1 can turn off j's initiating
flag and the +1 can turn on (}+1)'s initiating f£lag--thus transfering
control to the nmext sequential instruction, IF the value x, In the i.d. x
is already zero, neither tj nor any other period will be enabled at this
i.d. (since all other periods have -1'g in positions corresponding to
0's in x's Program counter coordinates), therefore the simulation would
hang up--i.e. the computation would fail. 1If j:ck*ck+1; then we would
code the vector tj:(O,...,+1,0,...,0;0,...,-1,1,0,...,0) where the first
+1 appears in position k in order to increment n and the -1,1 appear
In the ith and (j+1)st p.c.c.'s. If j:sto i then we would code the vector
tj:(),...,0;0,...,-1,0,...,0) where the -1 appears in the jth p.ec.c.
In order to turn off j's initiation flag. Since tj does not turn omn any
other initiation flag, the simulation must stop; this situation is different
from the failing situation becsuse when a4 computation stopa on purpose,
all of the p.c.c.'s in that i.d. are zero. Finally, if j:goto zl,zz,...;x
then we code k different vectors tji:(ﬂ,...,0;0,...,-1,0,...,0,+1.0,....O)

f

where the -1 turns off j's initiation flag and the +1 turng on ﬁi's

initiation flag. thus transfering contrel to zi. The k different vectors
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are all enabled when j's flag comes on, but they are all mutually exclusive
in the sense that once one of them is chosen for the simulation, the others
are thereby disabled. :

If we consider the behavior graph of (Tc’IC,E}’ it should be clear
that since every node is an instantaneous degeription of C and every
arc iz the execution of an instruction of C, then any directed path from
T through this graph is isomorphic to the simulation of a particular
copy of C and thus is isomorphic to a computation of C. QED

Corollary There exists a reachability set RS(T,I) which is not semilinear.

Proof: Construct a restricted courter machine which weakly calculates

y=x2. Mimic this mechine with a VAS (T,I). If its reachability set

were semilinear, then its domain projection onto the first two coordimates
would alse be asemilinmear. But [(x,y)EN2 | y5x2] iz not a semilinear

get, which 18 a contradictiom. Therefore, the reachability set RS(T,I)

is mot semilinear. QED

Theorem (The Reachability Set Inclusion Problem) The problem to decide
wvhether RS(TI,II) z RS(TZ’IZ) wvhere (Ti'Ii) are p-dimenaional vector
addition systems is mot recuraively solveable.

Proof: We show that Hilbert's tenth problem is reducible to this inclusion
problem {Hilbert]. Since Hilbert's tenth problem is known to be recurgively
undecidable, this set inclusion problem is alao recursively undecidable
[Davis, Putnam, Robinson; Matijasevic].

HOilbert's teunth problem is whether there exists s decigsion procedure
for finding the integral rootas of polynomials with integral coefficients.
That is, given a polynomial P(xl,xz,...,xn) with integral coefficients, do
there exist Integers ;,%g,.-« X, such that P(x)=0? Civen g decision
procedure for the existence of non-negative integers X, such that P(x)=0,
we could solve the general problem simply by calling this procedure
2" times and asking P(xl,xz,...,xn) : g, P(xl’xz""’xn-l'-fn) : o,

?
P(x x )} £ 0, and go on until P(-xl,—xz,...,-xn) = 0, Purtherore,

1re e =X
1 n-1""n
since Pz(i) and P(x) both have the same (numerical) roots. We' never need to
sroduce negative numbers in the evaluation of a polynomial in the procesa

of solving Hilbert's problem. Fimally,



1f we separate the positive and negative coefficients of'Pz(i) auch that
A(x) 1s the polynomial with only the positive coefficients and -B(x) is
the polynomial with only the negative coefficients, then Pz(i)=A(£)—B(§)
and A,B both have only positive coefficients. But Pz(i)zﬂ; therefore
A(X)~B(X)20 and A(X)=B(x}. But a vector X EN" such that Pz(;:)-ﬂ 13

also a solution of A(x)=B(x) and vice versa. So if for all %20,
A(X)=B(x)}+1, then there is no solution to A(X)=B(x) or Pz(;c)-[) and

if for some x, A(X)<B(x)+l then A(x)=B(%), PZ({:)=0 and P(x)=0. Thus,

we can reduce Hilbert's tenth problem to the gquestion ﬂiGNn[A(;)<B(i)+1}?
for non-negative coefficfents in A(x) and B(x). Furthermore, Hilbert's
pfoblem reduces to the question GA;GB+1 since any point §=£ny in the graph
of B(x)}+l but not in the graph of A(x) would satiafy the criterion
A(X)<y vhere y=B{x)+1,

But given A(x) and B(x), we can cowpute the weak graphs G, and G_
on our restricted non-deterministic counter machinea. Call the RNCM for
¢, "A" and the RNCM for GB+1 "B”. Now Hilbert's problem reduces to
the problem of determining whether the set of counter configurations
of A, denoted by CCA’ domain projected onto the first n+l coordinates,
includes the get CCB’ projected onto the firat nt+l coordinates. However,
we do not have to perform the projection outside of the RNM'e; they
can do it for us! Suppose that A has n+1+mA total counters and B has
n+1+m:B total countere. We add to the machine with the smaller number

of counters, enough dummy counters so that they both have n+l+m counters,

where m=max(mA,mB). A dummy counter 1s initialized to zero and is never
incremented by the program. How can we "project out" the m scratch
counters from the set of counter configurations of an BNCM, say A. To
project out a coordinafe, we make it indepeundent of the other coordinates.
This can be done by adding a coda to A's program which "liberates" the

m gcratch counters:
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Coda:

DecSl: goto ineSl,%+1;
c  tfc -1 decrement scratch counter 1 for a while

nt?2 nt2
goko DecSl;

IncSl: goto DecS2,%+1;
cn+2*cn+2+1; increment scratch counter 1 for a while
goto TneSl;

DecS2:

IncSm: goto stop,®+1;
cn+1*ﬁkcn+1+m+l; increment mecratch counter m for a while
goto IncSm;

stop: stop;

Tt can be seen that for any combinaticen of values EGRm, there exists
a computation of the coda, that stops with ;1 in e l4ic Thus, the set
of counter configurations of A', where A" is the RNCM A with the coda added,

is equal to G me; i.e. CCA,=GAXNm. Similarly, we can construct an BRNCM

A
B' which appends a coda to the program for B, which liberates B's scratch
counters. Thus ccB._=GB+1><N“’. Clearly, G Axnmacn_'_lxu’“ {f and only if

GA?GB+1'
of counter configuration sets of restricted nom-daterministic counter

Thug, we have reduced Hilbert's problem to the includiom problem

machines.

But we are trying to prove that the inclusion problem for reachability
gets is undecidable. Using the techniques of the previous theorem, we
can construct a vector addition system (TB.,IB.) of dimemsion n+1+m+£B.
corregponding to the RNCM B'., We then add LA' zero coordinates to IB'
and all the perilods tETB, to construct (Ti,,Iﬁ,) of dimension n+1+m+£B.+LA,.
Since the last EA coordinates of Ié. are gzero and the last LA' coordinates
of tETé, are zero, then for any xERS(Té,,Ié,) the laat 1,, coordinates of
X are zero,

Before converting A' into a VAS, we must do more surgery to produce
the RNCM A" which has m+£B. seratch counters. This can be done by simply
adding EB' more dummy counters which are never referemced in the body of
the weak computation for A(x)}, but which will be liberated along with the

test of the scratch counters in the coda for A". Hilbert's problem
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can noy be reduced to the set includiom problem: CCA“QRS(TB,,IB,) since

any xERS(TB,,IB,)ﬂwhlch is not in CCA" must be such that A(xl,xz,-..,xn)<xn+1
gince CCA"=GA¥N B' due to the liberation of the last m+£B, counters,

Finally, A" is converted into a VAS (T ",IA") of exactly n+1+uH%B.+£A”

dimensjons by the standard technique of the theorem, Now the set of
xERS(TA",IA") guch that the last LA" coordinates of x are zero, is just

the set of instantaneous descriptions in which A" has halted, If we

define this set 1{={xERS('1‘A,,,IA") | x,=0, ntlbmriy +1 € 1S mildukd 42, ],
then H;RS(TA“’IAF)' But CCA" 1s just that gsection projection of RS(TAP’IA”)

for which the last ﬂA" coordinates are zero:; i.e. CCA“ iz the domain
projection of H. But RS(TE,,IQ.)=RS(TB.,IB.)XUzA“ and H=CCAPKOEA", therefore
GCyn = RS(TB,,IB.} if and only if I—L:st('rl'a,,II;,). Finally, since
(RS(T g Ty H) N RS(TL,,T5,) = @, BRRS(TL,,TIL,) if and only 1f
RS(TA",IA")ﬂRS(Tﬁ,,Ié,). We have finally reduced Hilbert's tenth problem

to the inclusion problem for reachability sets, therefore the undecidability
of the first implies the undecidability of the second. QED
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