MASSACHUSETTS (NSTITUTE OF TECHNCLOGY

Project MAC

Mschine Structures Group Memorandum MAC-M-189
Memo No. 8 September 25, 1964

An Example of Intersphere Communicatien

and Asynchronous Parallel Processing--

Typewriter Console Message Handling

by Protected Service Routines

J. B. Dennis

The principal purpose of this note is to study an example of
communication between processes operating in distinct spheres of

1 2
protection,. We choose the example of a protected service routine

that handles message traffic between users' processes and typewriter
tarminals through a common imput/output device and a multi-line con-
troller. This illustration is also a good exercise in programming
asynchronous parallel processes3, and pdints out some functions that

any basic language for system programming should provide. Further,
although admittedly oversimplified, the principles outline here could
form the model of implementing the typewriter communication Ffunction

in the second phase MAC system. However, the latter would probably

not be feasible unless a method of automatic process assignment were
implemented. (Otherwise switching of processes might be too inefficient

to be practical at thie level,)

.

Conbexk

We suppose that each user's process (or a process operating on behall
¢l a user) calls the message handling protected serviece rvontine (M) by
cne format of procedure slep if it wishes to acecept a charvacter from Che
¢easwle assigned to it and a gecond format if it wishes a character tu be
rrinted on the associated cousole. In cither case, operation oi a users’
process is continuad as soon as the MHR has processed the call and is
prepared to accept another call from the same process.

The mulci-line conlreller (MLC)Y is presumca to be commanded bv the

following six L/o functions.

input
listen ()} —%(n,d)
enable lso (u)

disable 1lsn (n})

oukbput
print (d)-—sn
enable prt (n)
disable prt (n)

Bere d takes on a range of values that are the character codes of the system
plus - in the case of ¢print (d)=»n> - the value @ signifying the null
character. The value of n is an index that ranges over all linecs attached
to the MLC. The operation of the MLC is presumed to be completely independent
for input and output. First the operation for input is described.

Tach line is at any time eilher enabled or disabled for ipput. This
status is established for linme n by the &L enable Isn {n)>> and <Ldisable lsu (n)>

ifo functions. These procedure steps require winimal timce for completion.
The ifo function <tisten () —s(n,d)> 1is completed as svon as there

is a character waiting to be read from the MEC for any line emabled for
input. Then n is the number of a line and d is the character code just
received from line n, where n is selected from all enabled lincs with

received characters by the MLC through a suitable priority algorithm.

Each line may also be enabled or disabled for outpub by the <£enable prt

(n}> and <disable prt {n}» 1/o functions. The function <print (d)— 1>
is completed as soon as any line enabled for output is prepared to accept

& mew character for transmission. The value n of Lprint>» 1is the line
number of one such line selected by a priority discipline. The argument

(d) of print is the next character code to he transmitted on the line

selected by the previous «printd function.

Named Objects and Attachment

Following the ideas outlined in our previaus work, the following
entities may be referenced by name.
1) secgments of memory
2) ifo¢ functions
3) spheres of protection
By the process of attachment we mean the association of a name with an
attachment tag a0, al ..., so that effective reference to the entity is
permitted by a particular process., Sucessful attachment of a name implies
that the name is valid in the sphere of protection of the process and
associates with the attachment tag supplementary indicators that spacify
the use to which the name may be put, and additional data descriptive
of the named entity. Unsuccessful attachment results in a sphere viclation
fault.
In the sphere of protection of the MHR there will be the following
named entities.
1) a procedure segment containing the coding of the MHR.
2) a data segment containing status and assignment information.
1) the ifo functions
Lprint>
{li-sten).
<enagble lsn> , <disable lsn>
<enable prt>» , <disable prt>
4) The names of the spheres of protection of processes calling
the MHR (for the duration of the calls - at least for purposes

ofF thia note).

Special Pruocedure Steps

To implement the MHR and define its calling sequences we must define
a number cf procedure steps not familiar in well known programming languages.
These are concerned with interaction of pavallel processes and with communi-
cation across sphere of protection boundaries.
1) fork 1, a Initiate a parallel process withiv the same sphere
of protection starting at location with address
word afl. The state word of the new process is
identical to the state word of its parent at the
time of the fork (except for the procedure address,

of course).

2) quit Terminate the current process.
3) lock (w) The lock indicator w takes on values 0 and 1.

{lock»> performs the following operations

L ' !
ol 1
]‘ U 1 SR

where the steps in the box are accomplished
within a single memory cycle to prevent race
conditions among distinct processors.

4y uniock (w)
is equivalent to

Napw>

3) attach 8§, a
attach name S to current process with attachment
tag a.

6) enter sphere a,l,b
Attachment tag a is associated with a segment
name S and a descriptor that Iincludes the name
P of a sphere of pretection., This procedure

step causes the following action:

1) the state word of the current process is entered in the
dead process list and a peinter A2 :o this process eunfry
is created.

2) The sphere name of the current process is associated with

attachment tag b as a sphere return name and the pointver

2 ig entered in its descriptor.

3) The descriptor of S is modified to describe S as a
procedure segment and include information to make
reference effective.

4) A process is initiated in sphere P at word address a/l.

7) set X (a,w) These steps are used ro. examine and
modify the contents of the old state
word of a process that corssed

— 8) get X (a)=w e sphere boundary. X designates the
intended component of the state word
and a is an attachment tag that is

associated with a sphere return name.

In our example we use A in place of X Lo specify the accumulator

of the process state word.

9) sphere return (&) & is an attachment tag associated with
a sphere return name Q. The current
process is continued as the process
whose state word is designated by

the descriptor of Q.

The coding
The calling sequences for the MHR are as follows where MHR is
the name of the procedure segment continuing the MHR coding.
- ta llsten:

" ategeh MHR, al
cuter sphere al, lsn, a2

to priat
attach MHR, al

enter sphere al, prr, a2

The coding of the MHR for input and output is presanted in Figure 1
and Figure 2, respectively. The starred quantities i%*, b¥* and 5% are to

be treated as private to processes in this coding, that is they must be

rapresented in processor registers and must never be stored in memory,

The alternabive requires either private data segments for distinet callers,
a pushdown list, or other means of distinguishing the different appearancec
of these quantities. The result would be a more confusing representation
of the MHR. The function map() is used to map the caller identifiers
{which are sphere names) into line numbers, and hence embodies the assign-
ment of consoles to users. The mechanism for establishing map() has been
omitted. A table located in the MHR data segmenc contains an entry for
each line that is used to synchronize the procegses that interact with

the MLC, with the users' processes vommunicating with MHR. This entry

Sthoo. . . ;
for the i line ceontains the following items:

1} 1lsn wait [i] a binary indicator set to one when a user's
ptocess is waiting for a character to be
typed in.

2) 1lsn done [i] a binary indicator set to one when an input
character is avajilable to a user's process.

3) 1sn ¢h [i} the input character being transferred.

4y 1sn 1k [i] the lock indicator for controlling access
to the above items by asynchronous processes,

53} prt wait [i]

6) prt done [i]

7} prt ch [i]

8) prt lk [i]

rt

serve the analogous functions for output.

-7 -

1sn next: listen{) ~— (1i%,d¥)

lan: (a2) —» 5*

J/ lock (1sn 1k [i*])
map (§)— 1% l
l d* lan eh [i%]
lock {Isn lk [i%} l
l tsn disable (i*)
:-0— 1sn done [1¥] 1 l
l \ 1 tan wait [1%]
1 1sn wait [i¥] 0 1sn done [i%*]
E l 0 lsn wait [i¥] 1 1su done [
1lgn enable (i%) 1sm ch [1%] b¥ lsn ck [1%] - J(
l- fork unlock (lsn 1k |
unlock {lsn 1k [i*]) gglégg (lsn 1k [i*]

L
unlock (lsm 1k [1¥])

fs

g% —»1sn § [1#]

W
attech lasn § [i*], a2

gset A4 (b*, a2)

sphere return {a2)

Figure 2. Protected Service Routine for Accepting Console Messages.

s

|

ot
o
=
o]
R

prt: {a2) —> 8=*

map {8%) — I%*

v
get A (a2)—3Db¥

W
lock (prt 1k [i¥*])

b% —>prt ch [1%]

l

prt done [i*1?

1———>>prt wait [i%] O

prt next:

prt done [1*

prt enable (i%*) unlock (prt 1k [i%])

unlock (prt 1k [i%])

g prt 5 [1%]

|

quit

K

print (b¥) —»1i*

lock (prt 1k [i%])

!

prt ch [1#%]-—»b*
prt disable (i*)

1']:n:t wait [i%)?

O-pwait [i¥] 1 prt done [i*]
fork unloeck (prt lk [i%]})

¥
unlock (prt 1k [i¥])

Ko to prt next

+

attach prt § [i*], a2

sphere

H

eturn {(a2)

Figure 1. Protected Service Routine for Transmitting Congole Messages.

REFERENCES

J.B. Dennis, "Program structure in a multi-access computer",

Project MAC Technical Report MAC-TR-11, (M.I.T. Uctober 1964).

J.B, Dennis, and E.L, Glaser, "The structurc cf on-line information
processing systems', Project MAC Memo MAC-M-181, (M.I.T.
Aupust 1964), (A paper submitted to the Second Congress on

the Information System Sclences.)

H. Witzenhausen, "A note on assynchromous parallel processing",

Project MAC Memo-M-187, (M.I.T. July 1964).

J.B. Dennis, "Automatic scheduling of priority processes", Project

MAC Memo MAC-M-188, (M.I.T. October 1964).

