MASSACHUSETTS INSTITUTE OF TECHNOLOCY

PROJECT MAC

Computation Structures Group Memo 8C

SPIL: A Language for System Design and Iwplementation
oy

Barbara H. Liskov

Work reported herein was supported in
F19(628)-71-C-0002, and in part b
under researeh grant (J-34671,

part by Air Force Centract No.
¥y the National Science Foundation

May 1973

ABSTRACT

Structured programming is gaining wide dcceptance as a technique
for increasing the reliability and understandabllity of software., Nowhere
is the need for better software felt more keenly than in the area of
systems programming. In the near future it is likely that systems will
be programmed in structured programming languages, juat as systems have
been programmed in higher lewvel languapes in the past.

This paper deseribes SPIL: a structured programming language
intended to be used for system design and implementation. The paper
was not written to introduce vet another programping language; rather
it is concerned with (1) showing how the objectives of structured pre-
gramuning and system programming may be realized in a programring language,
and (2) evaluating 3PIL as a design language. Structured programming,

a term with many different interpretations, is defined, and its influence
on SPIL carefully delineated. The requirement of system programming is
interpreted te mean that the user requires efficifent program execution
and access to special machine capabilities not ordinarily available in a
higher level language. SPIL satisfies the user's needs by mirroring a
somewhat unusual, underlying machine architecture; the architeeture is
briefly described and its effect on the language traced. Desirable pro-
perties of a design language are introduced in the Form of ecriteria which
a design language should satisfy. The criteria are related to SPIL and

structured programming in general,

INTRODUCTI O

SPIL (System Programming Implementation Language) is a higher lavel
language intended to support software design and implementation on the Venus
machine (1, 2). It helongs to a class of languages such as RLISS (3) which
have the control structures of a higher level language but which are machine-
dependent in other respects. This type of language is suitable for system
programing hecauce it provides many of the advantages of a higher leval
language (for example, increased programmer productivity), while permitting
the user to retain control over machine capabilities which are needed to
perform basic system functions.

SPIL was designed to be a Eool for a project cancerned with evaluating
pragmatic techniques for improving the reliability of software. Since SPIL
was merely a tool and not a product of the project, constraints were placed
on the amount of effort which could be spént in designing and implementing
it. For example, it was not feasible to base the design of 3PIL eon the
development of new language concepts, nor could we afford the effort of
building an optimizing compiler.

The fact that pragmatic techniques were desired determined the whole
approach of the projeect. Important but impractical approaches, such as
proving the correctnass of programs, were ruled out. Instead, we celected
the "eceonstructive" approach, that 1s, the combination eof programming
techniques (in particular, structured programming) and management practices that
encourage construction of correct software in the first place. The rationale
behind this deeision is fully discussed in 4. Our choice was heavily
influenced by the success of an I8M project (5) which combined structured
programming and menagement techniques to achieve an impressively reliable

system,

4

We intended to use SPIL, in conjunction with Programming aud management
guidelines developed concurrently with SPIL (6), to construct a complex
software systen,. We had in mind a data or file management system providing
controlled sharing of data (along lines suggested by Habermann (7)), The
new system was to be constructed in the environment of the Venus Operating
System (2), However, when completed it was to be moved to its own computer,
and part of the design of rhe System was to consist of determining what the
architecture of the new computer should he, The rew architecture was
constrained to be Venus-like in nature but was aertain to contain new primitives,
for example, primitives supporting file access. In addition, the architecture
wight deviate from Venus, either by extending Venus capabilities (e.g. there
might be more processes available on the new machine), or by changing
the definitions of cartairp Venus primitives,

SPIL was designed to satisfy two main criteria: it was supposed to
be (1) a structured programming language , and (2) Support system programming
on Venus, We also definitely intended SPIL to be a design language, that is,
a language which expresses the design as it develops in a natural and economic
way. This paper discusses how the design of SPIL was influenced by
the design criteria, and briefly describes the mos: important SPIL features.

It then concludes by evaluating SPIL as a system design language.

THE VENUS MACHINE ARCHITECTURE

The intention to use a language for writing system programs places
special constraints on tha language design; it is more than usually impor-
tant that programs written in the language he efficient, and the user of
the language may need access to capabilities of the machine available at
the assembly languaze level but not ordinarily supported by a higher
level language. SPIL was desigred to satisfy both criteria by reflecting
the architecture of the Venus machiue, The following are the most impor-
tant features of the Venus architecture (more detail way be found in (1)):

1) The Venus machine supports segments (named virtual memories),
Segments may contain up to 64 K bytes of data and have 15-bit names, The
microprogram performs the mapping of segment addresses to core addresses;
Seguments are paged on demand between back-up ‘store and core memory. Venus
software (both programs and data) is almost always stored in segments.

2) The Venos machine supports 16 processes, Each process has an
in-core work area containing process-relatad information (the state of the Process),
and an address space congisting of segments which it may share with other pro-
cesses. Coordinatien of sharing and synchronization of procesées are supported
by semaphores and the two eemaphore operations; P and V.

3) The Venus machine has a wicroprogrammed 1/0Q channel, so that
Venus software is not constrained by any real-time requirements of the I/0
devigces, Semaphores are used to synchronize the termination of I/0. There
are no I/0 interrupts in Venus.

&) The Venus machine recognizes certain Segments as procedurec segments,
Procedures are intended to be pure {(reentrant). The only way in which
control may be switched between procedures is via the c¢call and return instruc-

tions, which provide a reentrant and recursive procedure interface, saving

and restoring the state of the process at the time of the callin a special
"eontrol stack" segment. Arguments and values may be pasged in segments which
are treated as pushdown stacks, referenced by push and pop instructions,

5) The Venus machine provides a software interrupt structure for
instrumentation and debugging. For example, there is an "every instruckiom
interrupt" which, when enabled, causes a specified instruction (generally
a call instruction) to be execured before every instruction of the procedure

being debugged.

Essential Machine Features

A careful analvsis of the Venus machine features was performed, in order
to determine how to incorporate them in SPIL. As a result of this dnalysis,
certain features were identified as essential to SPIL and influenced its
design directly. The remainder had less effect on SPIL. The essential
features include: procedures, allocation of data in Segments, and register
allocation,

Procedures. Procedures were deemed to be essential on the grounds
that they are inherently a higher level language feature; it would have
been unnatural to design a higher level language for Venus which did wot utilize
them directly, In fact, procedures are the basic building blocks from
which Venus programs are made. The same is true of SPIL pPrograms, and
SPIL is a procedure-oriented rather tﬁan a block-structured language.

Segments. Contrel over the allocation of data in segments was deemed
essential to obtaining efficient program execution., Almost all data in Venus is
stored in segments. If space for this data is not allocated intelligently,
extremely high overhead may result in the form of page flutrer. Intelligent
allocation involves understanding of the reference patterns to data items,

and reference patterns happen at execution time and mway span many procedures

since segments can be shared among procedures, Therefore we decided to

allow users to specify exaectly how data should be allocated in segments,

and the coneepts of segments, of segments structured +to contain data, and
of zccessing data in segments all bacame part of SPIL.

Registers. Register allocation was also deemed esgential to
efficient program execution, Each Venus process has at its disposal 16
general purpose ragisters (stored in its work area) in which to store
information, Information in registere may be accessed much faster than
information not in registers, Therefore, the wmost frequently used infor-
wakion should reside im registers 1f code is to be efficient.

One way to make sure registers are used effectively is to have them
be the main entity which a program manipulates, as is true in machine
language end also in PL/360 (8). We rejected such an idea =s leading to
confusidn: programe are really concernad with variables and asking them
to be concerned with registers adds to the complexity of the programming
task (and is therefore not conducive to the project goal of software reli-
ability). SPIL programs use variables, but include a REG statement to

inform the compiler of how to allocate rhe registers to the variables.

Other Machine Features

ALl other Venus machine features were deemed inessential to SPIL,
Nevertheless, SPIL procedures require access to the features (via the
lastructions supporting them) if they are to he used to build a system.

If all the useful Verus instructions had been brought into SEIL, the
EPIL grammar would have been greatly expanded to contain the new terminal
symbols and non-terminals expressing the special requirements of the par-
ticular operators (instructions), Also many data types would have baen

needed since some operators can only operate on special types: e.g., P, V

on semaphores.
- I3 -] =]
Instead, we chose to "insert" machine instructions into SPIL

preograms via a syntactic rule
<53 > 1 = 3§ < machine op > : < first operand >, < second operand >

which permits the compiler to check that the machine instruction indicated
by < machine op > is one of the.allowable ones, and that the operands,
which may be variables or expressions, are suitable for the instruction.

The instructions incorporated under < machine op > are intended
to be used infrequently, and with care: the § is like a warning flag.
There are strict constraints on which instructions can appear as < machine
op>s. Certain instructions will never be supported -- in particular
instructions affecting centrol: branch, call, recurn. < machine op >
is intended to augment SPIL, not to provide alternative ways of doing
things. In addition, there is no provision for insuring contiguity of
4 sequence of <X machine op>s, since a single < machiine op > may generate
several instructions if necessary to message the operands into the
appropriate forms,

It is interesting that < machine op > provides a wmechanism for
extending SPIL. For example, instructions added Lo the new computer to
support file management might be used as primitives in SPIL Pr OET EMS
(with a $§} and their meaning swbedded in the compiler. The SPIL
programs could then be moved to the new machine without any changes being

necessary.

STRUCTURED PROGRAMMING

What is Structured Programming?

The phrase "structured programuing”™ is ambiguous -- almost everyona
has a different idea of what it means. Three different meanings may be
easily distinguished:

ML) Structured programming is geto free programming (9).

MI) Structured programming is top-down programming (control ouly)(10).

M3) Structured programming is top-down programming (11, 12).
Only MI and M2 are really well-defined, M3 is not supported by any existing
programming language, as Dijkstra pointed out in his Turing Lecture (13),
For one thing, M3 is really a philosophy about how programming ought to be
done -- an issue not yet resolved. For aﬁother, those parts of M3 which are
understood require new programming languape constructs for their support,
and many programming language issues must he rethought (e.g. block structure
(14)).

Ml < M2 e M3

in the sense of containing ideas or concepts; the reasons why M1 is necessary
in each case are discussed in (6).

Top~down programming (both M2 and M3) involves the following: The
first code written is the very "top" of the svystem or program; it describes
the way control flows among the major functional components of the program.
The code constitutes a structured program module, The components are repre-
sented in the code by writing their module names,

Figure 1 contains an example of a structured program module which is
the "top"” of an operator precedence compiler, The example, written in an
Algol-like notatian -- not in SPIL -- uses module names push, finished,
Scan_next symbol, precedence_relation, top, and perform_operation_ba;ed;jr R

on_relation. The module is a complete

integer relationm;
boolean mist_scan;
string symbol;
stack parse stack;
mUSE scdn = true;
push(parse stack, eof entry);
while not finished(parse stack) de
if must_scan then symbol := scan_next symbol();
relation := precedence_relation(top(parsehstack), symbaol);
performﬁoperation_based_on_:elatinn(relation, parse stack,
symbol, must scan)
end

end

Figure 1.

An example of a structured Program medule,

-9

description of the compiler in the sense that if we had a machine with all the
module names as primitives, it would run. However, such a machine is unlikely
te exist, s0 the next step is to select 2 module name and code the module
which explains it in terms of other madule names. The process will continue
until all module names are defined,
So far, the description and example could Ffit either M2 or M3. The
difference between them may be illustyated by considering the wodule name
"push" and the data type "stack'. The two are cbviously related: stack
is an abstract data object which is to be operated on by the abatract
operator push, The M2 approach is concerned only with control; it ignores
the problem of how to handle stack and instead permits ad hoc solutions
(for example, stack could be defined on the spot as an array). The M3
approach requires the definition of stack to be delayed just like the definition
of push is being delayed ~- an idea not supported by existing programming
languages. A further problem is that access to stacks should be limited to
just those modules which should access them (push, top and finished in the example)
SPIL is defined using the M2 definition of structured programming, a
logical decision in view of the requirement that SPTI was only a tool, not
a goal: we could not justify the effort of developing new programming language
concepts, Alsc, the success of the IBM experiement, which uses the M2

meaning of structured prograuming, encouraged us tec believe that M2 provided

Levels of Abstraction

We expected SPIL programs to exhibit some M3 charactaristics because wa
intended to group SPIL medules into levels of abstraction (15). A level of abstrac-

tion is a group of ralated wodules which share common regources, and

=10=

access to the resources is denied to modules in all other levels of
abstraction. Thus levels of abstraction provide the type of limited access
desirable for M3 structured Programming. Resources include real machine
resources (e.g. I/0 devices), common shared data, and information. For
example, if there were a level of abstraction supporting stacks, modules
"push' and "top" (among others) would belong to it, and its resources would
include information (the format of stacks), and data (cthe pointer to the top
of the stack and possibly the stack itself),

Levels of abstraction do not exist in SPIL; we merely intended that
levels be used by the programmer writing in SPIL. However, omne important
SPIL design decision is due to this intention. When considering a structured
program module, the question arises of whether rhe mecdules named by chat
module have access to the variahles declared in that module: for example, in
Figure 1, can module scan_next_symbol access variable symbol? We decided
that they can not. In SPIL each module must specify precisely which data
regources it uses; these should be the resources belonging to its level of
abstraction and they constitute its entire non~local enﬁironment. In SPIL,
there are no free variables and consequently no implicit data connections

between modules,

How SPIL Supports Structurad Prograwming

The most important way in which structured programming can be suppor ted
is to permit the independent praocessing {(compilation) of modules, and to pro-
vide for the linking (binding) of medule name with module,

SPIL modules. 4 SPIL module is usually a procedure -- the same
Venus machine procedure which became the basic building bleck of SPIL.. However,
4 module may also be a macro definition. Macros are used in two different

ways. They are used to contain information about data structures, thus pro-

-11-

viding standardization on the description of shared data, and also permitting
the actual definition of a data structure to be delayed. Macros may also

be used to permit a name to stand for a body of code without making

the code into a procedure. Transfer of control between procedures is so fast
on the Venus machine that very small procedures are feasible, and a wacro
would rarely be chosen over a procedure because of size of code. However

a macro is useful to attach a name to a body of cede which is used in only

cne place and runs in the environment of that place. Permitting macres to

be used in this way enhances the readability of programs, an impertant benefit
of structured preogramming.

SPTL Module Names. Any module accepted by the SPTL compiler has a

module name. The medule names constitute a global name space, which leads
to the possibility of name conflicks. S5PIL eases the confliet problem
by having module names be two-level names. The intention is that the first
part of the name be the name of the level of abstraction to which the module
belongs, and the second part of the name identify the module within the level.

The SPIL compiler handles the referencing of a module by its module name
differently for procedures and macros. For preocedure modules, the SPIL
compiler stores the module under its name; then a reference to the module
name causes the compiler to build a link through the name to the appropriate
modula. TIf the module name is used before the module exists, the compiler
prepares a spot for the module name and builds the link, and when it finally
compiles the module, stores it (under its name) in the spot already pre-
parad.

When the SPIL compiler processes a macro module, the module is also
stored under its name; however a reference to the module name causes the
module to be retrieved {(through its name) and inserted bodily into the

referencing module. 1f the module does not exist yer, the compller ignores

-12-

it cowpletely, implying that a macro's body must constiture a syntactic
category for which "empty" is a reasonable value. The two interesting
uses of macros, te stand for a data structure definition or a statement

of a4 program, both satisfy this requieement,

Incremental Compilation, The SPIL compiler provides the incremental
compilation necessary to building systems; which tend to be sc large that
it is impractical to wait for the whole system to exist before compiling,
When a system is built bottom-up, incremental compiling is no problem,
since names are defined before they are used (except for recursicn). In
top-down programming, just the opposite is true, but the need for incremental
compilation still remains, as does the need for check-out of part of the
system hefore the whole system exists. During check-out, the undefined
modules may be simulated, if necessary, either by providing simulated
definitions of them, or, in an interactive syatem, by allowing the programmer

to similate them on-line,

13-

MAIN FEATURES OF SPIL

This section contains brief descriptions of the most important features
of SPIL. It does not describe SPIL in any detail; a user interested inm the

details should consult (16).

Procedures

SPIL is a procedure-oriented rather than a biock-structured language.
SPIL procedures constitute the structured program modules, and may be com-
piled separately. Each procedure has a completely private local environ-
ment and & non-local environment consisting of the data segments it shares with
with other procedures in its level of abstraction. There is no concept of
4 free variable in SPIL.

A procedure consists of a number of declarations followed by the pro-
cedure body. The procedure body is a goto-free program built of the
following control structures: concatenation (like the compound statement
in Algel 60), iteration {(the WHILE statement), seclection of a statement
based on the testing of a condition (the IF statement), and selection of
a statement based on the value of an expression (the CASE statement}, The
statemants which the control structures link together include assignment
statements, calls of other procedures (using their module names),

< machine ops > , and the return statement.

Data Segments

The most important type of data available to a SPIL procedure is stored
in a data segment and shared with other procedures in the same level of
abstraction. The level of abstraction really owns the data segment, and it
i1 not usuwally convenient to consider the segment as belonging to a particular

procedure, SPIL views data segments as having an existence of their own,

-14-

independent of any procedure, This implies that data segments must have
their own names, in just the same way as procedures (or modules) have

their own names. SPIL data segments have two-level names just like pro-
cedures, and the SPIL compiler treats data Segment and procedure names the
same, although it will not compile a call tc a data segment nor a data
access to a procedure, The first part of a data segment's name is intended
to be the name of the level of abstraction which owns the segment as a
resource,

In order to access data segments, a procedure must include a declaration
stating the names of the segments (it must also contain a similar declaration
stating the name of each procedure it ealls). The procedure must also con-
tain a structure declaration (similar to a PL/I structure) for eacnh segment
describing how data is stored in (allocated within) the segment. Exzamples
of data segments for a compiler are the segments containing the symbol table,
the parse stack, and the tables which dascribe the grammar of the language.

The analogy between SPIL procedures and data segments even extends to
allowing the compilation of data segments . Compiling a data segment is
one way of initializing the level of abstraction which owns the segment .

An example of a date segment initialized in this way is the seg-
ment containing the grammar of a language; whenever the grammar is echanged,

the segment is merely recompiled,

Local Environment of Procedures

The local environment of a procedure consists of the arguments passed
to the procedure (all by value) anc simple (unstructured) local variables.
The types of these variables are Just sufficient to permit computation of
arithmetic or logical expressions aand to permit data in sepments and, in rare cases,

in core,to be accessed. Computation variables, declared as TEMPS, provide space for

-15-

16 bits of information. POINTER variables are used to access data in
segments, but wust first be associated with a sepment via the ASSOC
declaration. This association expresses the fact that a sepment address
has two parts: the name of the segment and the address within the segment.

A pointer may be used to access data in a segment either by byte
{8 bits) or by halfword (16 bits); the type of access is indicated by a
prefiz of % for bytes and 2@ for halfwords. Use of a pointer without a
prefix means the value of the pointer itself, rather than the value which
the pointer points to, Information in the structure declaration of the
segment ASSOCiated with the pointer is used to initialize the pointer and
as an offset to the current value of the pointer,

A procedure may occasionally need to access core; for example, low-level
I/0 control procadures in the Venus Operating System (2) must £i1l and
empty core buffers, Core acceés is achieved by prefixiug a TEMP with
% oor G, The SPIL compiler will compile core access, but it alwaye warns the

programmer when it does so.

=16=-

EVALUATION OF SPIL

The primary issue in evaluating SPIL is its success as a system
design language. However, a few remarks are in order abour how complete
SPIL is as a tool for constructing systems.

It may seem to the machine language programmer that SPIL is not an
adequate language for doing system programming because it appears to pay
so little attention to basic system programming issues like 1/0 and inter-
rupts, Take, for example, the I/Q control programs which are part of any
operating system: can they be programmed in SPIL?Y Although we have not
had the experience of writing such programs in SPIL, we do know that the
I/0 contrel programs of the Venus Operating System (2} could easily be
rewritten in SPIL {in fact, they could be directly translated iato SPIL).
They requitre, in addition to core access, the P, V and SI0 (start 1/0)
instructions, all of which are available through the < machine op >
part of SPIL,

In fact, every piece of Venus software could be rewritten in SPIL
except for the program providing paging of segments., This program, which
is really an extension of the Venus microprogram, mwust be core-resident,
and may only use a subset of the Venus lostructions; for example, it may
net use segments, The program currently consists of approximately 800
instructions; whether it should remain in machine languape or be hoot-

strapped into SPIL is an open question.

SPIT as z Design Language

The following properties, all of which are desirable in a design

language, provide a framework within which SPIL can be evaluated.

-17-

1) A design language should express the design as it develaps in a
natural and economic way. It can do this by allowing the designer tao
build an outline of the system, with unimportant dectails suppressed. It
aleo should permit the outline to grow as the designer sees fit, When
designing a system, more attention is paid to some area2s than others because
of efficiency considerations, or just from concern over whether an idea
is practical. Thus the design grows in a lopsided way; the design
language should permit this and insure that no effort is wasted and no
unnecessary effort is required.

) 4 system design language should provide a vocabulary of abstrac-
tions which help the designer to think about his design.

3) A single language should be used for hoth design and implementation.
This property 1s desirable for three reasons: First, and most important,
there is really no clear distinction between design ana implementation,
although traditional software project aorganization implies that there
is. Design decisions are made at every stage of program construction
although the effects of these decisions become less global as the system
nears completion. Thus having a separate language for design introduces
an artificial distincticn between design and iwplementation; a good design
language should express the neverending nature of design. Second, the
structure of the system should continue to be apparent even after imple-
mentation is complete, implying that the system will be easier to under-
stand, modify, and maintain, and that less documentacion may be required,
Third, errors may be introduced in translating from the design to the
implementation 1f two languages are invelved; also extra effort is required
in the tramslation.

4) A design language should encourage the development of "good"

-18-

system structure. The meaning of "good" must come from a coherent design

methodology. (For work in this area see (6, 17).)

SPIL satisfies the first three objectives, as should any top-down,
structured programming language. Its power comes from the ability to
have a wodule name stand for a moduie. The module names constitute the
vocabulary of abstractions, A description of the system in which soume
module -names. are undefined is an outline of the system, in which unimpor-
tant details {the wissing module definitione) are suppressed, SPIL will
compile such a partial system description, which can even be executed and
debugged, SPIL insures that the structure of the design remain apparent
by keeping all the modules separated; the definition of a module never
repldaces the use of its module name in a program listing, even if the
module is a macro.

To determine how well SPIL satisfies the fourth objective, we must
rely on our experience in using it. A compiler for SPIL has been written
in SPIL and is now running on the Venus machine, 8PIL has proved con-
venient to use and the results obtained were satisfactory in terms of
programmer productivity and reliability of software. However, in the
design of the compiler, levels of abstraction are well-defined only where
obvious (for example, the scanmer is a separate level); in other places
the distincrions between the levels are blurred and the resources not
clearly segregated, SPIL therefore does not entirely satisfy requirewment
four, because it is clear that we had in mind a design methodology, levels
of abstraction, providing a definition of "good" system structure which
we hoped that SPIL programs would have. The problem is that SPIL does
not directly support the methodology: it is possible to build a Bystem

composed of levels of abstraction using SPIL, but it is not necessary to

~19~-

do so, This implies that the burden of designing a good system structure
falls on the programmer; SPIL does not help the programmer discover the
Structure as much as it should.

Our conclusion is that structured programeing, interpreted to mean
top-down coentrol and ad hoc data, is not a sufficient basis for a system
design language. Instead, the ifesues involved in data must be faced,
and new programming language concepts developed by appealing to a
design methodology, The resulting language will be a complete structured
programming language. It should have all the advantagas that SPIL posSsesees
as a design language, and also contribute to the development of a good

system structure.

ACKNOWLEDGEMENTS

The author gratefully acknowledges the efforts of Chip Gulden and
Raney Ivan in building the SPIL compiler, and the helpful suggestions
made by Jack B. Deunis, Steve 7illes and Leroy Smith about the content

of this paper.

10.

11.

12,

13.

14,

15,

16.

17.

REFERENCES
B. J. Huberman, "Principles of Operation of the Venus Microprogram™,
The MITRE Corporation, MIR-1843, Bedford, Massachusetts, 1 May 1970.

B. H. Liskov, "The Design of the Venus Operating System', Communications
of the ACM, 15, 3, (March 1972), 144-149.

W. A, Wulf, D. B. Russell, and A. N, Habermann, "BLISS: A Language for
Systems Programming'', Gommunications of the ACM, 14, 12 {December 1971),
780-790.

B. H. Liskov and E. Towster, "The Proof of Correctness Approach to
Reliable Systems', The MITRE Corporation, MIR-2073, Bedford,
Massachusetts, 9 March 1971.

T. Baker, "Chief Programmer Team Management of Production Programming',
IBM Systems Journal, 11, 1 (1972).

B. H. Liskev, "A Design Methodology for Reliable Software Systeme™,
AFIPS 1972 FJCC, Vol. 41, Pt. 1, Spartan Books, New York, 191-1%9,

A. N, Habermann, "Prevention of System Deadlocks", Cotmunications of
the ACM, 12, 7, (July 1969), 373-377, 385.

N. Wirth, "PL360, A Programming Language for the 360 Computers", Journal
of the ACM, 15, 1 (January 1968).

E. W. Dijkstra, "Go To Statement Considered Harmful", Communiecations
of the ACM, 11, 3, (March 1868), 147-148.

H. D. Mills, "Structured Programming in Large Systems', Debugping
Techniques in Large Systems, R. Rustin (ed,), Prentice Hall, Ine.,
Englewood Cliffs, New Jersey, 41-35.,

E. W. Dijkstra, Notes on Structured Programming, Technische Hogeschool,
Eindhoven, Netherlands, August 1969..

N. Wirth, "Program Development by Stepwise Refinement", Communications
of the ACM, 14, 4, (April 1971), 221.227,

E. W. Dijkstra, "The Humble Programmer", Communications of the ACM, 15,
10, {(October 1972), 859-865,

W. Wulf and M. Shaw, "Global Variable Considered Harmful", SIGPLAN Notices,
8, 2, (February 1973), 28-34.

E. W. Dijkstra, "The Structure of the "THE' -Multiprogramming System",
Communications_of the ACM, 11, 5, (May 1968), 341-346.

B. H. Liskov and L. A, Smith, "SPIL - A Systems Programming Implementation
Language', The MITRE Corporation, MIR-2344, Bedford, Mass., 15 June 1972,

D. L. Parnas, "On the Criteria To Be Used in Decomposing Systems into
Modules", Communications of the ACM, 15, 12, (December 19723, 1053-1058.

