MASSACHUSETTS INSTITUTE OF TECHNCLOGY

PROIECT MAC

Computation Structures Group Memo §2

A& Speed-Independent Implementation

of Data Flow Schemas

by

Becky Clark

This work was submitt

ed for credit in Subject 6.534,
“Semantic Theory for

Computer Systems", Spring 1973 .

June 1973

A SPEED-INDEPENDENT IMPLEMENTATICW

OF DATA FLOW SCHEMAS

In this paper we present 2 set of speed-independent modules useful
for the implementation of data flow schemas. The intention was to
design a set of modules which would functiom properly without regard
‘to delays in the gates while using the assumption that there is no
delay in the wires.

Two types of links, control and data, are required for gignals
between the different modules. The same signalling conventions are
used for both. A data link consists of three lines, two of which carry
the data signal from one module to another and a third which returns
an acknowledge that the data has been received and may be taken away.
The two data lines may be in any of three states. A 1 on either line
indicates that a 0 or 1 is present according to the line upon which
it appears. A 00 state for the two lines Indfcates that no data is
present, and an exclusive-or of the two data lines can therefore be
used as a request. This request and the acknowledge must follow a
four-phase arrangement in which the acknowledge becomes ! after the
request becomes 1. The request may then he taken away, permitting
the acknowledge to go to 0. An example of the Tabelling convention

for a link k 15 shown in Figure 1 with d __ indicating the presence

kO

of a 0 and dkl the presence of a 1. The exclusive-or to find r,
will appear in the module receiving the date and is shown here to
clarify the relationship between the data and acknowledge lines. 4An

example of waveforms on a link is shown in Figure 2. A control link

Figure 1.

Figure 2,

Page 2

Page 3

has the ssme characteristics as a data link except that g signal of
true or false is associated with each of the two data lines instead
of a 0 or 1.

The set of modules required can be divided into five types: gates,
merges, links, deciders, and operators. Since the links are identical
for data and control, the gate, merge, and link modules will he
identical for the similar data and control functiona. A description
of each of these follows.

The gate module ig shown in Figure 3. One link is required as
input, and a control link determines vwhether the input will be put onto
the output link. The example shown here is a true data gate., A falsge
gate may be obtained by interchanging d2T and dEF'

The merge module takes two links as input and a control link te
determine the required output. A data merge module is shown in
Figure 4,

Link modules must be used at all data 1ink nodes and control 1imk
nodes. The function of a link module is ko store the input and
acknowledge it while transmitting it onm the output links until they
acknowledge. Any new input data waits until the output links have
cleared. 4 two-way link module is_shown in Figure 5. This may be
extended to an n-way module by branching the outputs to the n output
links and using an n-way C-element to detect acknowledges from all
cutput linksg, Alternatively, the two-way modules could he cascaded
Lo obtain any degree of branching required.

The remaining types of nodules, deciders and functions, are
dependent upon the specifie interpretation of a data flow schema,

and thus there are an unlimited number of these modules. An example

Page &

*aTnpey 238D 1f 2an3T4g

P

. _.I/M A

QMQW
» =

Page 5

17

0%

'3[npoN efdasy iy aandrg

1z
12, P
ﬂ 0z,,

oz, i€,
a Zp
mm
o ﬁw
ﬁav .
Lep

oﬁu ﬁFw
ﬁHHH 0
am

Page 6

*IINPOH YUTT ¢ andrg

5D~
O —

*P 1
e
’ 1 -
P 4%
te XD ¥
= L
of H.Hw ﬁ.ﬁ_u
> b
0z, ~ _

<[Dun Gl HM

P
Op Oty

Page 7

of a decider module to check for equality of two imputs is shown in
Figure 6, and an AND function madule for two inputs is shown in
Figure 7, The structure of the two modules is quite similar, and
any two-input Boolean function will have the same type of structure,

Initialization in a dats flow schema requires the capability of
presetting the control arc £o a merge module., This can be accomplished
by inserting a link module on the control arc hefore it reaches the
module and presetting the latch within it to indicate an output of
fdlse,

The system described here deviates slightly from the model of
data flow schemas in that the firing of an actor does not remove the
tokens from the input arcs. This should not affect the operation of
the schemas if link modules are used on every path between actors.
If link modules were added to all the outputs of each actor, this

condition would be satisfied.

Page 8

de

Lt

*2Tnpol ¢ 1ENbE

1g aan3t4g

i
—
—

e

L. 12

0¢
o1

o

-

— 11

omw
o
oﬁv

Page 9

]

1t

*BINPOH PUY :; aanS1jg

0z
N

Vi

0¢
01

1e
0T

T o

1%
11

o

puy

REFERENCES

Denrnis, J.B., J.B. Fosseen, and J.P. Linderman, "Data Flow Schemas,"
Computation Structures Group Note, July 1972.

Misunas, David, "Petri Nets and Speed Independent Design," Preprint,
March, 1973.

