MASSACHUSETTS INSTITUTE OF TECHNOLOGY

FROJECT MAC

Computation Structures Group Memo 83

The Flow of Latticq Diagrams

(or What's an S-Expression Like You Doing in a Lattice Like This?)

by

Mike Van De Vanter

This work was subm

itted for credit in Subject 6.534,
"Semantic Theory f

or Computer Systems," Spring 1973.

June 1973

TABLE OF CONTENTS

INTRODUCTION
THE SET OF S—EXPRESSIONS
LATTICES
CONSTRUCTING THE LATTICE OF S—EXPRESSIONS
METHODS CF CONSTRUCTION
THE BASIC LATTICE
THE HIGHER IATTICES
TEE FINAL IATTICE
COMPLETING THE IATTICE
. THE PROJECTION MAFPPINGS
THE CCNSTRUCTICN CF NFW ELEMENTS
PROPERTIES OF S,
THE FUNCTION Cons
THE DECOMFOSITION OF S
THE FUNCTIONS Car, Cdr
CONTINUITY OF FUNCTIONS
CLASSES OF FELEMENTS OF Sk
NOTATION
THE PERFECT ELEMENTS
THE FINITE PERFECT FLEMENTS — Fp
THE FINITE ELEMENTS — F
THE AIGEBRAIC PERFECT ELEMENTS — AP
« - THE AIGEBRAIC ELEMENTS - A
7.7. THE TRANSCENDENTAL, FIEMENTS — TP and T
8. COMMENTS ON S., |
8.1. IOOSE ENDS — THE ELEMENT (1 .l1)
8.2. LOOSE FENDS -~ CONSTRUCTING ELEMENTS OF A
9. THE JUSTIFICATION FCR LATTICES

4 ¢ a4 4 5 44 & e
£ Py =
L T T

IO s S UGERD =

'R
Ay
. »

&+
L]

L]

¥
Pt

4
4

L]
»

-4-«!-\'1-4-4\1.\]0‘10\0\0\0\&71

.
U’\\.ﬂ-‘bkﬂh}—'

N N T N Y N WY
PP RN N OUID VO S s NI RS

THE FIOW OF LATTICE DTAGRAMCS
(or, WHAT S AN S=EXPRESSICN LIKE YOU DOTINC IN A TATTICE TIvy 1HIS?)

1. INTRODUCTION

This paper is zn expression of my reflections cn scpe cf tra
recent work done by Dana Scott. In particular I would like to
consider his method of using lattices to impose a very
fundamertal structure on the abstract concert of a "datr tyren,
Intuitively it isn“t at all clear what one can say cbout "deta
types" that doesn”t depend on the particular kind ol data urder
scrutiny. It seems even less clear what connection coulc
Possibly exist btetween this i1l defined notion and the
mathematical struéture of lattices! -Scott postulates that the
set of elements which we would like to call a "data type" srould
be conceptually expanded, and in the process a structure should
be defined on the set. It is this structure which turns out to
be 2 lattice. In an attempt to illustrzte how this procedure is
carried out and what Scott feels to be the benefits earned,]
will consider a familiar (and simple) example of a "data tyren,

the set of symbolic S~expressions (a 1la LISP!).

FAGE 2

Z. THE SET OF S-EXPRESSIONS
Before we start toc operate on this set, we really ought to
stop and consider just what set we zre really telkirg astout. A
typical definition of S-expressions is given in Dertouzes[11:
An ATOM is a finite string of characters and/or numbers.
Recursive definition of S~EXPRESSIONS:
13. Every atom is an S-EXPRESSION.
2). If 8 and T are S~EXPRESSIONS,
then (S . T) is also an S—EXPRESSION.
3). Only the objects defined by rule 1)
and E{ a finite number of applications
of rule 2) are S-EXPRESSIONS.
We also note the three primitive functions on S-expressions, Car,

Cdr, and Cons, and their definitions:

Car <ES . Tg> S for all S-EXPRS & and T, undefined otherwise.
Cdr <(S . T)> = T for all S-EXPRS S and T, undefined otherwise.
Cons <8,T> = (S . T) for all S-EXPRFS S and T.

i

The set of S—expressions, then, could be informelly described as
thé_set of finite binary trees with atoms for leaves. We ask
then, what kind of structure this set has, i.e. what
relationships exists among its various elements? We naturally
assume that the atoms themselves are discreet, and tear no
interesting relationships to one another. A unary relatiion
comes immediately to mind (the property of being an atom), but it
seems that the only interesting binary relation might be that of
inclusion (like MEMBER in LISP). I claim, however, that this
relation is not really very interesting if we want to build a
mathematical mocel for this set. The justification for this

claim should become clear as we see how Scott”’s method works.

FAGE 3

3« LATTICFES

Scott describes in [3] his motivation for using a lzttice
structure tc deal with his notion of abstract "data type". At
this peint T will not peuse to consider his general defense of
the idea, rather let us proceed to use his method for erbedding
the example set in a lattice. After some of the benefits [rom
the construction become apparent, we can return to the point in a
better light.

First, we should note that = "lattice" is defined to be a
partially ordered set in which every two elements have btoth =
"meet" and 2 "Join"[2]. The concepts "meet" ang "join®
correspond well to our common definitions of "greatest lower
bound" and "least upper bound" respectively, and are denoted by
Scott as N and Y. A "complete" lattice is defined to be one in
which every subset of the elements has both a meet and a join
(this is the type of lattice we will want). The partial ordering
we want to use on our lattice is denoted by Scott as & gnd
corresponds roughly to the ides of “approximation". He points
out in [3] and [4] that we should not confuse this notion with
the concept of "distance from". we say that x € y will mesn
that y is like x (i.e. consistent with x), but (possibly) more
specified than x. Further, since we want to end up with a
complete lattice (i.e. one in which every subset has a meet and a
Join), we will also define two special elements: | and . |
1s called bottom and | © x for all x (i.e. .| is the least

coecificd elament and acvproximates evervtnin:-). 'T im e dtesd e
and x & T for all x (i.e. T is cversnccified ang is
s-oproximoted by overvihing).

Inese concerts represent a departure from the ror o1 lLoro
of structures ope talks about when considering datn, sc o
defiriticns can te expected to seem a bit fuzzy. lonsiull- thn
construction of the lattice of cur examrle set will clerif

things somevhat.

4. CONSTRUCTING 1M LATTICY OF S=EXPRESSIONS

Before we tepin to construct the examvle lsttice, it alb ould
ve varned that nethematical justifications for certein
constructions will te deseribed onl§ in prineciple. The overall
nethod of construction is patterned after Scott’s construction of
the "lattice of Flow Diggrams" in (41, and his presentation is
discursive, cleesr, ond fairly complete on these issues.
4s1e HEIHODE OF CONSTRUCTTON

The gerneral plan of construction is to start with & very
simrle lattice and use tasic technigues for combinire lettices to
ouild successively lareser ones. The two elementary techniaues
are lattice sum ard lattice product. To create the sum of two
iattices A end I, it is first assumed that the elements of /% and
E are disjeint, then the elements of the new lattice (to be
called /+5) are taken to be the union of the old elements. ue

sey x B ¥ in A+D if and only if x E v in either & or L.

SARUD

“inelly, the twe versions esch cf L and of T =ope idantivicd ¢
erecte orly ene L oang T respectively in A+i.

1o creste the rroduct of two lsttices 4 anc L, wve I -
clererts ¢f the now lattice (to ve called AxE) be all oriore
valrs <¥,v> where x is in A, anc ¥y is in 3. e Say

L4

X" in A, and v E

s

L]

Xyr2 & X',v> in AxB if end only if x
in =. Clearly, <1,L> ana <'T,T'> Play the roles in Ay ol
becttom and top respectivelv.
4e2. THF BASIC LATIICE

“e will now create g Iattice for tre simplest }tinds of
S-exvressions, rarely the ajoms. Since W& want the ators tc he
discreet, we Sz¥ that there are no & relationships between
atons. This ¢orresponds tc our intﬁiticn tnat aﬁoms are sorehow
"verfect”, and no atom really anrroximates another. of course 1
areroximetes every sotom, and every atom arvroxiniates T. in

intuitive sketeh of this lattice is given ir Fig. 1. liote that

#1501 = The lattice of Atonms

FAGE 6

this lattice is also complete, since every possible subset of
ators has a meet {_|) and a join (T). We call this lattice S,,
since its elements correspond to S-expressions of depth 0.
4.2. THE HIGHEE TATTICES

We now use our lattice operations fo create a new lattice,
S, = 55 + [S,x5;]- The elements of this lattice corresyond to
the S—-expressions of depth up to 1: atoms, and S-exprs like
(x « y) where x and y are atoms. In a2 like manrer ve cen define
in general the complete lattices: S,,, =S, + [3,x5,] for £11 n.
Where does this lead? We note that S, ¢ S,, and from cur
definition it follcws inductively that S, ¢ S,,, , for all n.
Thus we can see that S, & S, for all m < n, and each 8, contains
all S~expressions of depth up to n.
4.4. THE FINAL LATTICE

Since we want to talk about the set of all S-expressions, we
are naturally led to consider the set union of all the 3,. But
does it form a lattice? The answer is that it is a "finitely
complete” lattice, since it obeys all definitions but only finite
subsets of the lattice have, in generzl, meets and joins in the
lattice. The existence of finite jJjoins follows easily when we
consider that any finite set of S-expressions must have an
element of maxiral depth k. This element and thus 211 the others
in the set, are contained entirely in the subset SK of the
infinite lattice. Since the subset has a joim in S, it has one

in the union.

FAGE 7

We call this lattice we have Just constructed &7, e pow
rause and ask what sort of elepents are contained ir 8°.
laturally sl1l of the finite S-expressions are in the lattice, oot
we seem, by way of this reculiar construction, to heve included
quite a few more. Cpecificelly, there are many elements wiin _|
and | as leaves, but it is not obvious what they mean (if ve can
say that trees mean anything). Recalling our definition of | we
See that this element in the lattice approximates every other
element in 8% (i.e. is completely unspecified). Whet atout the
element (A . l_)? From our definition of lattice product we see
that (A . |l) & (A . x), for any possible element x. Thus
(A .1l) is an element which approximates every other element
whose Car is A, We might say that (h .1) is an element whose
only property is that its Car is A. TFigure 2 shows this element
in tree notation and gives some examples of the objects it
approximates. Figure 3 £ives more examples of elements which
approximate other elements. Elements which contain the top
elerent | could be described in a ranner dual to the treatrent
of L. we say that (A .7T) is overspecified and is approximated
by every element (A . x) for any X. This has less intuitive
appeal, so we will not dwell op these elements, nor on

expressions with both { ang T occuring as leaves.

(#.1) (A.A) (A.(B.C)) (A.(L.2))

Figure 2. Flements of 8° srvroximeted by {A.L)

/<\B /<\L/<\
A L A L A 1 A
¢ p

((£.4).L) & ((£.(C.D)).B) ((1.4).1) E ((L.A).C)

figure Z. Other Arvroximations

s
e
oo
t'-\
L

5. COMPIETING THY LATTICE

Althoush S° cortains 211 of the elements we yere origirallv
intcrested in (and rany more), the fact remeins that it ig only
finitely complete. One might argue that since all of tre
necessary elemerts are rresent, this lattice should suffice as p
mathematical mocdel. It turns out, howvever, that corplete
lattices have scme nathematical properties which are auite
powerful and useful in the formilation of "sbstract dats tvren,
SDecifically, we know the "fixegd point theorem®: 34 monotonic
function on a centinuous lattice into itself has a unique least
fixed point. This, as well as the fact that adding some infinite
elements might lend sogpe additional glamour to cur rathematical
model, gives motivation for atiempting to complete the lattice.
5.1. THE PROJECTICN MAPPINGS

Rather than use the mathematicel result which simply asserts
that any lattice can be comnleted, Scottg [4] chooses to add
elements in a constructive way which clarifies exactly what it is
that we are adding in the process. The first step is to create a
sel of "projection" maprings which sre called Y, , for 211 r.
Ihe first of these mappings, Y., maps etoms into themselves and
all other elements into 4. The formal definition of the rest of
the mappings is:

Y;»r(S}:Sn+z =2 Snq, if s is in &,

:{(s‘l’,._ (x) .« ¥o(y)) otherwise,

PRGE 10

Irtuitively, each function Vn, when applied tc¢ an elerent x
in Egy,» #ives us the "projection" of x onto S,, i.e. we ~ct the
"nost svecified" S-expr of depth n vhich anproximates x. Thus:

YW <A>=4A

Y. < (A.(B.C)) > = (A.L)

Wo< ((AB).(A{C.L))) > = ((A.B).(A.L))
Fignre 4 gives examrles in tree notztion of the pro‘ection
raprings.
5.2. THE CONSTEUCTION QF NEW ELEMENTS

The way to construct the complete lattice (which we will
call S) is to consider infinite "chairs" of elements in S°. A
"ehain® is & sequence of elements (xi>, such that:

X & X, B X3 B ceeXa B X B .a..
Further, we restrict our attenticn to those chains for whick
¥aXne) > = xq» i-e. in vhich each element x, is tte maximel
element of depth n which approximates the element xy,,. For esch
such sequence <x;»>, we wili define an element x in S» to be the
"infinite join" of the seguence {intuitively, the limit):
X = l;;lox,,_.

A new set of meppings ‘V.,,,_ is defined on S5 which gives us
the maximal depth n projection of any element in the new lattice.
In the case of x defined above ¥pn<o> = Xpe In fact, Scott shous
that in this tyre of construction there is 2 one-one
corresponcence retween elements of Se and all sequences of the

tyoe defired aveve. Thus, every element of Se. is defired ty its

A/<>X ﬂ/<>\.l.
¢ D

((A-E).(A.(C.D))) %> ((A.B).(A.1))

Figure 4a. A projection onto S,

& 1L /@
B [+) L 1i L
F E H Al 6

(((D.(F.E)).C)e (Lo ((112) . (L.G)))) 1lé> (((D.L).C). (L (.)))
Figure 4b. A projection onto Sq

£GE:

11

e 10

Infinlte sequerce of wrojections! [ote that thais acldn v oy
for an elerent v of finite ccpth ky since Fq";,m'(y) will 1o ooun?

1

e o fer a2l o > ke A1l lattice prcrerties nold in

Jewy Dirce
new gay Lhat x € v if and only if n & Yo for all n.
Cs PROEFFLTIIE LF S

ime lattice nov contairs uncourntably marny elemcnts ard con
le shown to be complete. wWe ccme finallv to the peint vhere wa
can ask winat car be derne with it (or at least wrat irterestin:
things can ue seid zbout it).
6.1. TiE FU.CTICN Cons

It is now time to devote some attentior to the long
Tor,otten primitive functions defined or S—exvressicns., Thelr
definiticns vn £° were clear, but now what can we sty atout Lher
on w? It seems reesonzble to be zble to talk zbout the oelavicr
¢l’ Cens on infirite elements, so we deline it beck into
cxistence. Tiecczllins that every elemant x in Se is unigquelr
cefined by its infinite sequence of projections <x;2> we sar:

Cons<x,v> = I:J{xn.yh} = (x ., ¥)
luus we have detined tﬁzsnew element (x . y) by its pProiections.
In fact: (x . v), = (Xno¥n)
Sece Lt DICOIIOSIZION OF Eoa

Under tiae interpretation given by the new defiriticn of

[

OnT, Ve can now consider the set S,xS., composed of all orcered

-

ralrs of elonents of Se. Tris set npust be o subset of Se. v =n

PAGE 13

- - i

argument sirilar to Scott’s [4], it can be showr thet:

Sy = Sb + [85,%S,.]
Fror this we res¢ intuitively a new definition for S-exrressions:
"An S-expression is either an atom or a pair of S—-exnressiors™,
This time there is no restriction tc finite constructiors,
6.3. THE FUNCTIONS Car, Cdr

With the benefit of the decomposition result atove, we can

now easily give Car and Cdr their ney definitions on S,:

Car<x> =fx, if x = (%,-%,) in § xS

L if x is in 3,
Cdr<x> =-1'xz ;g X = (;,.gl) in Sep¥xSe
L if x is in §,
6.4. CONTINUITY OF FUNCTIONS
It was hinted that the fixed point theorem would be used,

vhich holds for monotornic functions (functions which preserve the
partial ordering €). Do our primitive functions on Sw satisfy
this? The answer is yes, trivially from the new definitions. 1In
fact a stronger result ecan easily be proved. A subset X is
"directed" irf every finite subset of X has =n upper bound in X.
A function is said to be "continuous" on a lattice if it
Preserves the join of directed subsets. Cors, Car, and Cdr are
continuous on S,. Yinally, Cons (which is technically a furction

from Sy%8« into Se) is continuous Separately in each of its two

argupents.

PAGE 14

T+ CLASSES OF ELEMENTS CIF Su

Cur next step in talking about S, {and its worth =g =
mathematical model), is to consider, as we did for &7, vket sorts
of elements are contained in the lattice. Noreover, we seck to
discover what correspondernces exist between the lattice elerents
and the various objects we might want tc model.

Having mentioned mathematical models, it seems now
appropriate to mention 2 set of objects from the "real worlé":
the set of I1ISP S-expressions, (rather, the set of symbolic
representations for the machine storage of LISP S~expressicrs).
These are admittediy only "real" when considered relative tc our
uncountably infinite lattice of objects constructed with vaguely
defined symbols. Nevertheless this‘set will give us something
interesting to compare our lattice with. For genmerzlity, tre
distinction will not be made between the set of LISP
S-expressions and its commorly used subset of "list structures"
(as defined in [7]). The functions CAR, CDR, and CONS (distinct
from Car, Cdr, and Cons defined on S,) will have the obvious
definitions on this set. |
7-1. NOTATION

We will use the standard "graphical® notation for these LISP
structures, using boxes for machine "cells" which act as nodes on
a treef7]. This notation will help meke the distinction between
the domains clear in the illustrations. We wish 10 model tre set

cf I1ISP G-expressions, and these will always be drawn as machine

BAGE 15

cells. Flements of our lattice Se Wwill be drawn as binary trees
and described in dot notation.
7.2« THE PERFECT ELEMENTS

Sirce our intuitive understanding of the speciel elemerts |
and T in our lattice S is relatively weak, we will define =
"perfect” element tc be one which has no occurrences of | c¢r T.
This definition corresponds well to the intuition that trees are
really correct only when everything about them is fully specified
but nothing is overspecified (whatever "overspecified™ reans).
7.2. THE FINRITE PERFECT ELEMENTS - FP

The set S° of finite S-expressions is 2 subset of O
first cconsider the subset of perfect elements which are in 5°.
We call this subtset FP. In a sense; FP gets us exactly back to
where we staerted: the set of symbolic S-expressions as initially
defined in section 2. Given this fact, it should not be
surprising that there is a one-cne correspondnce betwéen elements
of P and elements of PURE LISP (i.e. allowing no cycles in its
structures) [1]. Although painfully obvious, we describe a
correspendence mapping @ :PURE 1ISP -> FP as,

P<x> = rx if x is an ATOM symbol

1’(DX, D P<x,0) if x is 2 vell with x, in its
left half [CAR] and x, in its right pals [CDR]
Figure 5 gives examples of the correspondence @. At this roeint,
it may seem that the entire consiruction has been a vacuous
éxercise in creative algebrs, since we could have gotten this for

without any mention of lattices. Hepefully, enumerstion and

Figure 5. The correspondence @:PURE LISP —> IP

3
A7 = /\

L
=

Yigure 6. The correspondence @ :PURE LISP witk "9¢ > I

>
'L
v
L)
>
p Y
-
’_

SEGL 1T

SCantry or some other classes will 2lleviate thig urnlencani
Convitien.
Tedo UL FINTUF ELE&ERTS — ¥
ror corrvleteness, we menticn the generel class of finite
clerents whick we call F. 1his rame is purely for rototicns]
Consistency, since I = 7. The "imperfect” clements of 2 oTeve
alresdy been mentioned in secticn 4.4, e reiterate turt -
COntéins many clements wnich can aporoximate in different VEVS
the finite perfect elements Fp (FP is nzturelly a siuset of ¥).
One could say trat, given a vartial description of wome alerent x
O P, there is an element of F which arrees exactly witi that
specification ard contains no othner infermation.
ICc make this slightly more forﬁal, Ve now extend cur set of
PURE. LISP expressiors to allow the symbol "Y' to be written in
the-cells. ‘his means that we simply don’t know whet goes there,
ke now extend tre correspondence mapning
® :LURE LISP witn mow _) y to be,
B x> = [,L if x is wew
X if x is an ATOM symbol
(@<x, >. @<x22) if x is a cell with x, in its
left half [CAR] ana Xz in its richt nalf
[Chr]
cisure b gives exaneles of this correspondence. This versicn of
¢ is stil alrost cne—one (the excepticon will be discussed in
section c.1.), ond rans ontc those elements of I which don”t
cortaiv T. ior lack of irtuition, the rest of the elemente in i

(6rose viich do contmin T) are ignored.

PAGE 18

7+.5. THE ALGEBRAIC PERYECT ELEMENTS - AP

PURE LISP, however, is of very limited practicslitr, ang
extended LISP (which we call simply LISP) is the commonly used
version [1]. Converience is gained by allowing side effectr to
occur, and the more powerful primitives REPLACA and PERLACD are
used to do the neéessary structure manipulation. Tke result is =
much wider class of possible LISP structures, since the CAR and
CDR pointers in cells may be arbitrarily assigned. The LISF
programmer is werned in [17 and [7] about infinite search around
circular structures. These possibly circulser structures are
present, though, and can be of practical use, S0 we consider
then. _ _

The simplest-example of a circular structure is a cell whose
CAR is the atom A and whose CDR points back at the cell itself.
Tnis is clearly circular and exhibits infinite behavior, since no
matter how long you follow the CDR of the structure, the CAR of
the result is still A. Now we can’t talk about circular binary
tres, but we do have infinite elements in Se.. In fact, we
observe that there is an element in S, which acts Just like this
circular list. It is shown in figure 7,

There is a better way than observation to assert the
existence of this particular infinite element in S,. If we let x
ke 2 variable over LISP cells and atoms, we see that this cell
satisfies and is completely described by the equaﬁion:

X = CONSKA,x>. Looking at Sw, we see that Cons<A,x> is a

PLGE 1€

continuous function from S, into itself. By the fixed roint
thecrem, there is a unique minimal x which saticsfies:

X = Cons<A,x>. This element x in Sp clearly must be the element
shown ir figure 7.

What about more general structures, i.e. some finite
collection of cells with pointers gcing incomprehensibly in all
directions (should we czll this a "sware")? We assert that these
all have counterparts in Se Dy the following method. ILsbel the
cells X,sX, 5+..9%,., where X, iz the "top" cr "first" cell. JFor
each cell x;, write an equation describing it: X; = Cons<y,z>
where y and z may be atoms or the names of some of the n cells,
This fives us a system of n equations in n variables. This
represents a function fron (S.)n into (S,)". It can be easily
shown that (S.)" is a complete lattice and that tne function is
continucus on this lattice. Thus there is g least fixed point
(80581 50aaym,,,) satisfying all of the equations. The element o
is a member of £, and exhibits the desired behavior.

To formalize this we define a new correspondence function

% :circular LISP structures -> S as,

@ “<x> = if x contains n Cells (Xg49uea,Xq.,) then a,
wkere (8py...,a,.) is the least fixed
point of the mapping (S.)% —> (S.)" defined
by the n equations X; = Cons<y,z>.

An example of tris correspondence is given in figure &,

We define the set AP to be the range of this correspondence

mapping wher the domain is considered to be all finite LISP

structures with at least sope circularity. Note thot

PR e
[T PRI

Figure 7. A circular list and its corresvonding irse

g

O
r.
m

)
rigure &. [he correspondence ¢ “:circular 1I3P structures —> AP

PIGE 21

tiis mapping would work for PURF LIEF ~> FP (i.e. or ncr—cireculer
elements) by the sape definition, but we restrict it to keer Fp
and AP from ceverlapping.

Is it really true that the value of this neppirys is
sometining which acts like its corresponding LISF structure? Err
"act like" we mean exhibit identical behavicr when tracing rround
the structure with CAR and CDR (or Car znd Cdr in Seo
respectively). The answer is y€s, since the mapping @’ car be
shown tc map atoms to corresponding ators, znd iz = homonorrhisn
under the operations CAR {Czr) and CDR {Car).

Our final question about AP is whether #° is cne—cne. The
answer is immediately no, since there are mezny LISP structures
which have identical imeges in So- Figure S indicates that there
are infinitely rany LISP structures which correspond to the tree
showvn in figure 7. This is not really so terrilble, though,
beceuse we cnly want our elements in S, to act like their
counterparts from ILISP. It Just so happens that nany ILISP
structures act zlike under CAR and CDR. Note that wve can’t
extend ocur defirition of "act alike" to include the operaticns
HEPLACA and REPLACD. Ve can only model the structures they
build.

ik [feld—e

Tigure 9. Similar LISP structures

PEGT. 20

7.6. TEL AIGEBRAIC ELEMENTS - A

Tne cless A in Suy is defined tc be the range of tue nev
correspondence rapping @7 wvhen 2" is elloved in cells. fr witn
the set F, the symbol "?" means that we don”t know vhat roer
therc srd ccts mapped onto L. The formal extensior of @7 is
easy ard is not given. Thus A contains infinite elerentc wildch
correspend to finite circuler LISP ctructures with ivnsnecified
cellis. Again, the elements with T are not menticned.
7.7« THk TRANSCENDENTAT ELEMENTS - 7P end ¥

The set TP corresponds to the rest of the perfect elements
in &g when IF and AP are removed. These are infinite
unrepetitive trees, and they model those LISP structures which
require infinite storage. Again, tﬁe more general class T sllows

imperfect elements which have this same property.

8. COMMENTS QU S

We have seen the wide variety of elements S, contains. It
could be argued that this lattice really isn”t so remarkable. If
we consider Just the rezl elements, i.e. the perfect ones, ve see
that they form a trivizl sublattice which lcoks like the lattice
cf etons (although uncountatly infinite}. That is, no perfect
€lerent approxirates ancther. The advantages of this
constructicr seen tc be twefold. First, we are allcwed elerents
vhich represent partially svecified structures. Second,

interesting functicns are continuous on this lattice {note hrere

that wve couls uge cenditional expressions and otacr TI.H
rrivitives zrnd raintain this coentinud tv). Thus, we enn ur- Shn
fixed neint theorenm to essert the existence or ALY Intorociipn
clererts. This may seem of only moderate interest IBre, wutl thon
bnls anrlicatior of Seott’s method nas been of 2 nurely svrloct:o
nature. Otrer crovlications will be mentioned in sectior T
O-1. LOOSZ FXDE ~ THE EIEMRNT (L. 1)

Cne vagsuelvy unsettling problem with thig construection on
LISE structures is that all trees with only L on treir lerves
are identified with 1. Recnll fror the constructicn of I, trnt
lattice product yields (L.L1) as the new bottor element, ard
that lattice zunm identifies the two botitons as cne rew clement,
laus Cons< L, 4> = (L.L1) = L, Tﬂe problem is thet tke meppin-
@ would take tre cell with both sides containing "%" and mep it
inte L. This isn’t quite accurate, because this cell coulc tken
Le called an avrroximation of an atom: (L.4d) = LEA, But the
one thing we know about this element is that it isn®t ar satem,
We don”t know wiat its Car andg Cdr are, but we know it has then,

There is teantetion to leave the elements formed in titis wnw
during the construction of the lattices 5, and say taat
J E(L.1)e (1. 1.1)) ete. It is not clear whether this
couid e dore while naintairing the consistency of the resulis.
Cede LCOSE TIDS - COHSTRUCTING FLENENTS OF A

Ue delinec the class A as the range of the maprine ¢ *, but

Liere wvosn’t an effective method given for constructin- the

PLCGEF 22

results of the map. A reasonable way to do this would te to use
recursion on the depth of the tree. This is sed on the fret
that for a continuous mapping I on a complete lattice:

least fixed point <F> = E_lo F (1)

Qur system cf n equations defined in sect 7.5. is suveh ¢ nos ang

can be s0 exanined to ary desired depth,

2« UHE JUSTIFICATION FCR LATTICES

It was mentioned in section 8. that this entire constriction
has been a purely syntactic exercise. Ye ﬁave cescribed o set,
expanded it, and cone up with sore interesting elements anc
categories. The method yields wore than that, however. Scctt
points cut in [5] that the result is a "space" in a well defined
topological sense. Open sets and topologically continucus
functions are well defired on it. It is this fzct which males
this approach to the description of "data types™ a powerful ides.
Not only do we have a very general structure, i.e. = data srace,
10 talk about, but there is a very large class of functions which
are continucus on it (in the special and useful sense £),

Scott describes this type of lattice as a "continuous
lattice" and goces deeply into their topological properties. His
mair theoretical result is that every topologicel space can be
embedded in 2 continuous lattice which is isomorphic to its own
furcticr spece [6]. It seems counter-intuitive since the set of

functions on a set is generzlly quite a bit larger than the set

PAGE 25

l1tself,

The trick seems to be that he restricts his cless of
functions. 7To see how th%s works, we look at the his cenersl
method. [e begins with a besic domain B, (a continvous latiice,
of course). He then considers the set of functions [Deg => 1,7
which are continuous on Dy. This definition of continuity is ir
the £ sense we have been using. He imposes an ordering € on
[Dy => Dy] which agrees well with the nction of approxiraticn on
a deta type; he says f © g in [De=> D) if and cnly if
i<x> E g<x> for all x in D,. What f E g means is that
aprroximates g everywhere. For every element x, g gives a value
consistent with that of f, but possibly more specified. Partial
functions are included, just like partially specified
S-expressions, because | is now a meaningful value for a
function to have. Under this ordering, [D, -=> D,] turns out to
be another continuous lattice!

1f we let D, = [D,—>D,] and Day = [Dy=>D,] we can construct
a sequence of continuous lattices composed of higher and higher
"function types". Is there a limit lattice which includes then
all? GScott says yes, with eppropriate isomorphic enbeddings fron
each Dy into Dpyy - In fact, the result is Dy where the
interesting equation holds:

Dw = [Dg=>Dy] (up to isomorphism)
Dy is a space of functions of o general type; each function on D,

(as long as it is continuous) can be represented by an element in

PLGE 26

Do itself, and each element in Dy is itself a contiruous furction
on L.

This could be a very powerful mathematical-sementic device
for modelling computation, since the problem of function tyme and
self-application is very present in practical computaticn. Scotd
mentions that this could develop into the first sound
mathematical model for the lambda—-calculus (which is type free,
but lacks in mathematical foundation).

One guestion remaining is Just what have we lost by
restricting ocurselves tc the functions which are continuous in
the sense & (or for that matter to data types which can be
expanded into continuous lattices)? Scott gives good intuitive
arguments that 211 reasonable data types are covered by this
theory znd that all practical and computable functions ere
continuous, but it doesn’t seem entirely clear yet.

In any case the generality and mathematical soundness of
this approach give it great appeal as a method toward developing

an effective way to mathematically define computation.

ZIBLIOGRAPHY

[1] bertouzos, . T. "Structure and Interpretation cr

Computer Languages", HaIoTa, 1972

[<] taclane ang Eirkhoff "Algebrat, Mackillan, I'.v,, 1907

(3] Secott, D.

(41

oy

[7] Weissman,

"Qutline of a Hathematical Theory cf
Computaticn®, Proceedings of the tourth
Princeton Conference c¢n Inforraticn Science

and Systems, 1970

"The Lettice of Flow Diagrzms", Lecture Jotes

in Mathematies 188, Seringer-Verleg, 1971

"Iattice Theory, Data Types and Semantics®,

Courant Computer Science Symposium 2, 1970

"Continuous Lattices", Lecture lotes in

Hethematics 274, Springer-Verlag, 1972

L. "LISP 1.5 PRIMER", Dickenson Publ.,
Belmont Calif., 1967

