MASSACHUSETTS INSTITUTE OF TECHNOLOGY

FROJECT MAC

Computation Structures Croup Memo B4

Translation of a Block Structured Language With Non-Local Go To

Statements and Label Variables to the Base Language

by

Nimal Amerasinghe

This work was submitted for credit in Subject 6.534,
"Semantic Theory for Computer Systems,” Spring 1973,

June 1973

TRANSLATION OF A BLOCK STRUCTURED TANGUAGE WiTH
YON-LOCAYL, GO PO STATEMFNTS AND
TABEYL, VARTABLES TC UFE BASE LANGUAQGE

by Fimel Amerasinghe

1. 1Introduction

Dennis {2) tfirat put torward a scheme of iransiation of
block strugtured languages to the common Base Language, Amerasinghe
{1) defined a dlock structured language c¢slled ELKSTRUC which hagd
extensive facilities for handling precedure varizbles sna deteiled
a scheme of translation to a base language defined in terme of &
| ohosgn set of interpreter primitives. 'rhe bleck struetured languages
used by Dennis (2} and dmerasinghe (1) did not permit label voriables
and non-locel go %o statements. In the present paper a2 bBlock
gtructured tengusge BLKSTHUC Il is defined which incorporstes label
variables, non-locel go te stotements and begin--end blocke distinct
from procedure blocks,

An interpreter is defined which enables correct execution
of trenslated BLKSTRUC IY progrems. Qerbage collection ic done by
sooperztion between code introduced by the tranelster =znd the
interpreter. The gerbage collection gcheme attempts to implement
retention as defined by the contour model. A trenslation scheme is
introduced frow BLKSTRUC II pﬁograms to the bese language defined.

2« A Base Language Interpreter

The interproter defined in this Section dii'fers from that
infroduced by Amerasinghe (1) in that the control structure of the
interpreter state i=z modified, some interpreter primitives are
redefined, and same new interpreter primitives zre introduced,

The primitives add, mult, subtr, div, exp, feklt, link,

congt, delete, move, oreate, if - then zo to, aSSiEE, are defined

in the same mammer as in (1)s The primitives go te, apply cnd
return are redefined. 1In addition new primitives, cmove, collect
test and sitene, are introduced.

The control structure consists of a series of 'sitee of
ectivity' selected by integer selsctors. A typical site of rotivity

ie of the form.
T]
. i - S$EET

= —

The @ component is linked %o the corresponding component
loval efructure, the i component is linked to the next instruction
te be executed, the s componerit contring 1 if the site of activity
is pctive and O if the site of sotivity 1s dormant and the $RET
component is linked to the site of mctivity of the c2lling procedure
activation. .The 1 component plays = key part in the implementation
ef label vorisbles and the implementation of the gerbage collection
scheme. The L.i component containe the number of the aite of
activity and 1.2 component containe a reference count for gerbege
collection. The referenée count may be updated either by the
interpreter or the executable code of & procedure siructure.
Whenever & site of 2etivity is dormant anﬂ i%s refsrence count

(1.2 component) becomes zero the site of Botivity 1s made active.

The following primitives are redefined:
apply primitive:

The apply instruction takes the form_gnnlx £, 3:ri.
When the spply primitive is executed a new site of zctivity sng
& new component local siructure are created. The new component
loocal struciure is linked by 2 $PAR link te the ergument structure
selected by $ARG in the calling proc:dure activation. The new cite
of aotivity ie linked to the calling site of activity by a gnmp

‘link, ond the reference count in the L.2 component of the calling
site of activity ie incrementecd by one. The i cotmonent of the
calling site of 2etivity is linked to the next inetructiion in the
calling procedure and the calling site of aetivity is made dorment
(= component to 0). The new 8ite of activity ie mede active
(® component to 1),
reiurn primitivae:

The i component of the ourrant eite of activity ie linked
to the next instruction in the rrocedure structure. The current
site of motivity is meds dormant (5 component te 0) and the sl te
of aotivity melected by the 3IRET component is made aetive, Yote
that the grrbage collectlon function which was combined with the
retura primitive in (1) im separated from the present return
primitive., This 4ig because in the pres<nce of label variables
comonent Joczl structures could no longer be deleted on the
exscution of the return primitive,

Zo te primitive:

Wnerever the form of the instruction istgo te n' where

N

where n is & number the primitive is assumed to be 2 loerl g e
end is defined me in {1). If the instruction is of the form 'go
4o 1! where 1 is & label variable a different mechsnicm comes inte play.

At the time a non-local go tc is executed in procedure p the interpreter

L(p) Site of activity n

gtote would contrin: —
| L{a} 1
) - o

.]
rtgge(%gg i ﬂ__—ﬂ_l_r i &. 2 #RET 1
P I J P
[||l|||£ I_l_sls A_J'I—ILL—’D.___J
L L

The interpreter links the i component of the current i te
of zctivity to the next instruciion and mekes the current site of
activity dorment. Then it selecis the site of sotivity 'm!' linked
to by the nscamponent of 1 and links its i component to instruction
'm' where m if contsined ty the I component of 1. Finally the eite
of activity n ie made mctive.

ara
The new primitiva‘ cmove, test, collect and site no/defined

below.
emove primitives

The instruction tekes the form gmove L, 1. Hiiecution of
the primitive makes the L component of the current site of activity
the 1 component of the corresponding amponent locel structute,
test primitive:

The instruction tokes the form test py q» te If a selecter

nemed q emanatss from the node selected by p in the current component

Jjoonl structure t is set to 'true'j otherwise t io gat to falice.

collect primitives

The 'collect' primitive causes the current comrorcnt
loeal structure to be deletad. The 1.2 compeonent of the ujite of
activity selected by the $RET component ef the current ciie of
activity is decremented by otiey rnd the current qte of ectivity ise
deleted. The collect primitive rerforme the grrbage collection
function which was usurped from the return primitive in (1).
Bite no primitive:

When an instruction of the form 'si e ne ' is exccuted
the number of the current si te of activity rumber is stored in i,

The philosophy behind the gaTbege collection scheme
supported by the translator ie to merk each procedure veriable =nd
label veriable &t the time of ite declaration by ite own site of
activity rumber. Whenever a procedure meseignmert or a lrbel assipn-
ment is made & check is made whether the environment of deelaration
of the € etructure or the L siructure which is being agsigned is
the same as the envivomment of declaration of the verizable te which
assignment is being made. IF the environmenta are d&iff rent the
reference count in the site of activity corresnonding to the
declaration enviromment of the structure or L structure is incre-
mentedi by one. At the same time any € setructures or I structures
which were previcusly linked 4o the variazble being apsigned to,

environments are

have their 'reference countst decremented by cne iffdifferent from
that of the varisble. Whenever & label variable or a procedure
verigble ie prosed am an argument in a procedure aciivation the

refererce count linked to by tke corresponding ¢ structure or

L structure is incremented by one. ¥When the sbove contrel of
raference counte is oorbined with interpreter coentrol of the
reference counte, the scheme eimulstes a scheme where in terms of
the contour model a count ik being kept of all the exiternal references
te each conteur. Delestion of e 'contour' occurs whenever this
reference count %o a given 'contour' is zeros.

¥very procedure variable p hae a ¥ component which
containg the site of ectivity number of the environment of decle-—
ration. A procedure value ie a ¢ structure cortsining e T comronent
linked te tke procedure structure, E cormonent lirnked to the externale
and an 3 component livked to the L component of the site of retlivity
corresponding to the decleration environment. A iypical procedure
veriable which i8 assigned to a C etructure ie repressnted in the

interpreter state ae,

L(f)

Yinilarly a label variebal 1 #s3igned to A T structire is renresentcd

s, L(£)

)
]I—'_[SI

3¢ An Intormal Introduction to RLESTRUC IT

A BLKSTRUC II progrsm is & set of nested rrocedure bLlocks
and begin-end blocke nested within ane anoiher in tree siructured

fashion, A typical procedure bleck is of the form,

P = procedure (xl, Xy -____—._;xn)
integer —w————— “Proced ———w—mnlabel mee declaration strtements

begin ' N\

executable BLKSTRIC 11 stetements

Im
o rrsasnae
o

A tyoicel begineend Block is of the form

beain
integer-————- ————— proced ——— e labtel mam——

In the proocedurs declaration- shown p is a procedure variatle,

xi, xz———————xn are formal parameters of the type integer or preced
(procedure) or lebel. All locs) varisbles and arguments in a
rrocedure bleck and local variablee in e begir-end block are defincd

a8 type integer, proced, or label. Declaration statements ere only

permitted in procedure blocks in the linee following the procedurs
decla®ation but before the line contairing the begir statement for
the block. The begin and end stetenments in & procedure bleck nve
delimiters enolosing a seguence of executeble BIKSTRUC II st=temenis.
Declaration siatements in begin-end blocks follew immedistely after
the begin statement of the block before the first executstle sizterent
of the block.
Exscuteble statomonis in & BLESTRUC IIprogram.are one of

the following typess

{(a) An arithmetic assignment strtement

{b) A procedure assignmernt stsztement

(o} A label assignment sintement

(d) An application stztement of a non value returning procedurea,

(e} An applicstion stistement of a value returning procedure.

(£} A local go to statement

(g) A non-looal go to statement

(h) A& conditional st tement

(i) An iteration st-iement

(j) A return etstement for a ron-value returning procedure

{k) A return stvtement for a value returring procedure

(1) A stop ststement

Any executsble stuptement may be labelled by en identifirr §
Ba T l: Sl
An ideniificr labelling g stetement ie noi explicitly declered at
the hesd of the procedure block or begin-end block. Sweh sn identitier
ig called z2n implicitly deelered kbel varieble.
The different types of exccutable stztemsnts sre doporibed
in detail below:

(a) Arithmetic assignment stotement

An arithmetic assignment statement trkes the forn,
X = Lexpresaion »

A typical example ia

x-a+(h*c)/a+cfd—‘n

gy by 0y 4, x are integer type veriables

The rermiesible operators sre +y —y *, /, f .
Nested parentiheses impose a precedencereletionship for expreseion
evaluation. In the zbsence of parentheses the precedence ordering
of operaters for evelustion is, f y ¥0T /y + OT =,
(b) Procedure assignment: |

A proccdure assignment takes the tormp = Q where pend g
are¢ proccdure vrriables. For the strtement to be merningtul g
must de assigned to & closure before the stetement is executed.

(e) A label assignment takes the form 11 - 12 ¥here l1 is an

explicitly deckred label variable and 1, is either an implicits
dcelred kbel verieble or an explicitly declared lpbel variasble

which has been previously assigned to a label value.

10

(d) An application stztement of a non value returring procedure:

A stztement tnkes the form,

&Ppl}' 19 (xl’ Ip‘l ———=f In)

where f 1z the procedure veriable beirng spplied z2nd ¥y oy =X,

are argunents of the type integer or proced or lzkel,.

{e) An applicstion eiztement of = value returning nrocedure:

A statement takes the form,

5 = apply £ (xg) X,p —mm)

where f is the procedure varizble being applied snd Xys Xpy wmmy

are arguments of the type inteferl proced or label. If f returns

an integer value z is of the type integer; if f returne a procedura
velue B ig of the type proced.

{f) A Local go te stetement:

1

A laesl go to stztement tzkes the form‘go te 1 where 1 im
ar implieitly declared label wvwarisble deelared within the same procedure
block or begir-—ernd block.

(g} A non-local go to statement

A non-locel go to stotement takes the form go ie 1 where
either 1 is an implicitly declared labtel variable in znother bleck or

proccdure bleck or 18 an sxplicifly declared lobel wariable,

(h) A conditioral statenent

A conditional stotement tekes the forme,

if p(x) then g

if p(x) then 5 glae S,

v denotes an uncpecified predic:te and Sl and 82 fre elther

11

8insle executeble ptetements or R’ secuence of execvtihie ntoterent-
delimited by begin =nd end ctotements,

(i) An iterntion steterant

An iterstion stetement tekers the forn
while p(x) do 5
where p is gn unspecifiad predicrte and Sl ie either » sing.le

executoble stotement or s sequence of ezecutable stzterents delimited

by begin and end statements,

(3) Return Btatement for a non-value returning procedure

A stotoment tekes the form, 'returr', T+4s effcct is to
transfer control to the next staterent in the o21lling nrocedure
following the «rply statement.

(F) Return Strtement for a value returning prosedure

A stetement tukes the form,'return z! z mey be of the type

integer, proced or label,

(1) BStop etatement

A statement iakes the form, 'stop' and terminates
cXxecution of the PrOogram.

Transformation of Program containing procedure blocks and begin—end
blocks to program gcontsining orly procsdure blécks

Following Amerasinghs {1) the translation scheme to be
specified is for BLKSTRUC II programs containing no begineend blocks,
Accordingly BLRSTHUC_II pPrograma containing_hggigfggg blocks have to
be ir:nsformed inte equivalent BLEKSTRUC II Programs not contrining
begin-end bloeks before traneslation to the bese languesge by the

procedure to be outlined, The transformation c-noists of convertirg

12

sach begin—end bleck to a parameterless procedure and assigning the
text of tha parzmeter less precedure to a new procedure verible
declared in the block containing the begin-end block being traneformed.
The +raneformation is completed by introducing a non-v:lue returning
apply siatement 'apply p()' where p is the proocedure variable to
which the parameterlese procedure text is assigned, immedi~tely after
the text of the parameterless procedure.
.2 consider the BLKSTRUC II program,

P = procedure ()

integer x, ¥,

begin
x=1
T=2
& =X+ y
begin
integer &
a= %+ ¥
I= 3+ X
ond
Z=X+ ¥
Etop
snd

Fliminating the begin-end block by the transformation we have,
p = procedure ()

integer x, ¥y % proced g

13

Legin

y=2

Z =X+ y

9 = procedurs ()

integer =
begin
a = z + ¥
x 2+ x
return
end
apply q ()
Z=x+y
stop
end

The new procedure viriable q is declmred within the
procedure block p containirg the begin-end block being transformed.
Conversion to a parameterless procgdure invelvers the introduction
of a procedure declaration statement and a return statement,

‘arply q()' is introduced immediately after the text of q to ensure
proper activation of the trrnsffrmed begin-end block.

la the translation procedure to¢ be described in +the next
eection all refeferences to BLKSTRUC II progrems would refer to
programs in which begin-end blocks have beer elimineted by the

trengform» tion.

14

4e Translation of BIKSTRUC IT programs %o the brse lansunge

Amercsinghe (1) showed how 'housekeeping instructions?
have to be introduced to the translated BILKSTRUC progrrms to simlate
the non-locrl environmente associated with procedure verisbles. In
the procedure described in this section additional housekeening
instructions are intreduced w ich enacbtle environmente asscceiated with
label variables to bhe correctly sirulated and gerbrige collection to
be perforned.

Bach procedure block in the BLKSTHUC II progrem is translated

into a procedure structure of the form
I i l I A T

T © (13

The eelectors O through n select the 1natruct10ns comprising the

procedurs structure. 11, 12, 13 ere implicit label vorisbles whieh

arge declared within the corresponding procedure block. The leaf

node se ected by 11 conteins the selscter correspcnding te the

base language instruction which is effectively labelled by 11.

The complete procedure structure ig a tree structured nesting of

preocedura structures of the type shown in the figure; the nesting of

gomponrent procedure structures within one another is the same as

the nesting 6f the corresponding procedure blocks within one another.
Te specify the translation precedure pome notrtion is

necescary. Suppose T is the text of a procedure declaration. B(T)

15

denotes the set of identifiers declared within T (loc=1 to T), The
set X(%) of external identifiers assoointed with text T iz derined
as follows: T'&T denctes that tcxt T' is ne=zted within text T

1? Ti’ —Tk such that

b L L a1 i =0y 1, ——= el
T To’ T Tk and Ti encloses ‘I'i +1 for i = Q, 1, 2 k-1

Then X('7T} contains each identifier x thet has a non—loanl appesrance

i.es there is m Bequence of texte ‘I'o, T

in some text T'y, T'< T and is not leceal to any text ™™ <™ e,
Using the sbove procedure it ig possible to determine iwe
‘gets B(T) and X{T) corresponding to each procedure decleraton,

la} Arithmetic assignment stetement

Coneider the arithmetic assignment statement,
x={a+b)*c+dfe-1¢
when tranelated to the base language wa get,
add a4 by temp 1
mlt templ, ¢, temp 1
4div 4, e, temp 2
844 templ, temp2, templ .
Bubtr templ, £, x
templ cocnd tempZ are temporsry veariedles introduced bﬁ'
the translation. In = simila.r.way assignment to any arithmetic
expression may be translated.
Aseignment to a constent viz x = §
may be translated as, const 5, x
Assignment to 2 sbngle varicble viz x = ¥y

may be iranslatced as, assign y, x

16

{b) A Procedure declaration Stetement:
b statement tckes the form p = procedure (Je
Xp) = Fis Yo evevecsaY, o
The bzse language code im as follows:
test py Cy ftempl
if (templ) then go to m
goten
mt if (ps N = pe Ce 5. 1) then go o =
subtr p. Co 5. 2, 1, p. C. 8. 2
ni delete py C
move Py pe Co Te
coove Ly p. €. 8

link p. C. E, Y10 ¥

link p« C« Ey Tor Jo

link p. C. E, Yor T

E (p- Co Sa 1 = Do NJ then EE to 1
ad-d- p. C. B‘ 2’ 1’ p‘ C. S- 2

it

The ¢coda checks whether p is already assigned 4o a
¢ structure and if so the corresponding reference count i decre-—
mented. ‘hen it sets up a C struclure corresponding to the procedure
deoclaration linking the T comronent to the text, the S component fto
the L component ot the site of metivity and the s compon nt to the

extcrnals. 1t necessary the reference count of tie ¢ structure

17

being asuslgned 18 neramented.
{(c) 4 Label declaration ststements
A label is assumed to be declered in the innermoet procedure
block in which it eppears. If a label 1 is implicitly decirred in
a BLKSTRUC II procedure, a L siructure is zet wp in the locol
gtructure. The I component of the L sitructure is linked to the)
component of the procedure siructure snd the 5 component is lirnked
to the L componcnt of the corresponding site of sctivity. The boee
'language code is as follows:
move 1, 1. L. I
cmove L, 1. L. S.
{d) A procedure assignment statement:
A ptatement takes the form p = q. The code checks whether
p is already attached to a2 C siructure and if so decrements the
correspending reference count. Then 1t deletes the © structure and
links to the siructure eelected by the q. C component. The p. ¢. S, 1
component is comprred with the p. Y. component and if differcnt the
reference count of the C structure is incremented by one. The bese
language code ie ag follaows:
dest p,C,fm@l
if (temp 1) go to m
go to n
m: if (p» N=p. €. 8. 1) then go to n
Bubtr p. Ca 5. 2, 1, ps Cs 5. 2

n: delete p,y C

18

link py 0y 0. C
_j.i (Pl Ce Se 1"']3- IJ)M_EEE]“

ad.d. P Ce S 2’ 1’ P Ce S- 2

1:
(e) DLabel Assignuent Stetement:

The stsiement tsakes the form 11 - 12. Iy 11 ig already

allocated to & label structure the code checks whether ll. ¥ component
is the same a8 the lla Le 8+ 1 component and if different decrements

the reference count by one. The old iabel structurs attached to 11

is deleted and the 1.. L component is linked to 1 A check iz mrde

2 1°
whether the 11. ¥ component is the same ae the 11. L. 8. 1 component
and if not the same increments the reference count of the I structure
by one., The base language code ie ap followe:

Zoet 11, L, templ

Af {templ) then go to m

£o %o n
my if (11. N = 11. L. 8. 1) then go to n
Bubh‘ lld Lo S- 2’ 1’ 110 LQ St 2

nt delets 11, L
link 1., L, 12. L

H (110 N = 11. L- S- 1) thenﬁﬂ 1

add 1,. L. S. 2, 1, 11. L. 8. 2

1
1:

(£) An spplication stetement of a non~value returning precedure:

A typiwsl stztement tokes the form

apply f (Xlg X59 Py Py 11, 12) where X,y X, are integer

19

arguments, Py and b, are procedure arguments and 11 nnd 12 are

label arguments. The reference counts of the C structures atirched

1o Py and P, have to be incremenied by ore and the referaence courts

of the L structures attachcd to 11 and 1_ have to be increwertec by

2

one. The base languege code is as follows:

2dd p.
edd Py
add 1
add 1
delete
create

1ink

|

link

1ink

link

link

3

|

3

£
[
-
® | 2
o
o

C. 8. 2, 1, Pqe Ce Sy 2
Ce 8.2, 1, P, C. 5. 2
Lo 8. 2y 1, 1. Lo 5. 2
L. 8 2,1, 1,. L. 5, 2
$ARG

$ARG

$4Rq, 1, -

$ARG, 2, T,

$.ARG, 3y Pl
tARG’ 4’ pz
$4RG, 5, 11

$ARG, 6, 1,

$ARG, E, £.C.E

f. T, $ARQ

$ARG

(&) Application of a velue-returning procedurs:

Iy tynical statement takes the form

Z = apply £ (x., x 1 Py Py 1oy 1)
2" 71 2 1 2

where I I, are injeger tyre arguments , Dy end p, are procedure

type arguments and 11,

12 are label tyre arguments, If z im en

20

integer type variable an arithmetic assignoent 1s made o 2 in t-e
statenent and the bape lenguage code is as follows:
add Py . 5. 2, 1, Pqe C. S. 2

add]32- Ca Sl 2' 1, p2' Cs s- 2

24d 1,e Lo S 2y 1; 1,0 Lo S 2
248 1,e L. 5. 2, 1, 1,0 Lo S, 2
deleta $ARG

oreate ARG

link $ARG, 2, x,

link $ARG, 3, 2

link $ARG, 4, Po

link 3mm,5,11

dink $ARG, 6, 1,

link $ARG, By f. C. E

gelect $ARG, $RET, =

delecte SARG

If z is a proced type variable then f returns a procedure
value. On encountering the return rtatement in f the reference count
oI the C structure being returned is incremenisd by one in antiei-
pation of the assignment 4o z. After linking the returned C structure
to the code has te check whether the z. ¥ component is the same asn
the 2, C. S, 1 component. If the same the ircorement of the reference
gount in enticipation, in the text of f, hae been made in error and
ie compensated for Ty decrementing the reference count by one. The

codea is as followe:s

2]

add Py C. 3a 24 1, Py Cs 8. 2

add pzo C. S 2' 1, on Ce 5. 2

244 1. T. S0 25 1, 1,4 L. S, 2
2dd 1, L. S. 2, 1, 1. L. S, 2
delete $4R0

create $ARG

link $ARG, 1, x

link $AHG, 2, X,

link $ARG, 3, Py

link $ARG, 4, Py

link $4RG, 5, 1,

link $ARG, 6, 12

link $\RG, E, f. C. E.

2pply f. Ty BARG

test 2, 0y templ

if (terpl) then o te m

g2 te n
if (z. ¥ = 2. C, 5. 1) then go to n

Bubtr . C. Se 2, 1, 2. Co 8. 2

delete z, C

select $ARC, $RET, =z

delete $ARG

if (z. W= z. C. S. 1) then go to Xk
g0 %01

k: subtr =. C. S. 2’ 1’ Zs Co Bs 2

1:

22

If 2 is a lsbel type variable then f returne a labael
valua. On encountering the return stetement in £ the reference
aount of the L miructure being réturned is inoremented by ens in
anticipation of the assignment to 2. After linking the returned
structure to z the code has to check whether the z. N wmonent is
the game as the Z. L. S, 1 components If the same the increment of
the reference count in anticipetion in the text of £ has been made
in error and is compensated for by decrementing the reference count
“by one.

"he code mey be obisined in a manner exactly analogous to
the csase where £ 1 8 proocedure wvariable,

{(h) 4 looal go to stmtement:

A statement of the form 'go te 1' is translated to 'go to
n' where n is the selector ef the first inetruction of the inetruciion
block cerresponding to labelled etatement 1.

(i) 4 non-lesal go to stetement:

A Biatement tekes tbe form 'go te 1'. The base language
sode containg go to 1 fellowed by ; block of housekeeping inetructions
vwhioh partioipate in gerbage collection. After the procedure
activation i8 exit on the execution of the non-loecal go to instruction,
the corresponding site of eetivity ies made dormant. Bovever, 2t any
time the reference count may reach zere and the dte of aotivity may
be made mctive agein. At thiz stage the dlock of garbage collkection
instructions added after the non-lecal go to is obeyed resulting in
the decrement of reference counts of I siructures end C struotvres

attcched to locslly deckred label and procedurs variables. This

23

decrementing operation is followed by the execution of the primitive

collect which resulte in garbsge collection of the component logal

structure and the site of sotivity.
Suppose the loecally declared procedure variables are

Pys Poy sesvePy and the lecally declared lebel veriables are 11,
12, seveve.l . The base language code is as follows:

go to 1

Pys €y temp

Af (temp) then go te m

£eo to rn
m,f Mpl. ¢. 8. 2, 1, Py» C. 8, 2
n,¢ test p,, C, temp

if (temp) then go to n,

go to

Bleck of 2

gerbege t Bubtr p.. O« 5. 2, 1 . C. S, 2
oellection fg! EURE Py » i1 P
instrue~- 1

tiona. 112

,j_EE_‘EPnr Cy temp

Af (temp) then go to m

£o ton
m 3 Mpn. ¢ 8. 2, 1, 0 C. 8. 2
nns Test 11, L, temp

if (temp) then go to k,

go to 11

k13 subtr 11. L. 8, 2, 1’ l.. L. 8. 2

1

1! test 1,, L, temp

24

if (temp) then go 0 k,
.E.?.‘.‘E’.lg .

kzisub‘l'.r 1. Lo S« 25y 1y 1, 1a B 2

2 2

12=

test ln’ L, temp
Af (temp) then go to k,

£ 3o 1
k.'ml subir lnl L. 3. ,-2,’ 1, 111. L. S. 2

lml collect

L1

(j) A oomditional etatement:

A conditionsl etetement is traneslated as in (1)
(k) An Iteration statenents

An iteration satstement is translated aa ir (1).
(1) A return stotement for non-value returning preceduret

The statement which tekes the form 'reaturn' is {ranslated
to the return primitive followed by 2 bleck of garboge eollection
inptructiora,

When the return prinﬂti\ra is executed the corresponding
site of activity is msde dormant snd control paseses tg the site of
activity attached to ihe SREP link, However, subseguently when the
reference count reaches zere the site of activity is again made
agtive and execuies the block of garbage collection instructions

following the return primitive.

25

If Pyr» Py » P, is the set of locally declared
procedure variables and 11, 12,1m is the set of locslly
declered label veriables the oorfisponding baese language code is:
roturn

~ Black of garbage collection
instructions identical to

< that for the non local go to

instruction

-

(m) Return state for a velue returning procedure:

The translation is dependent on whether tke velue being
returned is en integer value, procedure value or label value. The
garbage collection block of instructions is identieal to thet for
non~valus returning 'return! statement. |

Suppose the statement is of the form 'return z' where gz is
an integer variable., The base Mrguazge ocode ism,

link $PAR, $RET, =z
return

block of garbegt-collactien
instructions identical to
nen-value returning 'return'

Suppose the statement is of the form, 'return z' vhere z
is a proced type veriable. The reference count of the returred
C structure is incremented in anticipation of the procedure assipgne
ment in the celled procedure. The bese language code i=s,

edd =. C, 8. 2, 1, 5, C. 8, 2
link $PAR. $FET, C, 2. C

return

26

block of garbage collection instructions
identical as for non-value returning
refurn'
Suppose the etatement is of the form 'return z' where 2
is a label variable. The seference ocount of the returred I gtructure
is incremented by one in anticipation of the label assignment in
the oz1ling procedure. The base langusge inetructicns ere as follews:
8dd z. L. 5. 2, 1, 2« L, 8, 2
link §PAR. $RET, L, 2. L
Irefurn
¥lock of gerbage collection instructions
identiczl as for nonvelue returning
‘return'
(n) Initiation of Procedure atruciuvet
At the head of esoch procedure struciure housekeeping
ingtructions are introduced %o provide direct access teo arguments and
externalp aﬁd 4o merk the locally declared procedure variables and
label variables with the site of activiiy number.
Suppose the formal parameters are Xy 9 Tys P11 Poy 11, 12
where Xy X, are integer types pys Py BT proced type and 11, 1,
ere 1lmbel type. Let pl', pz' be the locally declared prooecdure
variables, 11', 12' the locally declared label variables and
11‘, 12‘ the locelly declared integer varisbles. Let Fir Yo
be the exiernzls., The base language code for initialization is am

followss

27

select $PAR, 1, Xy
selact $PAR, 2,y x,
Belect $PAR, 3, Py
Belect $FAR, 4, p
select $PAR, 5, 1

selaot ’PA.R, 6' 1

select $PAR. E, Y0 ¥y

#select $PAR, E, YQS 3’2

si teno texp

gasimn temp , Py ¥
assign temp, Do N
assim temp, 11. ¥
apeign temp, 12. ¥
assign toup , pf. N
assign temp, p2'.) if
apsign tamp, 11'. ¥
a8sign temp, 12', ¥
create. :1'

oreate 12'

5. Qonclusion

The scheme of translation presented incorporates & garbage
collection scheme which attempts to mimic 'retention! in tﬁe con tour
models Howover, the scheme being esscntially a reference cuunt
Beheme works only when the contours do not form isolated cycles

=Ich agt

28

In the caec shown above the enclosed contours could be
de-alleoated together asthey are inaccessible to the processor.
However, in our reference count scheme we would heve 2 reference count
of one for each contour and hence would ncot de-allocete the centours,
It is clear from a study of contour structure that such casee oxnly
arigee relatively infrequently in praotical progrems. As such we
stipulate that our garbrge collection scheme iz of some velue. I+
should be noted that cycles in the contours of the types stipulated
above do not correspond to oycles in the inicrpreter states,

I+t should be noted thet the reference count we kcep in the
gerbege callection scheme is effectively the total number of external
references to the 'equivalenrt' eontour. These references include

return polnters, environment pointers of procedure varisbleg and

enviranment pointers of label variables,

The scheme of implementing label variables doem not
introduce directed cycles to interpreter s8tctes.

Since ooncurrency hae not been handled in the interpreter
i1t is import=nt that only one site of activity actually executon
during a computation, Hence although several sites of 2etivity may
become active in the g2Tboge collection mode it ig important +that
they ere executed in ssquence to avoid indeterminacy arising from
.se7era1 sites of activity attempting to update the same reference count
simul taneously, The interpreter could adopt some simple stragety to
enture that the sites of 20tivity are executed in Seguence.

The scheme outlined involved repeating a block of garbrge
collection instructions immediately after each return and nen-loeal
go to sirtement, Thisg repetition could be mvoided if we have multiple
entry pointes to each procedure among which is & speoial garboge
collection entry point to be used by the interpreter when =a Bite of

aotivity beoomea spontanecusly activwe in the &arbage eollestion mode.

30

REFERENCES

{1) Amerasinghe, S. N. "The Handiing of Procedure Variables in a
Pase Language," S.M, Thesis, Dept. of Electrical Engineeriﬁg,
Sep tember 1972, MIT, Cambridge, Mess.

{2) Dennis, J. B. "On the Design and Specification of a Common
Base Language,"” Computation Btructures Group Memo 6U
PROJECT MAC, MIT, Cambridge.

(3) Johneton, J. Bs “The Condoux Model of Block Structured
Processss,” Proceedings of a'Symposium on Data Structures

and Programming Languages, SIOPLAN Fotices Vol. 6 Koo 2,

ACH February 19Tl.

