MASSACHUSETTS INSTITUTE OF TECHNOLOGY

FROJECT MAC

Computation Structures Group Memo 85

The Sementic Specification of SNOBOL
in the Common Base Language

by

Caleb Drake

This work was submitted for credit in Subject 6.534,
"Semantic Theory for Computer Systems," Spring 1973.

Juna 1973

1. Introduction

The question of what constitutes a good semantic definition of a Programming
language (or a semantic definition at all !) is one which T will avoid. I will be
using the common base lsnguage (CBL; see (D1)) vecause its goals seent to fit what I
will be doing (especially translating out language features to acheive a uniformity
across languages) and its formal object 1s quite suitable for the most important
data type in SNOBGL. Tw the extent that CBL is a model for some future generstion of
machine architecture, what J present here may be considered as useful information for
writing the code-generation portion of a SNQBOL translator; however, I have alvays
aimed for clarity and precision rather than presenting implementation aints.

2. A Basis for String Manipulation

We can look at strings and string manipulation in SNOBOL as a. set of structures
built up from = set of elementary objects. The set of elementary oblects is the set
of characters, tne objects "succeed” and "fail” and the nuil string,

We wil consider the following types { there are also labels, arrays, integers,
fixed point and floating point numbers apd programmer-defined data types):
1) Decisions: The elementary objects "succeed” and 'fail" &re decisions. The logical
truta values "true' and "false are included in their meanings For example ths predi-
cate "greater than" retwrns a decision as its value and that decision may be used to
direet contral flow in a program. They are alsc used to indicate whetoer a computation
can be perforumed (e. g. when a function ig not applicable to a list of arguments it
may return the value "'fail' or an arrey reference may fail if an index is out of
bounds).
2) Characters: This is the alphabet wnich belongs to a particular implementation.
Tne tnings that can be done to & canardacter are to read it, write it, ask whetner it
is equal to another ar compare it in lexlcograpain ordering,
3) Strings: A string is an ordereq list of characters. Basic functicns for composing
and oreaking up strings will ove discussed belaw. More complicated gperations on strings
(e.g. searcaing for substrings with certain prorerties) are performed using pattern
mstching. .
4) Pattera: A pattern is a structure that defines a set of strings accepted by that
pattern. A string when it is used as & pattern accepts only strings that are charac-
ter-for-cnaracter equal to itself; i.e. it specifies a set with one member.

We have selector and consiructor primitives far composing strings cut of characters
(analogous to “ear", "ecdr” and "coms" in LISP, of course):

first(string): the first character of the string. (i.e. the logical type of this
function is (strings —»characters).) It fails if the string is the null string.
rest(string): the atring vhich is "string" with its first character deleted.
(logical type: (strings ~»-8trings).) This function returns the null string as its
value if “string” has only one charscter and fails if "string" is the null string.
concat{ character,string): the string vhich 1s "string" with "character'€oncatenated
on its front end. (Logical type: (characters X strings > strings).)
The notion of the length of a string can be defined as the number of appliactions of
"eoncat” in its definition.

The following usual axioms hold:
i) first{concat(char,str)) = char
ii} rest{concat(char,str)) = str
iii) concat(first(str),rest{str)) = str (unless str is the null string}

The primitives that are necessary are:
eqch?(charl,char?): succeeds if charl and char? are the same character; fails
otharwise,
null?{str): succeeds if str is the null string.

We can define type conversion functions using the abave:
string(char) = concat(char,null)
char(str) = 1f aull?(rest(str}) then first(str) else rail

Here we note how concatenation and testing of equality of strings can be defined
in terms of the above:
concats(strl,str2) =

if null?(strl} then str2
else concat{first(strl),concats(rest{strl),str2)
eqst?({strl,str2) =
if null1?(strl) then 1f null?(str2) then succeed else fail
else eqch?(first(strl),first{str2)) and
eqst?(rest(strl); rest(ssr2))
where "and” in the above iz defined for decisions analogous to the way it is defined
for truth values.

A3 ve mentioned mhove the type string is in some sense a special case of the
type pattern. The function "concats” is of logical type (strings X strings —» strings).
The question 1s whether we want to define patterns as being composed of characters
80 that string concatenstion is a special case of pattern concatenation. The distinc-
tion is that there is & certaip amount of homogeneity that is present in concatenat ion
that is not pregeant for patterns. That is, when two strings are concatenated they
behave as one string; when two patterns are cowncatenated the polnt of comcatenaticn

has same independent importange in pattern-matching as aboint at which a decision
may have 1o be made or unmade (upon backtracking) or a side effect created.

3. SNGBOL
(ALl information obtained about SNOBOL and all references to the SNOROL manual can
be found in (GPP1).)

I have decided to work on the semantice of SNOBOL because work on semanticg of
computerfanguages has concentrated on numerical languages. I will not talk about
instruction Sequencing, definition mnd application of Procedures, arithmetic operations
recursion, etc. since these have been discussed in the literature. There are two
features in SNOBOL that are cansiderably different frem what we sec in algorithmic
languages. They are pattern metching and indirect reference through construction
of a name.

Although a pattern is ‘really” just a specification of a set of strings and
pattern matching is "really” Just an examipation of the subject string looking for

iovolved. Patterns are constructed from other patterns by "mlternation” (symtacti-
cally "|") and "concatenation" (syntactically Juxtaposition}. For example, in
Pl = 'aBC’ (the string: concat(a,concat(]s,concat(c,null))))
P2 = ,m" Cee
P - (Pl rpe} Pl
P will match "ABCABC' or 'DEABC' (the alternatives being tried in that order). If
the value of P2 changes at some time later, P will remain the sage. In addition
to strings there e set of system-defined functions available (e.g. LEN(N) which
matches any atring N characters long)} for use in pattern construction.

The irtuitive explanation of how pattern matching is done in the SNOBOL manual
is that aof a "needle" finding its way tarcugh a2 “gead diagram”. For example the

pattern:

(P L 'e) m) (s') v)y (o v)

which matcies tne strings 'PRU’, ‘QRU’, 'PRV, 'GRY ", 'SU’, 8V, 'TU’ and TV’

has the bead diagram in figure 1. ‘The vey pattern mateaing works is that the
"cursor” is pointing at the first letter of the subject suring; the needle attempts
to find & pata through the diagram such thet "if a bead matches the needle Pasges
torough and moves upvard as far as it can 80 witnout crossing a horizontal line. If
a bead does not match, the needle moves down to an alternate bead brovided cne exists.
Downward movement mBY not cross a horizontal line. If rno alternative exists, the
needle is pulled back through the last successfully matched bead and an alternative
is sought there.” It thie all fails the cursor is moved right one position and the

process stamts again. Pattern matching succeeds if the needle finds a path and
fails 1f the cursor runs out of characters. The reader no doubt understands ex-
actly vhat is happening here, but we would like to explain it to & computer (for
program verifiestion, for example) and relate it to other notions having to do with
computation.

The other feature of SNGBOL we will consider is ite indirect reference operator
(syntacticaly "$"). For example: |
S1 = 'Hor'
52 = 'DOGY
BOTDOG = 'NITRATE'
S3 = $(81 82)
assigns the string 'NITRATE' as the value of the variable S3 (string concatenation
1s also symbolized as juxtapositian). This operation is obvious enocugh as a mani -
pulation of the kind of information that a computer will have available in transg-
lating and executing a programming langusge, bi:t as a semantic notion it 1s aome-
vhat peculiar. When defining programming languages nemes are usually considered to
be atomic (2ike variable names in mathematics) or are not considered at all gince
the only mappings involving them are sgsignment and evaluation and these can be -
translated out using notions like "store' and "state-vector”. It is the fact that
names cen be constructed that makes this situation different from that of indirect
referencing involving pointers. It seems that the type "identifier” is not only a
part of the meta-language, but is a type for objects in the language in the sense
that "$" has as its range the set of valid identifiers. However, the endpoint of
evaluation 1s still an object in the langusge or a memory location or state (dapend-
ing on whether it occure in a context which requires mn L-value or an R-value) since
the identifier is evaluated as soon as it is determined.

4. In the Base Langumge

In d@raving up the translation fimctions I have found that it is easiest to write
them 83 recursive functions. This is not in the spirit of the base language; howevar,
cne could apply Amerasinghe's (Al) technigue for handling recursive procedures to
these definitions to obtemin texts in the base language which could then be executed
by the interpreter. We will sugnent the set of elementary objects with the objects
S8TR, CHAR.asnd PTRN which will be used to mark objects of types string, character
and pattern respectively.

We will use the following primitives (all paths must begin in the local struc-

g

ture corresponding to that Procedure activatian);

a) const elementary object, path

Wy usage of this is different Prom that of Dennis (D1) in that here if some portion
of the path does not exist, it is created.

b) share pathl, path?

Pathl iz assumed top exist. The object pointed to by the lmat selector of pathl is
now pointed to by the last selector of path?. 71f part of path? does not exiat,
appropriate selectors are created; if there are selectors below Path? already,

through either path. hotn paths will point to the new object {hence the name “share ";
seée figure 7 of (D1)). Two previous instructions are special cages of share:

select P,n,q = g_gha;re_; P.n,q

1ok p,n,q = share g,p.n
z) COpy bathl,patn?

may bave to be created.)

d) test path

This predicate Succeeds if the path exists, fails otherwise.

e) eg elementary-objectl, elementary-ob jectZ »-

This predicate succeeds if the two objects are the same .

£) AL predicate then operationsl else operations2

8) Teturn path

This indicates g constructed path returned by & function. Presumably, it will be

translat. o +q An argument being passed when these recursive procedures are trans-
)] Atotictandarg cpg, applications.

o Loxt, arg

Pl e tnese as my Primitive oeretions; it is likely tnat some of them
“'oed of more elementary operstions \€-&: an operation to create selectors
> Micsing in a path or for a copied object). We will have occasion to write
' “mposition whose value is a selector patn as an argumest to ome or tne
Bl an be eleminated by using scme conversion functions introduced later
iml.-..-aries in the local structure.

b i ARG will Tepresented as in figure 2. we have the following defini-
M nring operations:

concat(char,string) =
if eq.char.type, CHAR then
if eg string.type, STR then
COnut:H¥E, L.$temp.type
£opy char, L.$temp.value.first
copy string, L.$temp.value.rest
return L.§temp
else FAIL
else FATL
In the above, “L" prefers to the loeal structure within which this function is applied.
first(string) =
1f eq string.type, STR then string.value.first else FAIL

rest(atring) = .
if eq string.type, STR then string.value.rest else FAIL
concats(stringl,string&‘) =

if eq stringl.value, NULL then stringe
else concat{first(stringl), concats(rest(stringl) »5tring2))
Note that the predicatesg eqch? and null? as well as type checking are all translated
into uges of &g with the appropriate elementary object. Ppor the remainder of this
paper, strings wil be drawn in diagrams and written in functions in the same fashion
8s elementary objects . (to save space and effort).

A. Assignment and Indirection

As we saw in the last section we want to structure our environment in such s way
thet we can reference values by the character string for the associated identifier.
The object in figure 3 represents the environment after Preforming the following
assignments:
XL = 'AR' A= 'BK’ AHA = 'pP! BK = XL X =4 'R' AHA
That is, each time a variable is introduced the letters in its name are uged as
Selectors; finally, ths selector "1d" gives the type-yalye pair corresponding to
that variable. One may taink of this as the relevant portion of a tree that existg
In full (SNOBOL defaults all variables to the null string) or as that structure which
is built up s0 far. We will operate within the framework of the former. Now execution
of the statement:
$(xc) = $(a) $(xt 'a’)
will sprout a selector "r" on the path env.b.k, then a selector "p" on the result
and will assign 'AHP' as its value (with type stR).

2 oaners Misiona ;,
7 i A Tl v ..
B R "

L P g I'Ei_“;_:“”:‘ -
Clearly to be able to do this we must be able ta talk about pathe and in parti- "
cular t0 construct them. We will have the data type indicators SIC (for selector) ..
and PATH {for path) and the constructor function "concatp(path,.a-é:n:te-;)“. Toe defini-
tions of these are analogous to those of CHAR, STR and concat except that where strings
form a right- braaching structure, paths form a left-branching structure mnd
selector.value is g typr value pair for a string while first.value is 8 character
object. We will use the elementary object NULL to indicate the front end of a patnh.

strom
concatp(path, iohma)r) =

if eg path.type, PATH

then if eg selector.type, STR tnen
const PATH, L.§temp.type
Copy path, L.$temp.value.path
£onst SIC, L.$temp.value.selector.type
€Opy string, L.$temp.velue.selector.value
return L.3tamp
else FATL
else FATL
We must draw a distinction between the data-type PATH and a patn through an ob jeot
(with infix coneatenation operator “."} which points to a subob jeet or an elementary
Object. So we need g conversion function wnich takes an argument of type FATH ang
produces tne carresponding pointer {(a path from the loecal strueture] tc an ob ject.
To define sucn a function we need a primitive Lype conversion function wiilcn we will
cail "selector{string)” whoge value is the selector whicn is identified by tne
string.value.

evalpatn(patn)} =

il a- FRLL.vAaLde, NULL tnen NULL

29 =valvata| sbjess.zatn), NJLL SURL 32 27T9r pata.selescor

Esfi evairatz, soiecs -TRtg, ze_ seTo FAtl.zelszcior)
we will assume tiaat Syntactic routines zan he ATivien wniia Sranz’ata a SHOEOL
BESlsment statement into a composition of tae funations “azsim”, “name” angd
coucats . The first and third are ocvious. “3(AR iz translates to ‘name! 4B ; ,
as is AR . "a(AB}" is transiated to ‘name\name{ ‘AB j. Tae 3tatement at tie vottom
of page © is translated to:
assign(name(name('Xc'}),

coneats{name(name(‘A')),name(concats(na.me{ 'XL°},"A'))))

The texts to be interpreted for each function are:
concats(ob jl,obj2) =
if eg objl.type, PATH then concats(evalpath{objl),abj2)
else if eq obJ2.type, PATH then concats(objl,evalpath({cbjz2))
else if eq objl.value, NULL then obj2
else concat(first(objl),concats(rest{cbJl),cb)2))
name{cbj) =
if eq obj type, PATH then neme(evalpath{abj))
else if eq obj.type, STR
then const PATH, L.$temp.type
const NULL, L.$temp.value
concat;?‘(qonca:tp(concatp(L.&emp, 'L'), 'ENV'),nm{obj))
else output ERROR: ILLEGAL DATA TYPE
nm(string) =
if eq string.value, NULL
then const PATH, L.$temp .type
const NULL, L.$temp.value
concatp(L.§temp, 'ID')
else const STR, L.$temp.type
const NULL, L.$temp.value
concatp(om{ rest(string}),concat (first(string),L.$temp))
assign(path,oby) =
if eq cbj.type, PATH then assign(path,evalpath(cb}))
else copy object,evalpath{path)
"concats” has been modified so that either of its arguments may be & path. This is
to provide for concatensting id:entifier values and literal strings with the same
function. Similarly “neme” does this sc that we can use the same function for the
operator "$" and normal identifiers. "assign” does it so that the Tight-hand side
may be an identifier or & value. (The alternetive of haveing "name” do mn "evalpatnh'
before passing its value does not work because we need an identifier for the left-
hand side of "assign".} The seguence "const ... , const ... " in "name" and "nm"
forms a null path Or string to use as a starting point for the recursively constructed
object. “"mm{string)" constructs sn cbject of type PATH with selectors corresponding
to the letters of the string whose last selector iz "id" (for retreiving the identi-
fied cbject). “name{obj)"” takes this object and forms a PATH object corresponding
to an access path from the local structure fo the identified object. Note that all
created objects (in particular the one for the right-hand side of "assign'') go away

upon function exit (except if they occur in a return operation) since the loeal
structure for that function call will be deleted.

B. Patterns and Pattern Metening

We mipght look at an attempt to metch the pattern in figure 1 as an attempt to
Successfully find a path througn the graph of figure 4. The relevance or a CBL
object (as a tree with the Possibility of sharing subtrees) is immediately appar-
ent; alternation is represented by branching and alternation by sequenice. When an
a<ernation is concatenated with another pattern then the alternatives must share
the following structure.

We will not discuss the operation of the many system-provided pattern matching
functions; we will leave a Flace for them in the pattermn structure and assume that
each text 1s bound to the gppropriate path in the environment. Figure 5 illustrates
the object we will ke constructing for the example rattern:

(a"] 'c') LEN(4) :

The "next" selector is the "By we have of translating out concatenation of petterns .
Patterns which are alternations do not need tiis selector because it will be pPresent
in each of the alternatives. _

An important feature of SNOBOL we would like to include 15 the Possibility of
inducing side effects by & pattern matching operation, Syntactically this is’Fepre-

sented by the binery operators "." and “$" as in toe foilowing:

(Pl Q) .vi R)$ve (g i)

"." {conditional assignment) causes the Substring matched by the pattern on the left
to be assigned to the variable on the right if the entire battern meteh succeeds.
dere If the maton Succeeds, that portion which matened P or @ (whichever was metecned,)
15 assigned to V1. “$” (immediate assignment) causes tne substring matched by the
FEILSIN o taz left to be assiinen Lo tae variablie on SGe rignt sz soon as tais naton
SETars. in tze zbove if P 'R’ mavanes Ve will pa asz_zed & va_le: 1f at taiz
roint neitner ‘8§ ner ' matches. the alternative ¢ and then ‘R will te %ried.

il t2is maveaes, tne value of Ve will be urcazed acain.

A52in we will assime toe existence 37 syntactia routines wniza parse tae Fatsern
into & composition of semantic routings. Taey vill be ‘ait ' ‘eonc”, openc’ and
‘elosec {for tne beginning and end of 5 soenditional assignment; the first argument
iz tne pattern corresponding to the beginnizg or ocne after the ending of tne seguance
of DALLETNS te De associmted witn that variavle {the end of tae pattern implicitly
closes all variables that are to be assigred wp to the end), the second is the vari-
able), "openi” and "closei" (similarly for immediate assigument) and “func” (for
special functions; the first argment is the name of the function, the second: is

the argument or the name of the argument). For example, the above pattern translates

10

to:
conc(openi (conc(openc(alt(name(P’),name('q")),name('V1')),
closee('R',name('V1')),name('v2')},

closei(alt('S’ ,name("T'),name('v2')))

We will need a list of the alternatives constructed in the first argument of s
"eone” 80 that each "next' may be linked to the structure resulting from the second
argument . We will use a steck for this because we will need it for backtracking in
pattern matching and that way we don't have to introduce two new types. I won't go
into defining the stack (it is straightforvard enough as the CBL equivalent of a
linked list with an access pointer at one end) but will mssume that we have the
usual operations push stack, object, pop stack and top(stack)., We will use NULL
for the bottom element and write const NULL, stack to initialize the stack.

The definitions are (we will not write clauses to take care of improper argu-
ments):
pattern(string) = const PTRN, L.$temp.type

const EQST, L.$temp.value.func
copy string.value, L.$tewp.value.arg
return L.$temp
fune(path,arg) =
if eq arg.type, PATH then fune(path,evalp(arg))
else copy path, L.$temp.value.fune
; Sopy arg, L.$temp.value.arg
const NULL, L.$temp.value.next
const PTRN, L.$temp.type
return L.$temp
openc{pat,name) =
if eqg pat.type, PATH ‘tben openc(evalp(pat),name)
else 1if eq pet.type, STR then openc(pattern(pat},name)
else copy name, pat.openc
return pat
‘pattern(string)" converts a string to the corresponding pattern. This will happen
every time that a string is used in & context Which requires a pattern (that is,
whenever anything besides concatenstion with snother string bappens). We have uged
EQST as an elementary object wiich will trigger a matching routine because this
operation is not seen explicitly by the user:and we dom't want modification of the
environment to remove this function. {The user is allowed to redefine the names used
for system functions.) "function" creates the appropriate pattern structure. The
"next” selector in both cages will be reset by other routines; ‘'evalp"” will be

1l

defined below. ‘"openc” attaches & selector by that neme wnich points to a copy of
the path name to the pattern involved. "closece”, ‘openi” and "elosei” are defineqd
similarly. Note that by this definition only one variable of each type mey be cpened
or closed at any Point in the pattern (except at the very end), 'This can be generalize
80 that these aselectors Polnt to a list but we wil not do this hers because the ext".ra.
machinery required would nat further illuminate the task at hand.
alt(objl,obg2) =
if eq objl-type, PATH then alt(evalp{objl),obj2)
else if eq obJ2.type, PATH then alt(ob,jl,evalp(obJE))
else if eg objl.type, STR then alt(pa.ttem(ob,jl),ob,jE)
else if eq obj2.type, SIR then alt(obji,pattern(opbj2))
else const PTRN, L.$temp.type
consy ALT L.$temp.value.fune
copy objl, L.3temp.value .argl
£opy obj2, L.$temp.value .arg?
return L.$temp
cone{objl,cbj2) -
if eg objl.type, PATH then conc(evslp{cb,}l),ob,jz‘)
else if eq obj2.type, PATH then conc[ob.jl,evalp(ob,jE})
else if eq objl.type, STR then if eq objZ2.type, STR then eoncats{ob jl,ob
else conc{pattern(objl},obj2)
else if eg obj2.type, STR then cdnc(ob,jl,pattem(objan
_ else link(objl,obj2)
link{obji,obj2) = const NULL, L.stack
links{objl,stack)
connect(stack, ok j2)
<4200 51, sTack) =
iC 20 ot/i.valae Line, ALT Lren iinzs o cvllvalie argl . stacs !
1i03, 20 1 .value -argc,stack;
8lse il ec ozl value ‘BeXT; NULL iaen piza stask, FaTa st i value .rexs)
else lin«s{obil.va ua -DeXT.3tAacs,
cennect{ stack,o0ne) -
27 ea topistack), NULL tiaen
else snare opj2, evalpata(topi staci;)
bop stack
connect(stack, ob j2)

12

‘alt” constructs an object as in figure 5. ‘conc” uses "concats" if both abjects
are strings ("comcats may revert back to its former definition since "conc™ does
the path evaluation) otherwise it calls "link". "link" points all of the free
*next” pointers (collected by "links") in objl to obJ2 (using "comnect”). The
primitive function "path" takes a path composed of selectors and produces the cor-
responding object of type PATH. The function "evalp" is used in all the above pro-
cedures because when retreiving a pattern from the environment all the final "next”
selectors point to SUCCEED. We want s pattern in which these point to NULL. S0 we
have the following: '
evalp(path) -
if eg evalpath{path).type, PTRN then copy evalpath(path),L.$temp
nullify(L.$temp)
return L.$temp
else evalpatn{path}
nullify(pst) =
if eg pat.value.func, ALD then aullify(pat.value .argl)
nullify(pat .value .arg?}
elge if eq pat.value .next, SUCCEED then conkt NULL, pat.value.next
else nullify(pat.value .next)

Now that al this is finished we still have a pattern with some "next" gelectors
pointing to NULL. Also, where is the front of the pattern tied down? A pattern may
be used in two types of statements: the pattern match statement and the assigmment
statement. We will discuss the former below. In the latter the root of the pattern
will be attached to the local structure for the "assign" procedure. This procedurs
will also link the unlinked selectors to BUCCEED. This must be done by the assigament
Procedure because no other can know where the pattern ends since they all operate
on such local avidence. The modified "agsign" procedure is:
assign{path,obj) =

if eq obj.type, PATH then assign(path,evalp(oby))
£lse if eq obj.type, PIRN then 1ink(obJ,SUCCEED)
copy obj, evalpath(path)
else m obJ, evalpath(path)

The basic match routines (without side effects) are:

pattern-mateh(string, pattern) =
const NULL, L.stack
if match(string,pattern, L.stack) then SUCCEED
else if eq string.value, NULL Shen FATL
glse mateh(rest{string),pattern,L .stack)

13

mateh(string, pattern »8tack) =
if eq pattern, SUCCEED tbhen SUCCEED
else if eq patteru.value.func, ALT
Ihen copy string, L.$temp .string
CCpy path(pattern.valye arg?), L.§temp.alt
push stack, L.$temp
match(string, pattern -value .argl, stack)
else if eq pa.ttern.value.func, EQST
then if eq prefix(string,pattern.valye -arg}.decision, FATL
then backtracik(stack)
else match({prefix(string, pattern.value .arg).left,
pattern.value .next, stack)
else if eq {apply evalpati(pattern.value -fune), pattern.value .arg).
-decision, FAIL
toen backtrack{stack)
else maton (apply evalpatn(patters -value.fune),
pattern.value.arg) Jdeft,
patiern.value .next,stack)

backtrack(stack) -
il eq top(stack), NuLL then FAIL [2=
else copy top(stack), L.$temp
bop stack

maten(L $temp -string,evalpatn(L $temp alt),scack)
prefix(stringl,string2} -
const SUCCEED, L.$temp .decision
const STR, L.3temp -matched, .tyre
fonst NULL. L.3temp -zatoned val e
pfx(St:‘ingi,strinaJE,L-*tempj
return L.$tenp
PEX(string], StringZ,onij -
if eg stane:}..va;';e, NULL Taen scnst obj.decision, FATL
else i? 2% stringt.value, NULL tren EOPY strings, object.left
eise if eg firsy Stringl}.value, firasti{string2).valye
taea copy concats(obj amatched, cancat(£irst| stringl),NULL)),
obj.matehad
PIx(rest(stringl),rest{ st ring2),obj)
€lse const FAIL, obj.decisian

ik

‘'patiern-match” 1is the top level routine; it creates a steck which.is always passed
45 80 argument to "match” and "backtrack” so that all invcecations of these uge this
same stack; the level of recursive call of "match” within “pattern-match” corres-
ponds to the cursor. "matech” stecks alternatives (vhich consist of an ob ject with
selectors “string" for the string to be matched upon backtrack and "alt" for the
pattern tao be bséd) for AIT and handles declsions passed up from 'prefix” or system
functions. ’backtrack’checks thes stack for alternative paths through the pattern;
if "metch” fails it is becauge “backtrack failed to find alternatives upon failure
of the basic matching functions. "prefix’ returns an object with selectors "decision”
(i.e. SUCCERD or FATL), "matched” {the portion of the subject string matched) and
"left" (the portion of the subject string still to be matched ir necessary). Note
that if "decision” is FAIL, the other two are never examined. It ig assused that
system functions return this sage type of object.

We will now discuss the modifications necessary to do the conditional and
imnediate assignments. (The detailed procedure would certainly not be worth tha
effort.) We will keep two stackd: one for conditionals and cne for inmediates .

That these are stacks is not necessary, but it is convenient since the last varisble
opened will be the next variable closed (since they have to be nested ar disjoint;

in the general case where s Eroup may be closed at conce,the variable only hes to be
ameng this group). PBach stack will be an- object with a selector "name" and a selector
"value” (which is initialized to the null string). A pair is entered onto the
appropriate stack upon the occurance of an ‘openi" or 'openc” selector on any of the
three types of amubpatterms. (We need the CBL primitive teat to check for thig L)

When a ''closei” ig encountered, the pair is popped off the stack and the assignment

is made (the name is necessary only in the general case). When s "cloges” is en-
countered the pair is Put on another liat of variables to be assigned by "pattern-
match” 1f "mateh” returns SUCCERD: Values are built up when either EQST or a system
function match some substring; that is, the string pointed to by the "matched
selector of the object returned by the function call ig concatenated onto all the
"valus" selectors of all Objects in both stacks just before £0ing on ta the “pext”
part of the pattern. When the function ALF in encountered, a marker is placed an

the stack so that all variables opened along that alternative may be cloged if it
fails. Similarly a marker must be concatenated on ta the "value" of each peir so
thet characters added on after a decision wag made may be deleted. This closing of
variables and deletion of characters is handled by the function "backtrack”. We also
need a marker on the list of campleted conditional assignments because if g eonditional
assignment variable {ig opened and closed along a path whieh eventually faila, we don't

want to make the assignment . All this would be strailghtforverd but tedious to encode
in CBL.

13

5. Locse Ends

There are many ways that these bag ic procedures can be complicated to take into
fccount other features of SNOBOL. For example there are many system functions which
which use & numerical value for the position of the cursor in the string (e.g. TAE(N)
matches up to the Nth character). 8o we would want an index variable in the loop in
"pattern-match”. fThere is & function "FENCE" which succeeds matehing the null siring
but fails when backed into. (Perbaps this could be implemented by bhaving FENCE clear
the backtrack stack.) Thare are many functions with implicit alternatives {e.g. ARBNO(I
matches an arbitrary number of cancatenations of the pattern P} which gust be handled
similarly to ALT. Taere is the possibility of construeting a pattern from other
patterns which will be evaluated analogously to call-by-pame evaluation of procedure
arguments. This allows for an implicitly changing pattern (e.g. for use in a loop) .
At first it seems that we might just use Share instead of capy in the definitions of
“conc” and "alt" for this. Hovever, we don't want to be changing the final "next"
pointer of a pattern in the environment (especially gince more than one pattern may
have this pattern as an unevalusted component). Tais alse gives ane the ability to
write recursive patterns; it is not easy to see now tais would fit in. One might
also want to prove the correctness of these algorithms (although it may not be go easy
to state tiheir intentions), prove that “concats” as defined is assgciative, prove tnst
‘BC’ 'BD' has the same affect as ‘B ('C" 'D'). etc: It alss possibie that some
study of tnese functions and representaticns may point out featurss of SNOBOL tnat
may be executed concurently (or suggest extensions of tae language in which tha order
of evaluation might be less restricted). In any case, I hope that I have shed some
lignt on the semantic notions embodied in SNOBOGL and the structure of tuhe base languaze
as a model for tne meaning of computer languages,

16

Bibliography: -

(Al) Amerssinghe, ¥. "“Pranslation of BLKSTRUC Frograms to the Base Language”
Unpublished mimeo, Project MAC, MIT

(D1) Dennis, J. B. "On the Design and Specification of & Common Base Language "
Computetion Structures Group Memo 60, Project MAC, MIT

{GPP1} Griswold, Poage and Folonsky "The SNQBOL 4 F¥ograming Language "
Prentice-Hall, Inc., Englewood Cliffs, New'Jersey, 1968

