MASSACHUSETTS INSTITUTE OF TECHNOLOGY

FROJECT MAG

Computation Structures Croup Memo 86

Asynchronous Push-Down Scacks
by —

Frederick C, Furtek

This research was supported in part by the National Science
Foundation under research grant GJ-34671, and in part by the
Advanced Research Projects Agency of the Department of Defense
under ARPA Order No. 433 which was monitored by ONR Contract

No. NQOO1l4-70-A-0362-0001,

August 1973

The Problem

Suppose that we wish Lo design a push-down stack that can receive and
return data items at a conatant rate. IFf the stack 18 to be of fixed size,
this is not a serious problem as the many existing implementations attest.
If, however, we wish the stack to be arbitrarily extendable while still main-
taining a constant rate of operation, then we do indeed have a serious problenm.

We make the problem more precise in the following way. A processor -
human or mechanical - is located at some fixed position in three-dimensional
Euclidean space. A acheme is desired whereby a push-down stack of arbitrary
size may be implemented for use by this processor. The rate at which the
processor may place item; on the stack or remove {tems from the stack is to
be totally unaffected by the stack's size and by the number of items on the
stack. To ipsure that the implentation scheme is in fact realizable, we fur-

ther require that it be consistent with the following physical constraints:

1. There exists a lower bound on the resolution of time,
2. There exists a lower bound on the resolution of space.

3. There exists a lower bound on the amount of energy required to change
the state of a device so that the final state 1s distinguishable
from the initial state.

4. There exists an upper bound on the power with which a device of fix-
ed size may transmit signals.

5. There exists an upper bound on the density with which information
may be atored

6. There exists an upper bound on the speed of signals.

7. The signal delay through a device changes im a way that is not to-
tally predictable.

Thege constraints may be thought of as imposed by fundamental laws of physics

-2~

or as imposed by the limitaticns of available devicea and instruments, We
shall not go more deeply into this issue at present time, but the next section
which discusses several faulty solutiong to our problem should help clarify

the significance of these constraints.

Some Faulty Solutions

The most common way to implement a push-dowm stack is by means of a ran-
dom access memory. Typically, data items are placed in successive storage
locations and a pointer is continuaily updated to point to the last item placed
in memory (or to the next available location). The basic problem with this
approach is that data itemg remain in fixed locations while in storage. Be-
cause of Constraints 5 gnd 6, as data items are placed in storage without
bound the time required to retrieve them also grows without bound. This same
problem arises in any scheme where the data items are stored in fixed locations.

We might try some form of tape device to implement the stack - something
like a Turing machine with a finite, but arbitrarily extendable, tape, But
if we iﬁterpret each tape square ag a device, 1t follows from Constraints
3 and 4 (as well as from 5 and 6) that the time required to move the tape
can grow without bound. Thus, if the entire tape is moved between successive
reads and writes, there is no way to maintain a fixed rate of operation,
Tt could be suggested that the tape remain stationary while the Processor
moved but this conflicts with our stipulation that the processor remain sta-
tionary.

Considering the failures of the two previous approaches we now turn to
an implementation at the gate level. Figure 1 is a bloek diagram of a bidi-
rectional shift register in which each stage operates in the manner of a mas -

ter/slave flip-flop. The difficulty here is the unlimited fan-out on the

Right
Shift @

Ll

Left ~
Shife @

Figure 1 Bidirectional Shift Register

two ghift lines, making a conétant rate incompatible with Comstraints 3 and
4. 0Of course, we can insert amplification devices at regular intervals on
both shift lines, but we now run into trouble from Constraint 7. We cannot
asgume that the delay through an amplifier remains perfectly constant with
time and so there is no guarantee that one shift pulse won't overtake another
cauging a malfunction, (Constraints 5 and 6 don't permit us to place a bound
on the time needed for a pulse to reach the end of the shift register, so
it is necessary to allow for concurrently propagating shift pulses.)

In the remazinder of this paper we present several deaigns, each of which
is a solution to our problem., They differ from the preceeding cnes in that

they are totally asynchronous with strictly local control.

A Solution

In this section we describe the most atraightforward solution to our
problem. For descriptive purposes it is convenient to view the design in
terms of the separate data structure and control structure of Figure 2.

Each storage cell is capable of holding just a single data item, and

Ste rage

i
o
N T 4

(@} Data Structure (b) Control Structure (Petyi Net Representation)
Fiqure 2 PDS1

transfer of data items occurs only between adjacent cells. Coordinating these
transfers is the task of the contrel structure which we've chosen to repre-
sent by a Petri net [2,4). Actually, the net in Figure 2(b) represents the
behavior of both the stack and the enviromment in which it is embedded.

The enviromnment i3 very simple: it just makes push and pop requests of
the stack. The free-choice structure involving the events labelled 'PUSH"
and "POP" represents the enviromment's complete freedom in the choice of re-
quests, The stack is a little more complicated. Each occurrence of Event
D, represents the transfer of a data item from Cell i Down to Cell i+l. Sim-

i

ilarly, each occurrence of U, represents the transfer of a data item from

i
Cell i+l Up to Cell %.

The key to the stack's operation i1s it's tendency to reach an equilib-
rium condition in which alternate cells are empty. When the stack is pushed,
a2 "compression effect' propagates down the atack and each data item moves
down two locations. A similar phenomenon oceurs when the stack 1s popped,
bqt this time a 'rarefaction effect” ia propagated and data items move up
twa locations. In oraer to have fixed rate of operation the stack accommo-
dates concurrently propagating effects, and this is accomplished without the
need for conflict. To help clarify these ideas 3aix "suapshots"l of the stack
in operation are presented in Figures 3-8. .

There is one peculiarity about PDS1 that these smapshots bring out.
Notice that in Snapshot 4 Event D. is ready to cccur even though Cell 5 is

3
empty. Ik takes place nevertheleas since this particular stack has no way

lThere is an inherent problem in using a sequence of snapshots to describe

concurrent activity. We are forced to make assumptions about the relative

duration of concurrent events. In our case we assume that the duration of

each transfer is the game, but, in fact, the correct operation of the stack
is unaffected by the duration of any transfer.

2 JoySdmg 4 aanbiy T geusdeug ¢ punbiy
{1 poyuasaidey jon MY aanyanals Jeaguey (q) BanpILE wYn (b) (Morgepunsaudey Jay Hi3g) aanpays joyusy (1) BINYINALS TP (b

uz uT

éuh& C” mﬁsv.uu..sn CD
| un

U
I I
,_o SH g
0T, 5]
I !
i i
g~ 0 st

um =

(Worywpussaudey JaN Hias) danjpnays jeayuey (4)

joyscbus 9 panbiy
240)20a)s B ()

or iy D
SNV

(8) ()

il
un

U1

U

0T

Uf

Ul

U

ue

¥

)

abusoyg

£ jeusdmas s oanbry
{uorymuntaudey Jon wi34) aunpryS joaney (1)

£

IF

2nnaLs e v

un
un

Y

U]

U1l

0N

U

U

]

L]

T

1)
sbesoyg

8 [Oysdaug g 2unbyy 5 poqscong 2 24nbyy
(Woymuasaaday yon M34) anionys Josjuasy)] BINONALG WU () (worymivasiuday oy 34y danpayg jeauoy {9} BAIIYG BIDE (1)

ug uz

> = 0 > -)

0
g T
iy i
® U :
i T
iy UL

C D aboserg | C sbuserg

=10~

PUSH ACKNowLEDgE Por

3 ‘_QM — }ua_u

ure 9 Cm:w'l' R;d'ﬂll-a'hOH of PD$1
'9

-11-

Figure 11 A Critical Configuration

cl1 <'¢:l2 + d4

for each critical configuration

d2 < d1 + d3

and it is consistent with the seven physical constraints listed abova.

To convince ourselves that the operation rate of PDS1 is independent
of stack size and the number of data items stored, we first note that PDS1
operates on the same principal as a bucket brigade., Both consist of a linear
sequence of identical atages, each of which has a communication protocol in
which it communicates alternately with its two adjacent neighbors. In one
case, buckets get passed from stage to stage and in the other, push requesta
and pop requests.

Each stage of PDS1 is associated with the state-mechine paif of Figure 12,
The enabling of Event Dx+1 by the next higher stage represents a push request
of the stage, and, iikewise, the enabling of Ux represents a pop request.
Clearly, a aingle atage is capable of servicing requests at the rate of 1/3T,
where T is the maximum duration of any data transfer. An induction argument
shows that a stack of arbitrary size is also able to service requests at the
rate of 1/3T, This then completes our solution to the problem stated at the

beginning of this paper,

-12-

QE+1

Figure 12 A Single Stage of PDS1

Three Variastiong

PDS1 can be simplified by combining two transfers in each stage into

one. Specifically, the transfers U21 and 021_1, for 1£i$n-1, are combined

to form a new transfer, Ui’ operating between consecutive odd-numbered cells,

The simplified stack is fllustrated in Figure 13,

This modification works because when a data item in PDS1 moves upward

from an odd-rmumbered cell, that transfer ig alwava followed immediately by anoth-

¢r transfer of that same data item to the next higher cell, We've merely com-

bined these two transfers into one. Unfortunately, the same approach cannot

be used for dovaward movement of data items since a data item must, in general,

wait for a cell to be cleared before entering it from above. (In this case,

it is actually "empties" that move up two lacations,)

PDS2 has the interesting property that it may be popped at the rate of

1/2T while it can be pushed at only 1/37T.

h

_J
(@) Data Structure

(b) Cowtrol Structure (Petri Not Rapresantution)
F}'yure 13 PDS2

-14-

Carl Adam Petri in hig doctoral dissertation [5] describes an asynchro-
nous push-down stack, the first to be arbitrarily extendable., We've updated
the notation and generalized the design, the result being the stack of Figure 14.
It ahares with the two Previous stacks the property that in steady state only
half the storage cells are filled.

Each stage consists of two storage cells, {a and ib, where 1lsisn. In
dteady atate, data resides in the "b" cells while the "g" cells are empty.
Data enters a stage, from above or below, through the "a" cell and leaves,
either up or down, through the "b' cell.

Pugh and pop requests are handled in a manmer simjilar to that for PDS],
The essential diffﬁrence 1s that fn PDS3 che path followed by data items on
the way up is not the reverse of the path followed on the way down, In par-
ticular, a falling data ftem passes through locations in the order: la; ;h,
2a, 2b, 3a, 3b, "*", On the other hand, a data item riaing from Stage 3 fol-

lows the path: 3b, 2a, 2b, la, 1b.

Until now we've desecribed each stack in terms of a separate data struc-
ture and control structure. However, it is not always fruitful to partition
a degign in guch a way. A case in point ig the stack, with data structure
and control structure merged, whose net representation is given in Figure 15,

PDS4 is patterned after Pnszl and accepts binary'data items, Each token
in the Ieft-haﬁd column of states represents a "O" and, likewise, each token
in the right-hand column represents a "1". Each pair of gtates (from thege

two oucside columms) at the same level corresponds to a storage cell, As

1In fact, we can define a homomerphism from the net of PDS4 to a net nearly
identical to the one for PDS2. This homomorphism presarves both structure
and behavior., In effect, PDS4 is just a more detailed version of its image
under the homomor phism.

ia

zb

nb

)

—
—

q

o

(@ Data Structure

_tb

b

Un.

X

(b) Cowtrol Shructure (Petri Net Representution)

Fiqure 14 PDs3 (Petri’s Stack)

-17-

can be seen, alternate cells are initially empty and the remaining cells con-
tain 0's. The movement of data {tems is exactly as specified by the net for
PDS2.

It is worth noting that PDS4& makes it possible to store variable-length

operands without all the encumbrances found in more conventional designs.,

Stacks with Terminating Effects

The four stacks presented so far have a defect: they have no way of know-
ing where the bottommost data item resides. Thus, the poasibility exists
that a stack will overflow and it will go undetected. In a practical situa-
tion the possibility of losing data cannot be tolerated.

To correct the problem it 1ig necegsary for a stack to keep track of the
bottommost data item. In FDS5, PDS6, PDS7, and PDS8 (Figures 16-19) the re-
quired modifications have been made to correct the deficiencies of PDS1, PDS2,
PDS3, and PDS4, respectively.

The principal is the same in all four cases. Fach of the four net rep-
resentations has imbedded within it a state machine regembling a string of
diamonds (Figure 20). The token in this state machine indicates the location
of.the bottommost data item, moving up and down with that data item. When
a push effect or'pop effect reaches the token's locus, the effeft is termi-
nated and there are no dummy transfers as previcusly,

Two cases are of special interest, When the stack 18 empty ; token in
the topmost state - a pop request results in an error, as it should. When
the capacity of the stack is exceeded the net eventuzlly dies (ceases activ-
ity). This happens because effects "back up" when the last stage is unable

to meke room for a new data item, Az a practical matter, two actions are then

\%f\

g.w\%..x\) '8

{(b) Control Struckire (Pt Net Representution)
re 17 PDS6 | -

1q

b

3a

~20-
Pusd PoP

hb

(@) Data

ERROR
o
o 0, ® (V2
@
1b X,
) v,
'y
ia Ry
it
() v,
3b Xy

na

Strveture

() Contvel Structure (Pri Nt Represestation)
Figure 18 PDS7

-21-

PUsH
2ER Ay
ERROR
RETURN - RETURN
ZERO e ONE
® %
®

Figure 19 PDsSS8

-22-

Figure 20 Indicator State-Machine

possible: the task can be aborted and a new one initiated, or more stages
can be added to accomodate the demand. The latter alterngtive is especially
intriguing since the stack then becomes arbitrarily extendable and is no longer

a finite-otate device (Petri makes this Polnt in his thesis).

Conclugiong

The gsignificance of the foregoing results is twnfold,

First, we've presented several gclutions to the problem we initially
set for ourselves, namely, to design a push-down stack whose rate of opera-
tion is unaffected by stack gize or by the number of data items stored on
the stack. A gtack implemented according to one of these schemes is asynchro-
nous, conflict-free, and arbitrarily extendable. This result is of particu-
lar interest to those looking at the general problem of designing computational
device that can be extended Indefinitely without impairing efficiendy.

Second, we've demonstrated the appropriateness of Petri nets for describ-

-23-

ing complex communication gtructures, The use of nets has allowed us to ex-

press our intentions exactly. As a consequence we can make the Following

claim:

chh stack deacribed in this paper has the property that a data transfer
occurs as soon as 1t 1s loglcally possible, There are absolutely no

artificial or unmnecessary comstraints placed on the movement of data.

-2 -

References

Dennis, J. B, and S, S. Patil, "Speed Independent Asynchronous Circuits",

Proceedings of the Fourth Hawaii International Conference on System Sciences,
January 1971, pp 55-58

Holt, A. W, and F, Commoner, Eventa and Conditions (In three parts), Ap-
plied Data Research, Wakefield, Mass., 1970 [Chapters I, II, IV, and
VL appear in Record of the Project MAC Conference on Concurrent Systems
&nd Parallel Computation, ACM, New York, 1970]

Muller, D. E., "Asynchronous Logics and Application to Information Pro-
cessing”, Switching Theory in Space Technolo » Stanford University Press,
1963, pp 289-297

Patil, S. S8, and J. B. Dennis, "The Description and Reelization of Dig-
ital Systems", Digest of Papers 1972: Innovative Architecture, IEEE, New

York, pp 223-226

Petri, C. A., Communication with Auvtomata, Supplement 1 to Technical Ra~
port RADC-TR-65-377, Vol. 1, Griffiss Air Force Base, New York, 1966
[Originally published in German: Rommunikation mit Automaten, University

of Bonn, 1962]

