MASSACHUSETTS INSTITUTE OF TECHNOLOGY

FROJECT MAC

Computation Structures Group Memo 88

An Approach to Abstraction
by

Barbara Liakov _ -,
Stephen Zillea*

Work reported herein was supported in part by the National
Science Foundation under research grant GJ-34671.

x
Cambridge Systems Group, IBM Systems Development Division.

September L973

FOREWORD

This memo describes a preliminary versiom of a structured programming
language being developed within the base language group. Although the basic
form of the language is fixed {its Pascal-like syntax and its dependence on
function clusters), the details of its synktax and semantics can be expected to
change in the near future. In addition, the language as described in this memo
is by no means complete: missing festures include parallelism and error handling.

-g-

The motivation tehind the work inm very-high~level languages is to
ease the prograssing task by providing the programmer vith a language
containing primitives or atgtractions suitable tc¢ his prcblem area.
The programmer is then atle to spend his effort in the right rlace: he
cencentrates on soclving his problem, and the resulting progranm will te

more reliakle as a result. Clearly, this is a worthwhile goal.

Unfortunately, it is very difficult for a designer to select in
advance all the atstractions which the users c¢f his language might
need. If a language is tc be used at all, it is likely to ke used to
solve proklems which its designer did not envisgion, and for which the

abstractions embedded in the language are nct sufficient.

This paper presents an approach which allocws the set of built-in
abstractions to be augmented when the need for a new abstraction is
~discovered. This approach to the handling of abstraction 1is an
cutgrowth cf work in designing a language for structured programming.
Relevant aspects of this language are descrited, and examples of the

use and definitions of atstractions are given.

...2_

Iptroductich

This paper describes an approach teo corputer rTepresentaticn of
abstraction. The approach, developed while designing a language to
support structured programaming, is alsc relevant tao work in
very-high~level languages. We bLegin Ly explaining its relevance and
bty ccmraring wcrk in structured programming and very~bigh-level

languagqges,

The —rpurpase of structured prograsming is to enhance the
reliability and understandatility of Frcgrams, Very-high-level
languages, while priearily concerned with increasing FIcgrammer
productivity by easing the prcgrammer’s task, can also hbe expected to
enhance the reliability and understandability of code., Thu%, similar

benefits can be expected from wark in the two areas.

Wcrk in the two areas, however, follows very different lines of
approach. A very-high-level language attempts to [resent the wuser
with the abstractions (ocperations, data structures, and c¢ontrol
Structures) useful to his application area. The user can use these
ibstractions without teing concerned with how they are implemented —--
he is cnly caoncerned with what they do. Be is thus able to ignore
details not relevant ta his applicatian area, and to concentrate on
solving his problen. Structured programsing, on the other hand,
attempts to impose a discipline on the prcgrasming task so that the

resulting pregrams are "well-structured.™

-3

In structured programming, a prckles is sclved by nmeans of a
process of successive deccmyositian, The first step is to write a
program which sclves the problem but which runs on an abstract
pmachine, i.e., ane which provides just these data cbjects and
operaticns which are suitable to solving the protlem. Some or all of
thqse data objects and operations are truly abstract, i,e., ot
present as primitives in the programsing language being used. We
will, fcr the present, grecup them 1loosely tcgether under the term

“"abstracticn.™

The programmer is initially concarned with satisfying himself (or
proving) that his progras correctly sclves the problem. In this
analysis he 1is concerned with the way his Fprcgraa pakes use of the
akstractions, but not with any details of how those ahstraqti?ns may
be given concrete definitions. When he is satisfied with his rrogranm,
hé_.;hen turns his attention to the arstractions it |uses. Bach
abstraction represents a nev problem, requiring additional progranms
for its soluticn. Again the new program may be written to run on an
abstract machine, introducing furfher abstfactions. The originai
proklem is ccmpletely solved when all abstracticns generated in the

course of providing the program have been realized by further

CIDJLCamsS.

It is obvicus now that the afprcaches of éery-high-level
languages and structured prcgranminq are not so dissimilar as it first
arpeared, since at the core of each apprcach is the idea cof making use
" of the atstractions which are correct for the problem being sclved.

Furthermore, the rationale for using the abstractions is the same in

-1 -

the two approaches: to free the PLograpser frem concern with details

not relevant to the problem he jig solving.,

In post very-high=level languages, the desigﬁers attempt to
identify the set of useful abstractions in advance. structureqd
Fragramming language, on the ether hand, cecntains no Preconceived
notions akout the pﬁrticular set of useful abstracticns but, instead,
must provide a mechanise vherehy the language can be extended to
contain . the abstractions which the user requires. & language
containing such a mechanism can ke 6ieued a8 a general-purpose,

indefinitely-high leve] language.

This paper descrihes an approach to abstraction which pg:q}ts the
set of built-in abstractions to be augmented when the need for new
aﬁsifactions is discovered. The Paper alsc describes the realizaticn
of the approach in a Prograassing language (develcped te surport
structured'prcgramuing) and gives some eraaples of its usae. Bemaining

sections of the Faper discuss the relationship of the apprecach to

previcus work, and some aspects of the implementaticn of the language,

The definition of structured Programming givenm in the Freceding
section is quite vague because it is c¢couched in Suchk undefined teoras
As Uabtstraction" and “abstract rachinev, In this section we will
Provide the definition for "abstraction" which underlies the

Structured programming language ve are developing.

What we desire <fros an abstraction is a mechanism which pernmits
the expressicn of relevant details and the suppression of irrelevant
details. If we consider conventional Fgrcgrazming languages, e
discover that they offer cne powerful aid to abstraction: the functiocn
or procedure. When a prcgramnmer makes use of a procedure, he is [or
should be) concerned only with what it does -- what functicn it
frovides for him. He is nct concerned with the algorithm executed by
the procedure. 1In addition, procedures provide a means of decosposing
a probles -- performing part of the programeing task inside a
procedure, and another part in the caller cf the procedure. Thus, the
existence of prccedures, and the possibility of separate compilation
of procedures, goes gquite far toward capturing the meaning of

abstraction.

l_Unfortunately, procedures alone dc net provide a sufficiently
rich vccakulary of abstracticns. In the definition of structured
programmeing given in the previcus section, we spoke about an abstract
machine praviding abstract data objects and operations. Procedures
correspend only to atstract operations. To fully SUEpcrt
abstractions, a [programeing language must provide abstract data
cbjects as well. It is neither realistic ncr helpful, hcwever, to
consider abstract objects and operaticns separately. Obviously,
objects and cperaticns are intimately related. Each operation may te
aprlied canly to certain objects, and each chject may only be operated
an by certain operations. A structured prcqrasmsing language must
allow the relaticnships batween oﬁjects and operations to be

expressed.

The leads us to the characterization of an abstract data type
which is central to the design of the lanquage. The wmost impertant
form c¢f abstraction is provided by an atstract data type whose
characteristics are completely defined by the set of operations

available on that type.

Abstract types are intended to be very much like the primitjve
types provided by a proqfanling language. The User of a primitive
type is only cencerned With creating {declaring) objects (variables)
of that type and then_perforuing operations on thesn. He is not
(usually) concerned with how the data oljects are represented, and hLe
views the operations on the otjects as indivisikle and atomic when in
fact several vpachine instructions R2Y be required to .pergorm an
opegaticn. In additicon, he is not (in general)} permitteq to deconmpose
primitive-type objects. Consider, for example, the primitive tyre
integer. A programmer wants tec declare orjects of tyre integer and to
perform the usual arithmetic operations cn them. He is usually not
interested in an integer cktject as a rit string, and cannot make usa
of the format of the bits within a computer word. Also, he expects
the language to Protect him froa foolisgh misuses of types (e.g.,
adding an integer to a character) either ry treating such a thing as

an errer (streng typing), or by some sort of aytomatic tyre

conversion.

In the case of a Frimitive data type, like integer, the
frogramsmer is waking use eof a concept or abstraction which is realizad

“t a lover level of detail —- the prograsming language itself and its

-7

compiler, Similarly, an abstract data type i3 used at one level and
realized at a lower level, but the lower level does nat come into
existence antomatically by being part 'of the language. Instead, an
abstract data type is realized by writing a certain kind of progran
which defines the ¢type in terms c¢f the <cperations which cﬁn be
performed on it. The language facilitates this activity by allowing
the use cf an abstract data type withaut requiring its on-~the-~spot
definition. The language processor supports abstract data types by
huilding links between the use of a type and its definition (which may
te provided eifhet earlier or later) and by enforcing the view of a
data type as equivalent to a set of operations by a very strong fornm

of data typing.

~ We will now present an example in order to give substance to the
above discussion aof abstract data types and related operations. True
to the principle cf structured prograssming, we will start at the top
and will therefcre discuss hov to make use of abstractions tefare we

discuss how to define them.

We have chosen for our example the fcllowing probles: ¥rite a
translator from an infix language to a Pclish [pcst-fix language. The
translater is toc be a general-purgase program which makes no
assumptions about input or cutput devices {(or files). It makes only

the following assumptions atout the input gragmar:

1 The input lanquage has an operator precedence grammar.

2) The symbols ¢f the input language are identifiers, which are
arbitrary strings of letters and nuskbers, and operatcrs; blanks

terminate symbols but are othervise ignored.

We may restate_the abové proklem description, The translater is a
functicn of three arguments: an in§ut file containing the sentence of
the input lanquage, an output file to accept a sentence of the output
language, and a grammar to recognize symbtcls of the inmput language and
determine their precedence relations. When the translator returns,

the sentence in post-fix nctation is in the output file.

We have chosen this vprcblem as our examsple for the following

reascnsy -

1. Ecth the ©prokblem and its sclution are very familiar to people
interested in programming languages; therefore, limited

exrlanaticns are required.

2. The proklem is nevertheless ccmplex, and its =scluticn makes use

of wany akstractions.

The prcgram “"EFalish_gen™ is shown in Eigﬁre 1. The language in
which it 1is expressed 1is conventional in most respects. It draws
hezavily on PASCAL{1), but is wnodified as necessary to accommodate
abstract data types. The modifications occur exactly where you would
expect them: in data declarations, in performing operations on otjects

of atstract data type, and in defining abstract data types.

-Qe

s: stack (token, grammar$eof_token (g});
t: tcken{q):
mustscan: Beglean (true);

W

~stack fempty (s} do
mustscan
ther t:=scan{input,q);
€lse mustscan:=true;
tokenfis_op{t)
then
casg grawmearfprec_rel (stack$top{s},t,q) of
n{":: stack$pushis,t):
"=¥s: stack$erasetaop(s):
">*:: begin
outfile$out_str (ocutput,
tokenSsymbol [stack$Spop(s})};
nustscan:=false;

Bt |
i

-
-

Otherwvise err L;
lse o tfileScu str{output,tckens$symbol (t));

Figure 1

Interesting features of the language include:

2+

Like PASCAL, the language is procedure oriented, and begin, epd

are used only to group statesents.

Bcth primitive data types and data structuring methods are taken

from EASCAL. An example of the former is the use of a data type

type. The most important data structuring method is the record

which defines an aggregate of sul-elesents or cceponents.,
Ccrponent definiticons
<{selector—-name> : <component-type>

are separated by sepicolons, and the whole reccrd definition is

10

enclosed in parenthéses. The <coeponents of a record are
referenced using an infix dot notaticn which is left associative;
for example,

Sa. X

means select component with <{selector~nmame> x fram raccrd s.

3. The language uses a standard format for declarations:
<variable-name> : <description>

is used no matter what kind of variable is being declared.

4. The language borrows twc things from PL/I: Ose of
tc specify the type of the value(s) returned from a procedure,
and elimination of tggip wherever possible, by assumingemore than
cne statement will ordinarily follow a reserved word such as dpo

and procedvre.

5. The language has no ggto statement and no lakels.

6. A structured error-handling wechanisms is under development, At
Fresent, it is indicated c¢nly by the ©presence of the reserved

werd error.

7. Ibe lapguage bas nc free variables in the standard sense. It

does pernit the free use of procedure names and data-tyge names.

The same syntax is used te declare cbjects of abstract data type

as i5 used to declare otjects of primitive (ncn-structured) type:

-1 1=

<var-named>: <type-named> [([<type-parameters>)]
<tyre—name> say name either a gprimitive type of the language or an
abstract tygpe. The <type-garameters>», which contain information used
in creating instances of data, are optichal as is indicated by the use
of braces "{)" around the syntactic cateqcry.
An example of the use of a primitive type is ipn the line

mustscan: Loolean(true)

e
I~
le
I
@
=)
[T

which creates an cbject of type Loclean with initial value
assiqgns it to variable mustscan. The line

3; stack (token, grasmar$eof_token (g))
declares s to be the name of a variabkle which holds an object of
abstract type stack., It also illustrates the two uses for the
{type-parameters>, The first parameter, the abstract tyge -token,
defines the type of element which may be placed on the stack s. The

second parameter is an expression which when evaluated returns a value

of type token which is thep used to initialize the stack.

En explicit initial_ value is provided for almost every variakle
declared in tha example., There aré two reascns for this. First, we
believe every variable should be initializeéd (at least to an
error-causing undefined value) to rrevent indetermimancy fron
accidentally cccurring when a variable is used kefore it has been the
target cf an assignment. Second, it is frequently the case {(e.q..
with the stack s} that a variable wmust ke initialized tc begin an
iterative process and that initializaticn is more efficient when
comtined with allccating the variable than it is when a separate

assignment is used.

—-]3=

The coerpiler for the langquage is prepared to encounter
<type—name>s which are not in its ' repertcire cf primitive types. It
assumes the meaning of such names will te rrovided by a piece of the
program whkich will he.(or has been) separately compiled. The way in

which the compiler attaches a meaning to an abstract <type-name> will

ba discussed in a later section. -

- 311 of the formal parénetérs and some of the 1local variables of
Polish_gen are defined as abstract types. This raises the question of
how can an abstract object be used 1in Polish_gen or, in fact, any
procedure? There are three ways in which an atstract object can be
used:

1. Atstract ohjects wmay be passed as indivisible entities between
procedures. In this case, the type of the actual arqument passed
ty the calling procedure must he identical ta the type of the

corresponding formal parameter.in the called procedure.

2. Abstract obkjects may te stored away, Lut cnly in variables

declared to hold objects of that type.

3. Abstract objects may be operated upcn hy the operaters which

characterize the abstract type.

The staterent
t:=scan{input, g)

illustrates the first ¢two kinds of usage. The rprocedure scan, shocwn

scan: procedure(input:zinfile, g:grammar) returns token:

newsynk: string(nully:
ch: chag (™ ") ;

#hile ch=" " do chi;=infile$get {input); end
if infile$eof ({input) ther return (grammar$eocf (g)}:

if letiter (ch) or npumber(ch} thep

Eegin® T T -
while letter(ch} cr pumber(ch) dc

" newsymt:=newsyeb concat ch:
chz=infileSget (input) ;
end

e

infilegputback (ingut,ch) ;

end scan

Figqure 2

in Figure 2, expects ohjects of type infile and graemar as its
arquments, and returns an okject of type tcken, ihich is thgn’stored
in the token variatle t. Because scan is not one of the characterizing
opératicns for either type infile or type grammar, it must treat its

arguments as indivisitle okjects. It dces, bhowever, perfarm

operaticns aopn those oktjects.

Arplications of .a characterizing operaticm to an abstract type
are indicated by a function call in which a compound name £or the
function is used:

<type-nama> 3§ <operataor-name> (<{parameters>)
The first part of the compound nane-identifies the type which the
operation acts upon while the seccnd component identifies the
cperaticn, Functicn calls cof this type will alvays have at least one
Farameter: an object of data type <type-name>; for example

stack$aempty {s)

=14-

token$is_op(t)

and s¢ forth.

A brief description of the logic of Polish_gen can now be given,
Polish~gen uses scan to obtain a sysbol «cf the qrasmsar fream the input
string. sScan Teturns the symbol in the fore of.a token -~ a type
introduced to provide efficient execution vithout revealing
information about haw the raEnar represents symbols. Polish_gen then
obtains the_precedence relation holding Letween the newly scanned
symbol and the sysbal on the top of the stack, Finally. the action

appropriate for the precedence relatign is rerfocrmed.

The scan procedure oktains characters from the input file via the
operations infile$get and infile$putback. It makes use of" the data
Althaugh these types are shown as supported by the lanquage, they
could easily have been abstract types instead. In that case, the
primitive predicates letter and hupber, fcr examrle, would have been

expressed as char$letter and char$number. Only the syntax changes; the

meaning of the types is the sase in either case.

To suma up, Polish-gen makes use of five data abstractions:
infile, outfile, grammar, token and stack, plus one purely functional
abstraction: scan, The fgower of the data abstractions may te
illustrated by considering parameters input and cutput. Polish—gen is
completely shielded from any physical facts ccncerning its input and
output. For example, it dces not kpnow what output device is being

used, whether there even is omne, and when the 1/C actually takes

place, nor deoes it know how characters are represented there. What jt
does kncw about output is just encugh fcr its needs: How to add a
string of characters and how to signify that the output is complete.
Its knowledge consists of the names of the operations which provide

these services.

In the previous section, we discussed how to make use of abstract
data types and how the c¢ompiler assumed whben it enccuntered an
abstract type that the =meaning of that type would be provided by the
compilaticn of ancther pregras. In this.section, ve describe the
programming object, the function cluster, cr cluster for short, whose

compilaticn defines the wmeaning of a tyre. The functicn cluster

L]
-

embocdies the idea c¢f a data type being ccepletely characterized by the
operations on that type. A function closter exists to support an
abstract data type, and each permitted cperation correspcnds to a

function in the cluster.

As an example, consider the abstract data type stack used by
Polish_gen. A cluster supporting stacks is shown in Figure 3. This
cluster defines a very general kind of stack object in which the type
of the stack elements is not known in advance. The cluster parameter
elemnent_type indicates the type of element a rparticular stack object

is tc ccntain.

4 cluster definition has two wmain parts: 4 very brief

description of the interface which the <cluster rresents to its users,

16—
stack: cluster (element_type:type, init_val:element_tyre)
is push,pop,top,erasetap,eapty;
Iefp(elem_type:type)=(tp:integer;
e_type:type(elem_tyre);
stk:array(1..) of elem_type) :
push: prgcedure(s:rep, v:s.e_type};

S.tpi=s.tp
s.5tk[s.tp

eturn s.stk[s.tp];
nd

o lis

i e e

end

5; cepl{elesent_type);

if exists (init_val)
then s.stk[s.tpl:=init_val;
glse s.tp:=0;
Leturn s3
end stack

Figure 3

-17F=

and a ccoplete definition, in the form of procedure declarations and
data descriptions, of how the cluster suppcrts this interface. Thus,
the separation of wyhat from hov is clearly present in the cluster

definition.

Tte form of the clester interface description is:

<cluster-name> : cluste

is

{ (<cluster—parametersy) }
operatar-list>

t
<
The <cluster-name> defines the name of the abstract type which the
cluster provides. The, <operator-list> lists all the operations which
can ke performed or objects of that type; the use of the reserved word
is underlines the idea of a data type Leing equivalent to a group of
cperations. Thus, the stack cluster defines stacks as equivalent to
five stack cparations used by Polish_qgen. The optional
{cluster-parameters> defines the information which must " be made
available vhen objects of that abstract type are created. For exanmple,
a stack orject 1is created tc hold elements of a specified type (the
parameter element_type); as a convenience, the object will also he

initialized to contain a single element cf type element_type (tke

Parameter init_val).

The remainder of the cluster definiticn, describing how the
abstract type 1is actually supported, contains three pieces of
inforgation: A description of how objects of the abstract type are
actually represented; a body of code to ke executed when chijects of

that tyre are created; and a nuaber of procedure definitions.

Ckject Represemtation. Users of the abstract data type supported

by a cluster view abjects of that type as indivisikle,

-18~

non-decamposable things. Inside the cluster, however, objects are
viewed as decomposable intc elements of nmcre priuitive tyre. The rep
description
repf (<rep-parameters>) } = (type~defiﬁition)

defines the way objects are viewed within the cluster. The
<type—definition> defines a template which permits objects of that
type to be built and decomposed. In general, it will make use of the
data structuring methods rrovided by the langnage; data may be
structured using either (possibly unhounded} afrays or PASCAL records.
Both structuring methods are used in the stack cluster: A stack is
represented by a record of three components, tp, stk, and e~type. The
storage for the stack is ia the array named stk which contains
elenents of type e—-type, and tp holds the index of the topmrost element

in the stack. y

The optional <rep-parameters> provide flexibility in the creation
of objects. 1In the example, the argument specifies the type of stack
elerenty other frequently occurring uses for the <rep-parameters>
include specifying the tounds on an array or the initial value of some

part of the rep.

Ckiect Creation. The resarved wvord create marks the

<create-ccde>, the code tc¢ be executed when an object of the abstract
type is to te created. The cluster may be vieved as a procedure whose
erocedure btody is the <create-code>. When a user declares a variable
to te of atstract type, far example,

g8: stack{token, grammar$eof (g))

one thing that bhappens (at execution time) is a call on the

-19-

cluster—procedure. This Causes the <create-code> to be executed. The
<create-code) makes use of the parapeters given as part of the
declaraticn. These parameters are in fact Jlgcal to the {create-code.
When the <create-coade> returns, they will cease to be defined and,
therefore, may not te accessed freely in other parts of the

cluster-definition (including the Iep descripticn—-gee below),

The code shown in the stack cluster is typical of <create-coded.
First, an object of type ;gp[(rep—pafaaeters)] is created: Space is
&ilocated to hoid the object as defined by the rep-descriptica. Then,
{optionally), some initial valyes are stcred in the cbject. The
language provides a prisitive, exists, which «can be used to test
whether an o¢ptional parameter is present and then take arfropriate
action; the use of this primitive is illustrated in the <creqﬁetcode>.
Finally, the object is “returned™ to the caller; that is, something is
returned which, when passed as a pParameter to a function in the
cluster, will permit the obkject to ke accessed. (¥hat this thing is

will ke discussed in a later section.)

Functions. The functions in the cluster are defined by means of
Frocedure definiticns. Those functicns whose names appear in the
<operator~1listd> cecnstitute the permissible operations on the Jdata
type. <Cther functions B3y also re defined, but they rrovide only
local subroutines for use within the ¢lustar and 23y not be called

externally. The definiticons of cluster functions are Jjust like

ordinary procedure definitions except in their use af type rep.

Cluster functions always have at least one Parameter -- of type

-20-

rep. Eecause the cluster may simnltanecusly support many objects, this
parameter teaells the function the particular okject on vwhich to
operate. Note that there will be a change of type with respect to this
parameter ketsdeen the caller and the cluster functicn. The conmpiler
allcws cnly this =ingle case of a difference in type of parameter
tetween calling and called rprocedure; the way in which this is

accomplished will be described later in the pager.

In the course of its computation, the function may need to create
a new object of the ahstréct type supported by the cluster. It may
only d¢ this by declaring the object to be of type rep —— it is not
permitted to use its own type abstractly. This restriction eliminates
one kind of recursion. In creating this object, the function will
specify <rep—parameters> if they are requi:ed. In facty, rgp was
defiped_to take parameters in order ta permit functions to create

objects of type rep.

As a further example, we ©preseat the cluster far grammar in
Figure 4. This example actually contains two clusters: graamar and
token, The token cliuster is embedded in the gramsar «cluster, This
means that it has the same access to the way qrasmars are represented

as do the granmmar cluster functions.

Why erbed the token cluster in the gramsmar cluster? In fact, why
define tokens at all? Polish_gen could have been written +to accept

strings from scan, to store strings on the stack, and to pass strings

-2 1=
grasmar: cluster ("qraemar description®) jig eof_token,token,prec_rel;

Iep{n:integer)=(prec_table: array[l..n,le.n] of char:
cp_symsbcls: array[1..n] of string;
maxsyebs: integer(n));

eof_token: procedure(g: rep) returns token;
return token{g,"acfh);

end

if ~{tokxensis_op(left) and tokenSis_cp(right}) them error;

LELULD g.prec_takle[tokenSindex_is(left) ,tocken$index_is(right)];

Frec_rel: preocedure (left,right:token, g:xep) returns chatr;

index_is: prccedure{t:rer} returns ipteger:
Af t.op>0

——— e i s i

gnd
symbel: procedure(t:rep) returns string: .
if t.op>0 '

thep peturn t.gras.op_syabols{t.op];
else return t.symb;

t.qram:=q;
if exists{(s) then
tegin
if s=g.op_symhol
then found:=t
else iz=i+13

IH
(==
[|: - e T

end token

2 _
"Euild the prec_takle from the grasmer description®
r i

Figure 4

-3

to qrannarsérec_rel. Althcugh this would require one less abstract
type it would be far less efficient and only arrarently simpler. The
rrcrblem is that a string is looked up in the table of reserved vords
for the graemar (or_symbols) more than once. The first search is made
to determine if a string is an aperatcr symbol; all subseguent
searches are made to find the index to be used to access the
precedence matrix, Because the index could have been easily obtainegd
in the first search, and tecause searching is a costly qperation, this

is inefficient.

Still, why not have the first search return an integer which is
the index of the cperataor or zero if the string is not an operator?
Besides the fact that using am integer in that sanner is bad éoding
practices, it also exposes information about how the gramerar 1is
represented which is of nc concern to the user aof the gramsar cluster.
(See Farnas {2) for a discussion of inforeation distribution.)
Exposing the information =xeans that the fors in which the grasmar is
represented is constrained because a user of the qralﬁar cluster pay
depend upor testing the integer to separate identifiers and operators.
It also Eeans that the grammar cluster cannct assume the integer
Fassed to it as am argument will always be a correct precedence table
index; for examgple, it wculd have to check that the integer is not

greater tharc the number of syabols in the tabla.

The way to solve these proklems is to make the result of the
search for reserved words a data type, token, vhich encapsulates the

integer wap between op_symbols and the precedence matrix. By

-23-

emtedding the <cluster for tokens in the grammar cluster, the token
functions can have access to the representation of the grammar and the
proper use of an integer which indexes the array ap_symbols can be

quaranteed.

Note that the field, op, of the grep for token is used to
distinguish identifiers from operators (t.op>C if the token is an
operator token). This is the <coding ¢rick which was criticized
earlier, 1The difference in fhis case is that knowledge of the use of
 the coding trick is limited to the token ¢luster. Outside the cluster
the toolean operator is_op is used to distinguish the twc kinds of
tokens. Since the knowledge akout the «coding trick is ccntained with
the cluster, the ccnfusicon it introduces is manageable.

A tcken is created from two parameters: the symbol striné which
the tcken is tc represent, and the grammar vhose reserved word table
is to be searched. The use of ter in the heading of taoken is treated
the same way as the use of rep in any other functicon in the grammar
cluster, and therefore refers to the rep cf grasmar. Toker also has
its own rep: so, inside the body o©f tcken, these twvo reps wust be

distinguished. *rer is used to refer to the enclesing rep.

Because the index used by prec_rel is the index of the syakol in
op_symtbol, the string for an operator need not te stored in the rep of
token but <can bte retrieved from op_syekcl when it is needed. The
token functicn, symbol, which does the retrieval, requires access to
the grasmar to do it. Since the parameters of the <create-code> of

token are not accessible to syabol, it oust obtain this access through

-2 Y~

its rep parameter, t. The <create-code> for token stores a reference
to g in the rgp especially for this PUurpcse. Although the use c¢f the
Eep of graemar through the Igp of token leads to doubtful efficiency
in the example, it illustrates an impertant technique for sharing

information.

Belaticnship to Previous Work

Quch werk has been done in the drea of creating suitable
mechanisas for defining data types. There is nc hope of surveying all
that work here, nor is {t all relevant to this Paper. In this sectian
wa outline the araas of work that are nost closely related to clusters
in that they provide in SOme vwvay tcols for defining abstract data
tyres, and we attempt to characterize how the cluster approdch«.differs
from that werk. The related work can be loosely divided into three
cat;gcries: extensible languages, ilplelentation specifications for a

sat of standard abstract operators, and SIMULAS7 class definitions.

Much ©of the work and much of the success with extensikle
languages (3) has been in the area of data type definition. This work,
however, has been primarily oriented toward ccnstructive rather than
abstract definiticns. New types, or aodes .as they are freguently
called, are created ty constructing a Lepresentation in terms of
existing types using the priamitive type construction facilities of the
language. Type construction facilities grcvided by an extensiltle

lanquage typically include mechanisas for defining Gpcinters to

=2 5=

okjects, or defining wunicns of distinct type classes, and for
constructing aggregates of objects. These correspond closely to the
facilities used here to define feps. Ibhe operations applicable to
such constructive types are derived automatically from the fcrm of the
type construction rather than being explicitly defined by the creator
¢f that type. Although, in some casaes, it is possible to augment the
constructively defined operations with scme derived operaticns, it is
usually the case that any tailoring of operaticns to match an abstract

type is left t¢ the syntax extension mechanism.

The main problea with extensible languages is that they do not
encourage the use of data abstractions; insteaad, they tend to make
them difficuvlt +to Adaeafine. Because the abstract operations are
normally defined syntactically while the data is ﬂefiged by a
constructior, a user must learn two different pechanisms, and the
def{nition, instead of being collected in one place, is split into
distinet parts. Furthermore, when syntax eacros are used, it is
difficult tc restrict access to the representation to just the

functions defined for the abstract data tyge.

Standard Akstract QOperaticns

The work derived from the earlier work of Mealy{i) and Balzer {5)
is much closer in spirit to the approach taken here. Mealy established
the view that a data collection is a wmap from a set of selectors to a
set of values, and that cperations on data callections are either
transformations on the map ar uses of the map to access elements,

This view has led to attempts to standqrdize a set aof abstract

26—

operators for data collections. For example, Balzer propesed a
particular abstraction for such cogllections which define a set of four
abstract cperators to create, access, modify, and destroy abstract
data collections. The user would define a particular collection ty
specifying how each atstract operation was tc be implezented., This
work has teen extended (e.g., Early(6)), but its primary emphasis has
remained cn defining a standard set of abstract operations. More
complei operations are defined as procedures written in terms of these

abstract c¢reratiaons.

Although it is useful to Adistinquish some ahbhstract cperations,
such as "¢reate,® which have a high probability of being applicable to
every abstract data type, it sSeems unreascnakble tc expect that a
predetermined set of operations will suffice to manipulate, every
absgpact data obiect. Therefore, 1leaving the selection of the
operations to the creater of the type, as 1is done with function

clusters, provides a more closely tailored abstraction.

SIMULA Classes

The language which most closely resembles, in form, the language
presented here is STIHULAG7 (7). SIMOLA class definitions have emany
similarities with cluster dJefinitions. There is, however, a very
important philcsophbical difference in these ¢two langquages vwhich leads
to several 1important linguistic differences. The classes of SINULA
were designed to represent and provide full accessibility tc data
obhjects. Every attribute anmd function inm a class is accessible in the

blcck in which the «c¢class definition is esbedded. Therefore, the

-2

actual form of the representatian is always known to the user.

In contrast to this, the rep of a cluster is not accessible
cutside the cluster. Functicns ip the cluster grovide the cnly way to
access the contents of the ;gp and, even then, only a subset of the
functions defined in the cluster may be externally accessible. As a
result of this philescrhical difference, the mechanisms for
referenqinq data, the use of necon-local variatle references, and the
use of blocks and Dbleck structuring is quite different in the two

lanquages,

Inplementation Copsiderations

¥ost aspects of the implementation of clusters will be ban?led in
a cénventional FATIREI. 'There are, however, several aspects of the
iﬁpleuentation which deserve special wmention because they are
~non-standard or have a significant impact ¢n the practicality of using

c¢lusters to represent abstract data.
Modules apd Module-

The compiler accepts a module as input. A mcdule will usvally be
a cluster, but will sometimes be a procedure like Polish_gen or scan.
In tte couise of cempiling a wmodule, free variables will be
encountered either as abstract data types or procedures. Hote that
operations on abstract data type objects are not referenced freely,
since they atre prefixed Lty the <type-pame> in every case. Thus the

class of free variables corresponds naturally to the modules and each

free variatle constitutes a module-pame.

When the compiler processes a module it builds a description-unit
containing information about the module. Information held in the

description-unit includes:
1. The location of the okject code generated Ly the compiler.

2. A descripticon of the interface which the ®odule makes available
to its users. In particular, complete infcermaticn about types of
all parameters and values expected by the module is maintained.
If the wmodole is a cluster, intorl;tion will ke kept for each

function in the cluster.
3. & list of all users of the module.

Cbhviously much moare information can be stered in the description—unit.
For example, debugging information in the foram of sysbol tables, etc.,
documentation info:mation,' specification inforwation in the form of
predicate calculus descriptions of input/cutput relaticnships, and
even an analysis of the rationale for the decisicns made in designing

the mcdule.

We expect the compiler to provide a wmeaning for each module-name
in the form of a map from amodule-name to descriptian-~unit, and from
there to the waodule itself. The ccmpiler obtains access to
descrirtion—-units by means of a wmulti-level library systenm. The

library consists of a tree of directories which are structured much

-29—

like the directories in the MULTICS file systenm(8). Each directory

rerresents a related collection of modules.

The library system thus provides the information necessary toc map
module-nases into modules. Hcwever, using the entire library to map a
module-naee provides tcoc much flexibility and leads to the possibility
of name conflicts. Instead the conmpiler intergrets module-names using
a directory supplied by the user and poassitly bonilt specially for the
compilation cr group of ccapilations. The compiler also must know the
library name of the module being coapiled so the library can he

updated to accomodate future maps.

e expect the compiler to detect all errors it possibly can at
cémﬁile time. A particularly important class cf arrors results from
mismatches of types of parametars and values across module boundaries.
The ccwmriler makes use of the +type information stored inm the
description-unit to detect such errors. Once the ccompiler has
ottained the description—unit by using the library to interpret the
madule-nawe, it will check tc be sure that the types of parameters
passed cbrrespond exactly to the expected tyres, and likewise far the

values returned.

The only place where a non-match is permitted is when an object
has abstract type in the caller and type rep in the called procedure.
One cf the ®most important aspects of the cluster representation of an

abstract data type is that the actual rep of the data type is

inaccessiktle outside the functions whiﬁh ;ake up a cluster. Thus, it
is extrerely important that the change tc type rfep is a leqitimate
one. It may be +that the compiler can do sufficient checking at
compile time in this case. However, the technigue to be descriked in

the fclleowing paragraphs provides greater flexibility.

Mcrris (9) has described a technique for controlling access to
dati otjects which can be adapted to contralling the accessibility of
Ieps. The idea 1is to attach to each rep instance a value vwhich
uniquely identifies the <cluster which created that instance. The
purpese of this attachsent, vhich is called a tag, is te lisit direct
nse of the rep to that code which knows the tag, namely, the functions
defined in the cluster. The tagging must be done irm a way which
insures that nc prcgram unit outside the cluster can learn the 'unique

value and thereby be akle to counterfeit instances of the abstract

type.

In the language discussed here, unlike that used by #orris,
neither the tag nor the tag checking and insertion operatiéns are
visible to the user. Wwhenever a cluster is compiled, a unique tag
value is ottained from the operating systeam by the cospiler. 1his tag
value is used by the compiler to generate the code to create instances
of the abstract data type and the code within the functioms cf the
cluster which access the rep directly. Whenever an instance of the
rep is created, code is generated to tag it with the cluster tag.
within each procedure vhich has one or wmere arquaents of type rep,
code is generated to verify the correctness of the tag on the actual

argueents and, if the tags match, to allowv direct access Lty

—-39=

temrorarily neqgating the effect of the tag, Hhen the function

returns, the access liniting effect of the tag is restored,

This approach can be used even vhen the code for the functions of
the cluster is axpanded inline, provided the CFerating system prevents
the user fron accessing or modifying ccmpiled cocde without using the
compiler, If the user is rrevented from accessing his conpiled cade
directly, the tag and the Frimitives which control the effect of the
tag can ke inserted inline with the rest of the function. This allows

noramal cptimizatiaon to take place without exposing the representaticn.

In top~dawn Frograsaing, module-names will frequently he used
hefore the amcdules they refer to are defined. Nevertheless, we wish

to 'Eompile meanings for such modules and still have the compiler

detect errors in use of types.

¥hen a nmodule is referenced before it is defined, 'a
description-unit will bLe created for it, and type information
collected on the tasis of what the user-madule expects. The
user-nmcdule will be coapletely compiled and Ray even be debugged using

a simulation of the not-yet-defined module.

When the module is finally coepiled, its tyre informaticn will be
compared with the type informatian in the descripticmunit, In the
course of this CCRFarison, errors may be detected, and these are acre

likely to be errors in the user-module than in the module curtently

=32~

being compiled. In order to cope with such errcrs, a list of all users
of a nmocdule is wmaintained in the module description—unit. This
enatles the comriler to notify the programser of the identity of the

modules which are in error.

—— iy, .

We tLelieve it is helpful to assoclate two structures with a

programs; its logical structure and its physical structure. Tha

primary btusiness of a prograsmer is to btuild a program with a gcod
logical structure -— one which is understandahle and leads to ease in
modification and waintenance(10). However a good logical structure
does not necessarily iamply a good physical structure -- cne which is
efficient to execute. In fact, the techniques employed ;o achieve
good. lecgical structure (hierarchy, access to data only throughk

functions, etc.) in many cases seem to imply bad physical structure.

We telieve it is the business of the compiler to map good logical
structure into good physical structure. The fact that. the two
structures may diverge is acceptable previded that the .ccnpiler is
verified, and that all prograseing toals (for example, thé debugging

aids) are defined to hide the divergence.

The language is irtended to te compiled by an cptimizing compiler
which d4achieves a good physical structure in the cutput code.- An
important efficiency can be obtained from the fact that the language
is flexitle vith respect tc the mwmeaning of an operator-use. Each

operator-use may be replaced either by a call upon the cortesponding

=33-

function 1in the cluster or ty inline ccde for the cerrespcnding
function. Two aspects of the language design wake this flexibility

possitle:

1. Fecause the syntax for an operator-use is identical in both
Cases, it is possible to change the ccrriling technigue that is
used without rewriting the procedure in which the operator is

used,

2. The invariant portion of the cluster, the ccde fcr the functions,
has teen carefully seprarated from the I8P, vhich hclds the chject
dependent information; thus, inline insertiom of the code is

Fossitle.

Inline imserticn of the code for a function allows that code to
be subtject to the optimization transfcrmaticns available in the
compiler. oftimizing transformations, such as compile-time evaluation
and coxmaon subexpressian elimination, remove redundant computations,
- thereby decreasing the time needed to execute the OPeraticn. For
examrle, all error checks in the stack cluster functions cou;d be
eliminated if those funciions vere inserted imline in Polish_gen.
These standard optimizaticn techniques should be extremely effective
becanse the compiler is dealing with a structured Program; the lack of
free variakles, and of 4oto*s and other confusing control structures
implies that a therough data and control flow analysis can he
performed. 1In other words, the compiler can tLtenefit from the gecod
logical structure c¢f the Erogram to cbtain a thorough understanding of

it, just like a person can.

-34—

The price paid to obtain this execution time optimization is an
increase in the cost of redefining or sodifying a sodule. (We are
concerned bere especially with modificatiens which perserve the
interface; for example, using hashing to find reserved words in the
token cluster instead of a linear search.,) Each such mcdification may
require the recompilation of the wmodules which use the mocdified
functicns inline. Since the decision to use inline code can be
delayed until gerformance measurements indicate which sections of a
System are critical, one need relinguish the flexibility of easy
program modificaticn only where a pasitive perforsance benefit would
result froa inlire code. Note that %he list of the users of the
module, kept in the description-unit, can Le used to cause automatic

recompilation when changes are made, :

This pager has described an approach to coepater representation
of abstraction. The approach was discnssed both as a concert and as a

part cf a pregramming language, and examples were given of its use.

Tke ltasic idea is sinpie: an abstraéticn is vieved as an abstract
data type which iz completely characterized by the operations which
may be performed on okjects of that type. Mevertheless, the idea ana
its incorporation into a programsing language appear to be new.
Although it 1is pessible to defime such abstractions in existing
Frogramaing languages. none of them supports this ability clearly and

simply.

- 3G~

The rationale behind undertaking to develop the language was to
make the practice of structured programeing more uonderstandable.
Structured programeing is tased on a seesingly nmysterious process of

discovering usefnl abstractions. We felt that some of the mystery

.could te removed if the language were right -~ that some of the

mystery resulted from lack of understanding of what an abstraction

was, and the proper language would resclve this issue,

We are convinced, rased on our experisments in using the language,
that we have succeeded im this direction., We feel, however, that the
language alsc aids in another wnf. Although a language can never
teach a pregrammer what constitutes a good program, it can guide him
into thinking about the rigﬁt things. The language desqribgd in this
Faper epccurages the progragmer to ;cnsciously search for
atstractions, and to think very hard about their use and definition.
Since we believe that proper selection «cf abstraction is the key to
good design(1l0), we are very encouraged Ly the emphbasis which the

language places anm it.

We FEtelieve that the approach to akstracticm discussed in the
paper <can e usefully incctpcrnted in many different kinds of
langauges. It is ﬁnlikely that any language, no matter how high-level,
containg all the abstractions which any person working in it would
require., The abstraction building mechanism described in this paper
would in fact be a useful feature of a very-high—level language. 1In
addition, a language incorporating the =mechanism would encourage

structured prograesing and the production of structured prograss --

=36=_

worthy gbals, nc matter what level of language is being used.-

(M
{2)

(3)

{4
&)
(6)

n

(8)

(9

(10)

Wirth,N., "The Programmihg Language PASCAL," Acta Informatica,
Vcl. 1 (1971, 35-613

Parnas,D.l., “Inforeaticn Distribation Aspects of Cesign
Fethodology*®, Proceedings IFIP Congess (August 1971}

Schuman,Sea., and Jorrand,P., "Definition Mechanisms in
Extensitle Programming Llanguages,® AFIPS FJCC Proceedings, Vol,
37 (1970}, 9~-19

Mealy,G., "Ancther Lcok at Data," APIPS FJCC Proceedings, Vvol. 31
{1967), 525-534

Ealzer,R.%., "Dataless Programming," APIPS FJCC Procedings, vol,
31 (1967, 557566

Early,Jd., ™"Toward ar Understanding of Data Structures,” Conrnm.
ACE, Vol. 14, No. 10 (Cctober 1971), 617-5627

Dahl,0.J., Myhrhaug,B., and Nygaard.K., The SIMULA 67 Cosmon Base
Languagae, Norwegian Ccaputing Center, 0slo, Publicatien Na. 5-22,
1870 =,

. Laley,R.C., and Neumann,P.G., ™A General-Purpose File Systena fer

Seccpdary Sterage," AFIPS FAICC Proceedings, Vvol. 27 ({1965},
213-229

Morris,J.H.Jdr., "Protection in Programming Languages," Comm. ACHM,
Vol. 16, No. 1 (January 1973), 15-21

Iiskov,E.H., ™A Lesign Methodclcgy fcr Reliable Software
Systees,™ APIPS FICC Proceedings, Vel. 41 (1972}, 191-199

