MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

Computation Structures Group Memo 92

The Current Challenge to Computer System Architects®

by

Jack B. Dennis

% . . .
Qutline of a talk given at the International Workshop on
Computer Architecture, Grenoble, France, June 26-28, 1973

This work was supported in part by the National Science
Foundation under research grant GJ-34671.

October 1973



THE CURRENT CHALLENGE TO COMPUTER SYSTEM ARCHITECTS

JACK B. DENNIS

Project MAC, MIT
Cambridge, Mass. U.S.A,

THEME

Two circumstances are holding back needed advances in the

organization of general purpose computer systems:

The desire to maintain compatible implementation of

Programming languages that embody cobsolete constructs,

The reluctancde of computer architects to adopt a view
of memory better suited to the data representation neeads
of contemporary computer applications than the crdered

array of words.



Summary

Manufacturers of general-purpose computer systems face a
difficult challenge in meeting foreseeable user demands.,

The ability to correctly execu%e existing application
software is always a consideration of high priority to the.
manufacturer.

Nevertheless, the market demands the introduction of new
capabilities for security, data base management, sharing of
information, and any capabilities that lead to reduced costs
of program construction,

Modularity - the ability of a computer to support the
construction of new programs from independently written Program
modules - is g potentially powerful approach to reduction of
program development costs.

Computer systems that meet requirements for Security and
modular programming must be based on concepts of memory
organization appropriate to the abstract data structures of modern
programming practice.

The prospect of very inexpensive_memory and processing
hardware makes it attractive to apply hardware to improved
computer architectures for the support of security and modular
Programming capabilities,

We point out that providing the desired new capabilities
conflicts with providing transferability for existing application

software,



In particular, certain aspects of widely usad Programming
languages (for example, pointer data in PL/1) depend on
relationships of addresses in a conventional memory array.

On the other hand, modular Programming and security of
information require that a tree~structured view of memory bhe
embodied in the computer System architecture.

The resolution of this conflict is a revision of language
definition to be consistent with the requirements of modular
programming and security of information,

Successful development of Computer systems that provide
the desired new capabilities must make use of bPrecise semantic

models for their functional behavior.

L. The manufacturerg' goals

Provide implementation ¢f Cobol, Fortran, PL/1, consistent
with accepted‘standards for these languages.

Meet de facto standards for important data base access
methods. |

Provide hardware and confiquration independence for programs
and data. Provide transferability of programs and data between
systems.

Permit communities of computer system users to share Procedures
and data bases.

Ensure that access to procedures and data bases is permitted
only where duly authorized {security).

Apply advantageously the decreasing cost of memory and data
Processing hardware.

Provide means for easier Program construction,



2. Modularitz

The modular construction of programg is potentially a
powerful means for reducing the effort required to obtain correct
application scftwére.

A computer system supports modular Programming to the extent
it permits new Praogram modules to be formed by combining existing
independently specified modules without knowledge of their
internal construction.

Modular programming has strong implications with respect
to computer system design:

l. Uniform representation fer all data types to be

communicated between pProgram modules;

2, sufficiently general conventions for interfacing

program modules:
3. Ability of a program module to Create, access and

communicate data structures of arbitrary complexity.

The requirements of modular Programming become more difficult
to meet as the modules depend on more advanced data structures
and programming constructs.

The ideas of modular program construction and of "structured
programming" are closely related and have similar implications

regarding the design of programming languages and computer systems.

3. Security
Security becomes an important design objective when a
computer system serves the needs of many users and users are

able to share programs and data bases.



In a secure system access by a procedure is permitted by the
System only to those procedures and data structures for which
authorization has been given by the owner.

Some issues concerning security are: What are the kinds of
objects to which authorization pertains? What are the entities
that grant and receive authorization? By what mechanism is
authorization accomplished?

A satisfactory security scheme must be hierarchical in
the sense that access to a data structure or procedure implies
access to component data structures and procedures. This is
required by modular pregramming. It must be possible to authorize
access te a compound object in one step.

The objects to which authorization applies should be Program

modules {(procedures) and data structures,

4. Evolution of the virtual memory concept

Program modularity requires that the camputer system implement
a uniform scheme for accessing information regardless of the
physical medium in which the information resides. The concept
of automatic page rYeplacement was a significant initial step.

The Burroughs B5000 computer system introduced the segment
as a unit of information on which modular programming and security
is based.

In Multics the concept of virtual memory has been advanced
50 that all on-line procedures and data structures of a large
community of users may be accesgsed in a uniform way. Any
procedure or file residing in the Multics file system may be
shared by any number of users once authorization of the owner

has been ohtained.



These schemes are important in computer system design.
Nevertheless, these designs are ad hoc - an understandlng of
their foundation in precise semantic terms is missing, Moreover,
the information unit (the segment) is not a natural information
unit for representing many important information structures of

gource languages.

5. Language-based views

Iliffe's concepts in Basic Machine Principles show how the

organization of computer systems may better reflect the regquirements

of programs using dynamic data Structures. This illustrates that
important data structures do not map efficiently onto conventional
memory,

The Record Handling constructs of Hoare show how security

may ke chtained for single programs by an elegant language
compiled for a conventional machine. Yet this work does not
show how to realize g Secure multi-program system that supports

modular Programming.

6. The Design of a base lanquage

A new approach to the achievement of modular programmlng
and security is needed based on the rational design of the base
language to be realized by the computer system,

We require:

L. A uniform representation for elementary objects:

integers, reals, strings;

2. A uniform scheme for constructing and accessing data

Structures built from elementary objects-

3. A suitable notion of Program module.



We are considering the design of a base language using rooted
acyclic directed graphs as the fundamental objects for representing
data structures and program modules. We associate selectors
{integers or strings) with the branches of an object and elementary
cbjects with the leaves,

A program module is an object that defines a transformation
of objects into objects.

We let the allocaticn of storage for data elements (nodes
and leaves of objects) be managed by the "reference count"
method so elements that becone inaccessible are deallocated and
their storage freed.

We have shown that many important constructs of contemporary
Source programming languages can be effectively translated into

such a base language.

7. Translatability

The computer system architect must demonstrate that his
proposed system is able to support effective translation for
essential source languages.

If the computer system design retains all constructs (such
as memory as an indexed array and sequential instruction execution)
on which earlier language translators are based, then consistent
translators are easily constructed for the new system,

If the conventional notion of memory is not supported by
the new system, the system architect is obliged to prove that an
effective and correct translator can be built.

The only proof acceptahle at Present is demonstration of an

actual translator using simulation of the bProposed system.



