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Introduction

R. Karp and R, Miller [7] introduced Vector Addition Systems to
answer certain decidability questions about their Parallel Program Schemata, and
M. Rabin ghowed that a particular problem about Vector Addirion Systems was un-
decidable: is the Reachability Set of cne Vector Addition System a2 subset of the
Reachability Set of some other given Vector Addition System, Rabin's first proof
in 1967 used exponential polynomials [ 2]: at that time Hilbert's 10th Problem [4 ]
had not yet been shown to be undecidable,

In 1970, Matijasevid [ 9] proved that Hilbert's 1Uth Problem was undecidable,
and thus permitted a technically simpler proof of Rabin's result, Rabin never
published his proof, but in 1972 he presented his new proof in a talk at MIT, an
account of which can be found in [ 1].

Vector Addition Systems and Petri nets can fully represent each other [3,8]
thus Rabin's regult also gives us an undecidable problem about Petri nets. Further-
more, we believe that the graphical character of the Petri ner mrdel permits an

easier exposition of the undecidability result.

Theorem: Given two Petri nets having the same number of places, each with a
given initial marking, it is undecidable in general whether every marking

reachable in one net is also reachalile in the other.

Proof: We show that, given an arbitrary polynomial P(Xl, N xr) of r variables
with integer coefficientsg, there exists a pair of Petri mets such that the
set of reachable markings of one is a subset of the reachable markings of
the other if and only if the polynomial P has an integral root, Thus, if
we could decide for any two Petri nets whether in fact the set of reachable
markings of one is a subset of the reachable markings ¢ Lhe other, we could
also decide whether an arbitrary polynomial with integral coefficients has

th

an integral root. But this is Hilbert's 10~ Problem, which has been shown

to be undecidable by Matijasevie.

. T th
Actually, we use the following equivalent form of Hilbert's 10 problem:



Letma a: Given two ﬁolynnmials of r variables with non-negative integer coefficients
P(x) and Q(x) such that, ¥% € W : P(x) = Q(x), it is undecidable whether

there exists a solution x ¢ N to P(x) = Q).

froof of Lemma a:; Let R{x) be an arbitrary poiynomial with ¥ variables. Then

R{(x) = 0 has a solution in &~ if and only if nne of the 2° polynomials ob-
tained from R by replacing some of the variables by their negative has a
root in Nr. Thus a finite number of tests for non-negative integer routs
is enough to find any integer root of R.

Now, let Rl(i) be a polynomial for which we check for roots iniﬂr.
Let K, (X) = (R, (£))°. Then we have:

Vx G'Wr : Rz(i) 2 0, and the rouvts of R2 are clearly roots of Rl and vice versa.

Now, we geparate pogitive and negative coefficients of RZ:
Ry(&) = P(k} - Q(®) = 0

where P and Q are polynomials with nen-negaktive coefficients and clearly

gatisfy the conditions of the Lemma.
First, we shall show how to get a Petri net to behave like a polynomial.

Lemma b: Given a polynomial with non-negative integer coefficients of r variables,

P(xl, ey xr), there exists a Petri net with r+1 distingulshed places such
that the set of all markings reachsble in these distinguished places is the

set {(xl,..., X_s z)]xi EN &0< 2z < P, ey xr)}

There may be many more places in this Petri net than just these distinguished
places, but for the moment we disregard their markings,
As an example, consider the following net, which can be seen to correspond

to the polynomial of one variable P{x) = x+1:
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The possible markings for the distinguished places are:

X Z
(0, 0) {1, 0) {2, 0
(0, 1) (1, 1) (2, 1)

(1, 2) (2, 2%
{2, 3% ete.

The relation ro the graph of P(x) is obvious: The reachable markings can be rapre-
sented by the integral points below or or the graph:

[

P{x) = x4+ 1
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Figure 2

Proof of Lemma b: We shall ghow how to construct such a net, given a polynomial
P

with r variablesg Xjs eeey L

The general structure is shown below:
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The generation part is easy to build:
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Figure 4. 'generate'

Each transition ti firegs some number {po3sibly zero) of times, generating a
value For x, in two coples (one for rthe "eomputer,' one for the corresponding
distinguished place), then the 'generator" quits. The "argument" part of the

distinguished marking is now established, and will not be altered.



The "computer" is a Petri net which, for a given "argument"

Zys «sxy X, tries to compute P(xl, rees xn). However, for its output
place =z, PCxl, cauy xr) is only an upper bound: WNo firing sequence can
possibly put more tokens on z, but there exists a firing sequence which
does pﬁt P(xl, rees Xr) tokens on z. It does not matter if some other
firing sequence kills the net before the boynd is reached.

Rabin calls such a computation by upper bounds 'weak computation,'
and we are about to show that polynomials with non-negative coefficients
are weakly computable by Petri nets.

Tolynomials are computed by the operations of addition of two num-
bers, multiplication of two mumbers, and substitution of previous results
into one or several new additions or wultiplicarions. Now, since, for

positive inregers, each of the operations add, multiply, copy is non-

decreasing as a function of its argpuments, if we substitute a reachahle
upper bound for fts arguments, the result will also be a reachable upper
bound,

Also, we shall make sure that the reachable upper bound can be ap-
proached one token at a time, so that the possible markings of the "result"
place include all integers from zeru to the bound included.

The add and copy operations can he represented by a Petri net as
follows :
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Figure 5

And the following Petri net has a reachable upper hound of x v in its

output place:
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Figure 6. "multiply"

It can be seen that the following strategy yields x * ¥ tokens at the output,
and that this cannot be exceeded, though it is possible to exhaust x and
thus grind to a halt by firing only t and t', not preoducing any tokens
at the output. The maximum output strategy is: Transfer all y tokens into
¥, fire t, transfer all of ¥ into § (at this point we have y tokens at the
output, x -1 at the inpur), then firing t' and bring all y tokens back to
Y, and repeat this for the remaining x -1 tokens. ¢ can fire only x times,
and at most y tokens can be transferred to the output between firings of t.
Having thus shown that addition, mulciplication and substitution are
weakly computable by Petri nets (and argued that substitution in faect pre-
serves weak computability), we can now construct a Petri net that weakly
computes a polynomial, say 3x2 + 2xv + y3, by interconnecting the Petri nets

weakly computing add, copy, and multiply, as shown in Figure 7,
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Now we will show how to construct two Petri nets, A and B, such that every
marking reachable by A is also reachable by B if and only if there exists a col-
lection of non-negative integers iy amny L such that, for two given polynomials

P and Q as described in Lemma a4, wa have:

P(xl, cesy xr) = Q(xl, ceay xr)

Since P(X) > Q(%), we have: _
(V2 € W) (P(R) = Q(R) &> PE) < Q) + 1)

As far as the graphs of P and Q+1 in (r +1) -space are concerned, it means that the

*
graph of P "dips under" the graph of Q+1 if and only if P = Q has a solution:

Z P
&l
point rcachable in B, ——» Q
but not in A
P =g B
X ps
no integer solution integer solution

Figure 8

Now let A' and B' be Petri nets corresponding to the polynomials P and Q + 1 acecording
to Lemma b, Every marking of the set of r+1 distinguished places of p' is reachable
48 a marking of the distinguished set of ¢ +1 places of A’ gxcept 1if the graph of P
"dips under” the graph of Q, i.e, if there ig an integer sclution to the equation
P = Q. Yet we want to have two Petri nets A and B where every marking of B is
reachable by A 1f gnd only if there is no solution o P = Q} we want to compare the
markings of twe complete nets, not just for a subset of the places,

What remains to be done is to modify A' and B' into two nets A and B of same

number of places n, such that every marking of B is reachable in A except 1if the

'Enough for the "dip" (shaded area in Fig. 8) to contain an integral point.
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marking of the distinguished places of B' cannot be reached by the distinguished
places of A',

As a first step, we add enough extra blank rlaces, not connected to any
existing transition, to one of the uets, in order to get two nets of the same
number of places n- 2, then we add two more places @B to each net. These are
all the places in A resp, B, In B, let o be blank and B be marked with one token:
neither place is connected to any transition. This completes B, which thus dif-
fers from B' in only a few disconnected places. 1In A, however, we insert a transi-
tion from ¢ to B, and we let place o be in a self-loop on every transition of A.

We let ¢ be originally marked with one token, and B be initially blank. Thus, as
long as the token is in , A behaves just like A', but when the token transfers to
B, all transitions become permanently disabled, and in particular, the marking in
the r +1 distinguished places will be frozen.

Now, for each of the n-2- (r+1) undistinguished places of A, we add two
transitions, one of which puts a token on the place, the other removes a token from
it; then we put all these new transitions in self-loops on place §. Thus, after
the token from g is transferred to B, any marking can be reached in the undis-
tinguished places of A by firing these extra transitioms a suitable number of times,

To see how this construction works, let us see under what condilions every
marking reachable in B can also be reached in A,

Let us label the places as follows: P> +++y P, are the places containing
the argument for the polynomial, Pryl containg a partial result of the computation.
These are the r+1 distinguished places. For the sake of argument, let the number
of places of B' be the smaller number k, and the number of places of A' be
n-2>»%. We add n-2 -k undistinguished places to B', TLet us label the undig-
tinguished places of A and B Ppyz =+ Po_g» and let us label y and g, P, and P 1>
respectively. (See figuwre 9.)

For comparing markings in A and B, we pair the plrces accurding to their
labels pi. Now, any marking of B will be, by construction, of the following form,

where z < Q(xl, crey xn) + 1, and the ¥, could have any values.

Py ee pr Pro1 Pz v pn-Z Pn-l |

(Xys weey %, 4 ¥po o eees ¥pipeogs 1, 0D
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To reach this marking in A, we must first try to match Pis toes Progs since

after we match P.-1 and P, we will have frozen the marking of rthe distinguished
places of A. Therefore, we first generate the argument Xys eeen X for polynomial
P, then partially compute P(xl, cesy xr) in a way that, 1f completed, would

actually yield P(xl, emey xn) tokens in p of A. DBut we stop a8 soon as we reach

r+1

z, the marking we try to match in p of K., This is possible if and anly if

r+1
P(xl, caey xr) > z, which in turn could fail only if z = Q(xl, vy xr) + 1 and in
1 of A,

As soon as we do, we switch off all transitions of A' by transferring the token from

fact P(xl, ey xr) = Q(xl, veey xr). Buppose we could reach z in p

a(pn) to B(pn_l), at the same time matching the marking in these two rlaces to the
oene in B. But now, we can reach any marking we wish in Pryas *<v» P2 of A, by
firing the extra transitions of A a suitable number of times; in particular, we
can match V1o wues Y ep =32 thus reaching in A the proposed marking of B, As we

pointed aut, this can be carried out for all markings of B except one where we have:

z = Q(xl, Cas xr) +1 = P(xl, ey xr) + 1

But such a marking is reachable in B 1if and only if the ahove equation does have a

solution in non-negative integers, Thus:

(V& € mr)zwi) # Q(x) «<&=> every marking reachable in B is also
reachable in A

QED
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