MASSACHUSETTS INSTITUTE OF TECHNOLOGY

FROJECT MAC

Computatfon Structures Group Memo 97

Propoged Research on

Semantic Foundations for 3tructured Programning

Part IT of a Proposal to HNSF

for Further Research in Computation Structures

by

Jack B. Deunls
Barbara H. Liskov

February 1974

43

PART II. GSEMANTIC FOUNDATIONS FOR STRUCTURED PROGRAMMING

A. SUMMARY

This regearch proéram will develop and evaluate fundamental semantic
congtructs to gupport the design, construction and verification of well-
structured programs, New linguistie features required for structured pro-
gramming will be identified and defined through the development of a struc-
tured programming language, Semantic constructs for realizing these lin-
guistic features will be incorporated into the definition of a base language.
A realization of the base language will be designed in the form of an experi-
mental computer system having characteristics matched to the semantic con-
structs of the base language. The program will include supporting studies in
formal semantles, schematulogy, program verification and computer architecture,

A separate proposal for funding congtruction of the envisioned experi-
nmental computer system will be submitted when our design effort has reached
the point that hardware requirements ¢an be specified. We expect this will

occur during the first year of the research program.

46

B. INTRODUCTION

In recent years the cost of producing software has grown to the point
where it dominates all other costs involved in making use of computers [1l].
Not only is software costly to produce, but when it is delivered it is full
of errors, and is difficult to maintain and modify.

Software is expensgive bed;use of its complexity [2}. Much of the com-
plexity is in the problems which software is asked ko solve -- the probleﬁs
are inherently complex, However, additional complexity arises from two sources:
(1) Erom our inﬁbility to discover the concept: required te solve a complex
problem, and (2) from difficulties in representing a problem solution as a
program for executien on a computer system, The latter added complexity does
not reflect complexity in the problem or in the concepts requjred for its solu-
tion, but rather arises from the mismatch of the semantic constructs provided
by the computer ﬁystem aﬁd its programming languages to the representational
and ctransformational needs of the problem. For example, there may not be
enough primary memory available, so memory management is added tc the problems
which séftware must solve, Or, the means provided for ofganizing concurrent
proceséing gctiVitias is inconsistent with the modulat structure of programs.

Progress towards production c¢f understandable and correct goftware re-
quires techniques for keeping complexity under control -- tools that help the
programmer in organizing the inherent complexity of his problem, while adding
the fewest extrﬁneous issues to his task. The discipline of structured pro-
gramming is concerned with the development of such techniques. Interest in
structured programming was aparked by Dijkstra's letter [3] in which he argued
the existence of a relationship between quality of programs {correctness, under-

gtandability) and the absence of goto's and labels, Although the ensuing

&7

debate led many programmers to associate structured programming with goto-
free programming, Dijkstra himself identifies structured programming with the
develbpmant of program design methodologies [4],;and muech interesting work
has been done in this area [5,6,2]. This work ié closely related to studies
of proof of program cnfrectness [71. Ideallé, the programmer should be suf-
ficiently convinced of .the correctness of each sLep in writing & program that
he could give a proof of its correctness even though program parts remain to
be written. Indeed, the proof of correctness may even precede and define the
program [8,9]. |

In this research on prograﬁming methodology, the goto is not the only
programming construct to come under criticism. Global variables [10],
pointers {11] and mixing of input and ocutput parameters of proceduresg [12] have
been identified‘as harmful to ease of understanding and verification of pro-
grams. Dijkstra has remarked {13] that no present programming language pro-
vides good support for structured programming. Thus an fmportant research ob-
jective is the design of a programming language that meets the semantic needs
of strqctured programming. We propose to design and specify such a language.

Everyone is a#are that the new technologies of hardware production should
he used to reduce the cost of software development. However, innovation in
comﬁuter architecture has, with but few exceptions, responded primarily to the
twin demands of compatibility with existing languages and systems, and competi-
tive performance. Much innovation simply uses new technology (e.g. micro-
programming) to move functions former ly performed by software intc the hardware.
The result is then éansidered a "high-level machine. Choosing the right soft-

ware functions EFor micro-coding should result in better per formance, but there

48

is little.basis for arguing that 'highslevel” hardware will, of itself, re-
duce the cost of software develcpment.f'

The most successful early example of a high-level machine is the Burroughs
B5000 and its successors, which have built-in stacks designed to match the
) c0nven;{ons-of'Aigoi 60 for acéessing variables [1;]; .Yet tHe B5000 cannot be
considered an "Algol 60 machine" because the hardware includes a complete set
of conventional facilities through which many needed programming facilities
ot encompassed ﬁy Algol 60 are provided.

In contrast, the Symbol Project [15,16,17,18] undertook the combined de-
sipn of a language and its hardware realization -- the language became the
functional specification for the machine. ThE'Syﬁbol language frees the pro-
grammer froﬁ certain restrictiﬁns usually imposed by conventional languages
to permit efficient implementation on conventional machines: The data of Sym-
bol are tree-like objects that may change in form, depth and extent during ex-
ecution. (This removal of unnatural constraints from programming languages

is certainly in the spirit of reducing complexity of software -- it allows the
programmer to represent the entiries of his problem more directly by structures
of the language.) By using wired-in algorithms for creating and accessing the
basic tree-structured objects of the language the Symbol machine realizes the
Symbol language with acceptable efficiency.

More recently, many machines have been built (or proposed) to support
higher level languages, for example, APL [19] and Lisp [20]. Although such
machines can run programs faster than software implementations and perhaps pro-
vide better run-time diagnostic facilit ies, they make little further contribu-
tion to reducing the cost of software than is offered by using a high-level

language-

49

It has become evident that computer manufacturers see great potential
in moving'hstablished” software functions into microprograms. '"Established"
sofrﬁére functions may include scheduling and memory management functions,
data base access methods, storage mapping functions for structures such as
arraye, as well as érrgr recovery and diagnostic features. Since these ma-
chines are intended to support several standardized programming languages and
provide special support for data bases, the underlying semantic model is at
best a kind of ad boc marriage of '"desirable" software features. The outcome
promigses to be computer hardware that is comparabie in complexity of function
and specification to present-day operating systemé, and, just as for current
operating systems, has no easily comprehended semantic model.

Again, this course offers no certainty of reducing software costs, In
fact, the software problem will become more diffiéult a4s mMOre programs are
written that depend on poorly-understood featureslof the machines.

We believe a different course of develdpmenc has good potential and must
be seriously explored. Experience with higher-level language machines has
proved the feasibility of building hardware to support a well-defined semantic
model, However, to reduce the cost of saftware it is necessary to transcend
the limitations of conventional languages. We propose to attack the cost of
software by identifving new linguistic features helpful in producing wall-
structured programs. A base language willl be develeoped to serve as a precise
semantic foundation for the proposed structured programming language. The mo-
del defined by the Ease language must be sufficiently powerful to éncompass
the representational needs of a large class of structured programs, yet it must
be simple encugh that the axioms of the model can be easily understand by pro-
grammers and applied to the verification of their programs. Finally a ma-

chine architecture will be designed to efficiently realize the model.

50

In the following two sections we review our current and past reseﬁfch
thét leads up to the'program we wish to p;rsue during the next period of sup-
port. The first seﬁtion discusses the direction of our thinking about the
design of a programming language suitable for structured programming. This

discussion introduces the concept of function clusters which provide a new

kind of program module to support the use of abstract data types. The secon@
section traces the development of our ideas about computer architecture and
semantic models for computer systems. We point out thé.value of specifying

a base language which can serve as the common representation for programs and
data structures, and as a functional specification for a computer system., We
then discuss a possible form of base language that embodies the notion of data
flow rather than control flow, We demonstrate that the data flow language is
well matched to the semantic requirements of the proposed structured program-
ming language by showing how it provides a natural vepresentation for function
clusters.

The final section describes the proposed program of research.

51

C. STRUCFURED PROGRAMMING LANGUAGE

We have noted that research in structured programming is concerned with
the development of program design methodologies to contrel fhe inherent com-
plexicy of programs in a manner leading to correct programs which are easy to
understand, maintain and modify, and that work in this area is hampered by
the lack of a prograﬁming language in which structured prégrams can be written
concisely and naturally, During the current perigd of National Science Foun-
dation support, we have undertaken to design such a langugge. In this section
we first describe the present scaté of the languaée. Next we relate the con-
structs of the language to proofa of correctness. Finally we discuss some
problems in the language which are currently being studied.

Dur researches in the area of structpred programming led us to the reali-
zation that a structured program consists of a hierarchy of abstractions [21],
and that the ability te identify, use and define abstractions is fundamental
to the process of structured programming {2]. Two kinds of abstraction are
required: abstract operations and abstract data objects} Exigting languages
provide support for abstract operations In the form of the functiom cr pro-
cedure, permitting anoperation to be used abstractly, and its definition to
be given separately. A similar separation of use from definition for abstract
objects is not provided by existing languages [22]. Our structured programming
language will provide this ability through a new ling.istic conrtruict suppor ting
the use and definition of abs#ract data types. An abstract data type is a set

of operations. The operations as a whole define the behavior of objects of

" that type. Users of abstract objects make use of the defining operations, but

have no knowledge of how the objects are represented in storage, nor of how

the defining operations are implemented. The implementation of an abatract

52

data type, given separately from the use of objects of that type, ia pro-

vided by a new programming language construct, the function cluster.

Cl. USING ABSTRACT DATA TYPES
As an illustration of the use Sf abatract data types, consider the con-

gtruction of a translator:
"Polish_gen: Erocedpre (fnput: token_stream, output: outfile) returns outfile;

Procedure Polish_gen maps parameter input, containing a stream of tokens derived
from a program expressed in an infix language, into a Polish post-fix language,
entering thé gymbols in parameter output at the appropriate time. For example,

if Polish_gen received as input a token stream equivalent of
a+b* {c+ d),
it would return with output containing

abed+ *+

The program Polish_gen is shown in Figure 1. It is written in our struc-
tured programming language. A preliminary version of the language is described

*
in more detail in Attachment A and is derived mainly from Pascal [23].

(1} Ihe_language.has'two forms of modules corresponding to the two kinds
of abstraction: procedures, which support abstract operations, and
clusters which support abstract objects. Polish_gen is an example
of a procedure module {an example of a cluster module will be given

in the next section). Each module is translated (compiled) by itself.

*
B. H, Liskow and S. N. Zilles. An Approach to Abstraction, Draft

of a8 paper accepted for presentation at the Symposium on Very High Level Lan-
guages, Santa Meouica, March 1974,

53

Polish_gen: procedure (input: token stream, output: outfile) returngs outfile;

g: stack(token);
t: token;

mustscan: Boolean;

stack$push (s, token stream$next (input)):

mustscan = Ltrue;
- ——

while - gtackSempty (s} do

if mustscan

case token$pfec_;e1(stackStop(s), t) of
o' : gtack$push(s, t);
"="":: stack$erasetop(s);
"=":: begin '
“outfile$out_str (output,
token$symbol (stack$pop(s)}));
mustscan := falsge;
end
otherwise error;

elge outfileSout str(output, token$symbol(t});

end;

outfile$close (output);

return ocubput;

end Polish_gen

Figure 1

(2)

3y

)

(5)

54

The only.free variables which a module con contain are those

which identify other modules, These names are bound at transla-
tion time by means of a library created by;the Programmer ex-
pressly for this purpose; no free variables remain to be bound

in thé trdnslated modute. Pulisﬁ;gen makes vse of free variables
token_stream, outfile, stack and token, all of which identify data-

type modules,

The language has only structured control. There are no'gggg's'or
labels, but merely variants of coﬁcatenation,'selection (if, gggg)
and jteration (while) constructions. A structured error-handling
mechanism is under development, At present it is represented only

by the presence of the reserved word error,

The game syntax is used to declare ohjects of abstract data type as
is used to declare objects of primitive language-supported type.
For example

s: stack (token)

states that s is the name of a variable which holds an object of

abhstract type stack, and a stack object is to be created and stored
in . Information required for creating the pbject is passed as a
parameter; in the example, parameter token defines the type of ele-

ment which may be placed on the stack s.

The language is strongly typed. This means that objects may only
be operated on by the operations defining their type. Application
aof a defining coperation to an abstract object is indicated by a
function call in which a compound name for the function is used:

for example

55

stack$push(s, t)

token$is op(t)

The first part of the compound name identifies the type of the op-
eration while the second component identifies the operation.
A brief desecription éf the logic of Polisgh_gen can now be given.
Polish_gen uses‘variable t to accept tokens from parameter input one at a
-time. If t holds a token representing a symbol (like a} rather than an op-
erator (like +), that symbol is put in the output file immediately. Other-
wise, the token on top of the stack iz compared with t to determine the prece-
dence relation between them. If the relation is "<" t ig pushed on the stack
{e.g. "+" <« "*"), If the relation ia "=", both t and the top-of-stack token
are discarded (e.g. ‘ﬁ"=")"). If the telation is '>", the symbol held in the
top-of-stack token is appended to the output file, exposing a new top-of-stack
token. The next comparison will be between the pew top-of-stack token and t.
All of the token stream has been processed when fhe stack becomes empty. (We
have made the simplifying assumption that the input is a iegitimate gentence
of the infix language.)
Polish_gen makes uge of four data abstractions: token;ptream, outfile,
token and stack. The poﬁer of the data abstractions may be illustrated by
|
considering the type outfile which is used to shield Polish_gen from any physi—
cal facts concerning-its output. Fbr example, it doer not know what output
device is being used (or even whether there is one) or wheﬁ the I1/0 actually
takes place,.nor does it know how characters are represented on the device.
What it does know about output is just enough for its needs: How to add a

string of characters and how to signify that the output is complete, Its

knowledge consists of the names of the operations which provide these services.

56

C2. DEFINING ABSTRACT DATA TYPES

In this section, we describe the progrimminé object, the function cluster,
or cluster for short, whose translation provides an implememtation of a type.

The cluster embodies the idea'of:a data type being defined by a set of op-

. erations. A cluster exists to Support an abstract data type, and each per-

mitted operation corresponds to a function in the cluster.

As an éxample, consider the abstract data type stack used by Polish_gen.
A cluscer aupﬁorting stacks is shown in Figure 2. This cluster defines a very
general kind of stack ocbject in which the type of the stack elements is mot
known in advance. The cluster parameter element_type'indicates the type of
element a particular stack.object is to contain,

The first part of a cluster definition provides a very brief deseriptiom
of the interface which the cluster presents to its users. The cluster inter-
face defines the name of the cluster, the parameters required to create an in-
stance of the ;luster, and a list of the operations defining the type which

the cluster implements: e.g.,
stack: cluster (element=type: Lype) is push, pop, top, erasetop, empty

The use af the reserved word is underlines the idea of a data type being
equivalent to a greoup of operations.
The remainder of the cluster defihition, describing how the abstract

type ie actually supported, contains three pleces of information:

(1) Ohject Representation. Users of the ahstract data type view objects

of that type as indivisible, non-decomposable entities. Inside the
ciuater, however, objects are viewed as decomposable into eleménts
of more primitive type. The rep description defines the way objects

are viewed withio the cluster, by defining a template which permits

57

stack: cluster {element_type :type) ;i=pushﬁpop,top,arasetop,empty;

ggg(elem_type:tzge)=(tp:inte er;
e_type (L¥ype;
stk:array[l..] of elem_type);

create
5: rep(element_type);

s.tp :=U;

g.e_type := element_type;
return s;
end

push: operation (s:zep, vig.e_type);

s.tp r=s.tp+Hl;
s.stk[s.tp] :=v;
return,

end”

pop: ogeration(s:reg) returng s.e_type;

if s.tp=0 then error;
s.tp ;=s.tp-1;
veturn s.stk[s.tp+l];

top: operation(s:rep) returns s.e_type;

if s.tp = 0 then error;

return s.stk[s.tp];
end

erasetop:? ogeration(s:reg);

if s.tp=0 then error;
Eftp F=s.tp-I;
return;
EEE===

empty : gefation(s:reg) teturns Boolean;

return s.tp=0;

enE

end stack

Figure 2

)

58

objects of that type to be built and decomposed. For example, a
stack 1s composed of three subelements named tp, stk, and e_type.
The sterage for the stack is in the array named stk which contains

elements of type &_type, and tp holds the index of the topmost ele-

. ment in the stack.

Oﬁiect Creation, The reserved word create marks the create_code,

the code to be executed when an object of the abstract type is

"created. The cluster may be viewed as a procedure whose procedure

body is the create-code. When a user declares a variable to be of
abstract type, for example,

s: stack (token)

one thing that happens (at exeeution time) i# a call on the cluster.
pracedure, causing the create-code to be executed. The create-code
makes use of the cluster parameters which are in fact loeal to it
and may not be accessed in other parts of the cluster-definition
(including the tep). |

The cade shown in the stack cluster is typical of create-code.
First, an object of type rep is created: Space ias allocated to hold
the object as defined by the rep, Then, some-initial values are |
stored in the. object. Finally, the object is returned to the callgr.
As the.ohject is returned, i:-changes from type rep to the abstract

type defined by the cluster,

Operations. The body of the cluster consists of operation defi-

nitions, which provide implementations of the permissible operations

"on the data-type. Operation definitions are like ordinary procedure

definitions .except that they have access to the rep of the cluster,

59

which permits them to decompose objecta of the cluster type.
Operations do not constitute modulea, Buf may be compiled only
ag part of-ﬁhe cluster.

Operations always have at least one parameter «= of type rep.
Because the cluster may gimultaneously support many aobjects of its
defined type, this parameter tells the operation thé particular ob-
ject on which to operate. Note thét the type of this parameter will
change from the abstract type to type'ggg as it is passed between

the caller and the operation.

3. PROOFS OF CORRECTNESS

Structured programming is very mmuch concerned with the comstruction of
programs which can Ee proved correct. In this section we discuss how proofs
of correctness can benefit from the concept of abstract data Cype.

The correctness proof for a structured program consists of proofs of cor-
rectness of each of its component program modules, and a procf that correctness
of the modules implies correctness of the program. One finds that the details
of these proofs are simplified by the restrictions imposed in structured pro-
gramming: Avoiding use of gggg's allows a program module to be treated as a
black box with respect tc control; the absence of free variables in a module
means that all changes effected by module execution are transmitted through
its output parameters -- a proof may disregard the possibility of side effects.

A specifieation for a program module is informatieon that serves as an

interface between the implementer and users of a module: The program using
the module is proved correct in terms of the specifications, and correctness

of a realization of the module is established by proving that it satisfies

60 |

the specifications. Thué the specifié&tion of a module is exactly that
information about the module that is required to prove correctness of any
program in which the module is used.

Success of Ebe.cnnstructive approach to program correctness depends on
one's ability to congtruct clear specifications.for program modules. Such
a specification ghould provide a complete prescription of module behavior;
but should be independent of module impiémantation decisions made by the pra-
grammer. Clusters supporting abstract data types are an attractive form of
program module because implementation decisions concerning representation of
objects, and choice of algorithms for the operatioms, are shielded from users
of a cluster,

We are studying the potential of an approach to specifying ahstract.data
types [24]. A specification consists of type specificaﬁions for the opera-
tions of the data type, and a set of equations that define their behavior.

As ah example we shall give a specificétion for the stack data type: The type
specificafions are:

push: stack x T 4 stack

top: stack » T

eraseCop: stack 4 stack

pop: stack-4'T ¥ stack

empty : stack + Boolean

Here the symbol T denotes the-data type of the stack elements, and is a free
variable of the specification. The domain of stack objects may be regarded
as generated by the ecomposition of finitely many applications of push, using
arbitrary élements of T, and starting with the object null representing the -
empty stack, For example, the stack obtained by pushing 2 and then 7 into an

empty stack is represented by

6l

push(push{null, 2), 7)

The equation section specifies behavior by glving conditions that the opera-

tions of the data type muskt satisfy for stack objects:

top(gull) = erzor

top(push(g, L})} =t
erasetop(ggéé) = grror
erasetop(push(s, t)} = s
pop{s) = (top(s), érasetog(s)}
empty (null) = true

empty (push(s, L)) = false

Variables s and t denoté arbitrary.values in the domains of stack objects

and stack elements, respectively. The equations define operations top,
erasetop and empty throughout their domains because any atack object is either
22;; (the empty stack), or is obtained by applying push to some stack object.
The operation push does not appear on the left gide of any equation because
each use of push genérates a new stack object, the behavior of which is de finad
only in terms of its effect om subéequent uses of operations top, erasetop,
and empty, Operation pﬁp is defined directly in terms of toﬁ.and eragetop,
showing that pop may be regarded as nonprimitive.

In this example, a specific set of expressions was chosen to represent
the domain of stack objects. Tn general, the domain of a data type would be
represented by a set of equivalence classes of expressions formed by all pos-
sible compositions of operatioms which yield results of the data type being
specified. These equivalence classes are defined by the i{ntersection of all
equivalence relations for which the equations are valid. The equations are

valid if every valid substitution of expressions for variables in an equation

62

produces left-side and right-side expressions that are equivalent in the
relation, " A substitution is valid if, for each variable, every occurrence

of the variable is replaced by the same or equivalent expressions.

C4, UNRESOLVED LANGUAGE ISSUES

Mhny'issue; remain to be decided before the definition of the structured
programming lﬁﬁguage is complete. 1In this seckion Qe discuss briefly two of
the most interesting issues. As might be expected, both issues are concernad
with abstract data types.

Data types as parameters, It is our intention that types be legitimate

values in the 1aﬁguage; and as such they can be passed as parameters, both te
procedures, and to clusters. When adata type is passed as a parameter to a

cluster, the object which that cluster produces {via its create-code) is of

-4 composite type defined both by the abstract type which the cluster supports

and thé type represented by the parameter. For example, the cbject produced

by tﬁé stack cluster for Poligh gen is really of composite type "stack of
tokéﬁs". We do not fully understand all the implications of user-defined com-
posiﬁe types. It is interesting, however, that composite types have existed
iﬁnprogramming ianguages for a long time, since array definitions permit
ﬁinsist) that the type of the array elements be specified; we hope, by studying
composite types, to shed some light on this area of programming language

semantics,

Data Types Versus Clusters. It is important te realize that a data type
is notf:he same thing as a cluster. An abstract data type is a concept whose
meaning is captured in a set of specifications, while a cluster provides an

iﬁpiemEntatioh of a data type. For example, the data type estack iz defined

_byﬁthe specifications given above, while the stack cluster in Figpure 2

63

implements the type. It 15 easy to conceive of other clusters ﬁhich also
implement the data type stack; these clusters would all provide definitions

of the flve stack operations, but could make use of a different representation
for stacks.

The distinction between types and clusters is important because of its
impact on modification of programs. The difficulky of making a proposed modi-~
fication should be measured by the number of type gpecifications which must
be changed; A modification involving only the redefinition of a cluster is
very simple because it will affect nc other part of the system. Such a modi-
fication can have a significant impact on asystem per formance beéause two
clusters implementing the same data type may differ ﬁidely in performance
(for example, the implementation of a symbol table involving linear search vs.
hash coded look-up).

The above discussion implies thaﬁ we would like to treat type specifica-
tions as fixed, but allow variability in the mapping from an absgtract data type
to the cluster which implements it., This implies that a program using an ab-
stract data type should be beound to the type instead of a parituclar cluster
implementing that type. A partial solution to Ehis problem is provided by the

mode mechanisms of Aleph-1 [25].

D. COMPUTER ARCHITECTURE AND SEMANTIC MODELS

In this section we review aur past work on computer architecture and
gemantic models. We then introduce a data flow procedure language which is
currently the furthest deveioped semantic model under consideration as the
semantic foundation for che propuseé structured programming language. We
show how this language meets semantic requirements for stfuétured programming
by illustrating how the stack cluster discussed above would be translated

into a data flow procedure.

pl. RESEARCH IN COMPUTER ARCHITECTIRE

A major part of our past research has concerned the abstraction and
analysis of issues arising in the design of general-purpose computer syatems
and, in particular, studies of how new architectural concepts can help in
making computer systems more ugeful to their user communities.

In connectiﬁn with the conception of Multica [26], we recognized [27] the
importance of addressing schemes that provide location-independent access to
all information held online on behalf of system users, and the importancé of
sharing subsystems and data bases among users. In attempting to extrapolate
the ideas in Multics to future computer systems we reélizad-that the segmenta-
tion and profection-mechanisuw of Multics, even though the most advanced yet
implemented, were conceived from a "computer systems' viewpoint, and met only
the most superficial diffieulties in constructing modular programs, shared
gubsystems and data bases. A major further advance in computer architecture
would require a thorough and deep étudy of data and program structure and the

deve lopment of matched concepls of computer architecture.

65

Thus the subject of our research changed from the desigﬁ problems of
mul tiprogrammed computer systems to fundamental seﬁantic congtructs that
would form a ratiomal Basis for the design of computer systems.

A major goal of our work has been to identify system characteristics
essential to modular programming [28] -- the ability to use any program written
for executicn by a computer system as a module in the consgtruction of larger
program modules, At the time the conceptual foundation for Multics was de-
veloped, we recognized that one essential requirement for modular programming
ig location-independent acceds to inEormation such as is provided by the virtual
memory concept. Later, after adopting the goal of identifying fundamental
semantic constructs, we reallized that another requirement is that all program
modules be constructed using the same basic notions of data structure, and that
conventional locatioﬁ-addressed memory structures do not provide a suitable
basis for achieving the goals of modular programming.

This reasoning led to two major decisions regarding the direction of our
regearch:

First, we decided that any proposal for computer system architecture we
developed will be according te a functional specification in the form of a
definition of the base language to be realized by the computer system -- the
bace language will be a precise semantic model for the behavior of the computer
syétem. The base languége will be designed so desired functions and quali-
ties can be provided fo sygtem users, and architectural coﬁcepts will be de-
veloped to satisfy.system cbjectives through an effective implementation of
the base language.

The design of a base language for a general-purpose computer system raises

izssues often ignored by language designers:

bbb |
a. Sharing of data and procedures by programs operating on behalf
of different system users.
b. Access control.

c; Cooperative multiprocessing.

We have studied these issues by developing precise models for different aspects

of the behavior of general-purpose computer systems, For example, Vanderbilt.
[29] carried out a study of access control, and a study mearing completion by
Henderson [30] concerns a class of computer systems in which a very general
form of modular program construction is achieved.

The second major decision concerned the choice of data structures of the
base language and associated primitive operations. A most important idea in
computation is the bullding of composite data structures from arbitrary com-
ponent objects, and the gelection of component objects from a composite struc-
ture. This idea is supported naturally by regarding structured values as trees:
each node of a tree is a record or bugdlé having finitely many component values

jdentified by selectors which are integers or character strings. FEach compo-

nent of a record or bundle either ig null, is an elementary value (such ag an
e

integer, string, truth value, etc,), or is a tree. The basic operations are

the construction of a record from its components and gelection of a component

from a record., For example
cons('top': 0, 'elements': x)

constructs a record consisting of a component named top which is the elementary
value 0, and a component named elements, which is the value of x; the expres-
sion

z. 'elements '

67

selects from record z the component named elements, We have adopted trees
as the fundamental structured values for our research on the semantic con-
struets of a base language.

Our first conception of a computer architecture founded on a base lan-
guage was presented at TFIP Congress 68 [31]. This proposal, alcthough in-
complete in many respects, embodied a number of ideas and conclusions that
remain current in our further study of computer system architecture. In
particular, we gave the following argument that highly parallel execution is
important to the efficient operation of large modular programs.

We assume computer systems will have several physical memory levels
representing different compromisas between access time and capacity, and that
the distribution of data structures among memory lavels is managed by the sys-
tem. (Independently written program modules cannot perform the storage man-
agement function, for each module would need knowledge of the storage require-
ments of the others tb make good decisions.) If the meaningful stored values
are trees, only a small unit of data can be moved between memory levels for
each access Tequest not satisfied at a more accessible level. Otherwise much
data would be moved with little likelihood of being referenced. Thus to
achieve a high information tranafer rate between memory levels, # computer sys-
tem using trees as basic values must be designed to handlé large numbers of
concurrent memofy transfers. Since concurrent memory requests can arise only
from concurrently active program parts, we conclude that many such parts must
be present in the machine gimultaneously.

This argument is a principal reason for our interest in a base language
in which many program parts are jdentified for concurrent execution. In par-

ticular, we have worked toward specification of a data flow language that

68

eﬁcompasses all funda@eéfﬁl constructs of programming and thus will be a
candidate base language for guiding the design of computer systems. A data
flow language exhibits much of the inherent concurrency in programs because
two program parts are required to be executed in a particular order only if
one part produces a result used by the second. A data flow language was
partially described in the IFIP 68 paper [31], and was used to outline an un-
usual computer organization which would diréctly implement the data flow lan-
guage. Hﬁwever,'many-questions about representing important programming con-
structs in data flow form were unanswered at that time, and further refine-
ment of this architectural concept was deferred in favor of developing a more

complete semantic model.

D2, DEVELOPMENT OF SEMANTIC MODELS

The first explicit structure of a base language [32] was formulated for
an exposition of the premises and objestives of our research, and as a vehicle
for studying the problems of translating source language comstructs, especially
those found in advanced block-structued languages. Conventional flow af con-
trol through programs was assumed for this exposition because our knowledge
of data flow representations had not advanced sufficientiy_at that time. The
base language was defined in terms of an informally described interpreter whose
states represent all information that could affect the logical progress of com-
putation being carried ocut in the system.

Programs in this first form of base language are representations af pro-
cedures which accept arbitrary trees as arguments and produce trees ag results.
Procedures have no external or free identifiers; hence no sidg effects can re-
sult from procedure application -- each value accessed by a procedure acti-

vation must be ‘either part of the tree passed to the procedure as its argument,

69

or a component (a data structure or another procedure) of the procedure it-
gelf. Thus a procedure (together with its component procedures and data
structures) defines a functional mapping of trees into trees. .These are de-
sifable characteristics for modular programming.

Part of our work during the current.period of Mational Science Foumdation
support has concerned use of proposed base languages as targets for transla-
tion of conventional programming constructs. Dennis and Amerasinghe [32, 33]
have devised rules for translating from a model block-structured language into
a base language. The source language permits proLedure variables but only
gimple data values. The target language is an extended version of the base
language in {32]. Using a contour model [34] defgnitian for the block-
structured language, Amerasinghe has demonstrated correctness of the transla-
tion rules. The means used to implement nomlocal references in hlock-
structured programs is to build, for each procedure application, an "external"
record having as its components all nonlocal variables required by the proced-
ure, and to pass this record to the pracedure as part of its argument struc-
ture. This exercise verified the ability of the base language to support all
essential semantic constructs of a hlock-structured language. |

A study of translation rules for languages making use of the Egg con-
struet (as in Algol 68) and the notion of cells will be completed by Ellis [35]
in the near Future. In addition, Hawryszkiewyez has shown [36] how the seman-
tice of relational data base systems can be modelled using a var[aﬁt of the
base language in [32].

The choice of a semantic model/base language for use in implementing the
proposed structured programming language is not yet definite -- several al-
ternatives are being actively considered, including a semantic model being de-

veloped by Henderson [3{1]. However, our work durlng the past year has led to

10

" new knowledge about data flow representation of programs, and a data flow

base language mnow appears to be a very attractive foundatiom for struec-

_ *
tured programming. A current paper, included as Attachment B to this pro-
posal, deseribes a data flow language that incorporates our present knowledge

about using data flow concepts to model fundamental semantic constructs of

programming. A progrém in tﬁis language is a directea-graph having two kinds

of nodes -- links and actors. Some of the links are iﬁpgt links which re-
ceive values (elementary values or trees), and some are output links which
deliver values when computation by the program is finished. The formation
rules for data flow programs directly correspond te the contrel constructs
advocated. for use in structured programming -- composition, selection of al-
ternatives, iteration, and proecedures; there is no construct corresponding to
a goto, and values delivered at the output links depend only on the values re-
ceived at the input links. |

A data flow procedure is a data flow program having a single input link
at which an argument structure (a tree value) is presgnted, and a single out-
put link at which a result structure {8 new tree wvalue) #ppears when proced-
ure execution terminates. Any data flow procedure defines a functional de-
pendence of result structures on argument structures —- conflicts among the
actors that would produce nondeterminate behavior are prohibited by the rules
of construction, and no side effects are possible. Vaiues constructed during
execution of a data flow procedure are trees and are never altered; new values
{trees) are formed using components of existing values; values are diacarded

when they are no longer required by a computationm.

.
J. B. Dennis. Firsc Version of a Data Flow Procedure Language., Draft of a
paper accepted for presentation at the Symposium on Programming, Paris,
April 1974,

71

The language as described in the Attachment ig sufficiently complete

and powerful that Dijketra's eight queens program, for example, is easily

translated into a data flow procedure.

D3. REPRESENTATION OF THE STACK CLUSTER AS A DATA FLOW PROCEDURE

To show how the data flow language can be used ag a foundation for the
proposed structured programmiug language, a translation of the stack cluster
given in Section C into the data flow basze language will be discussed. [lor

this purpose, we use a textual language that is readily translated into the

data flow procedure language.' The body of a procedure i=s a while program --

a sequence containing assignment statements such as

z i=x +vy

conditional statements

£ ¢Boolean) then (while program 1)

[se {while program 27

i('D
—
n
M

iteration statements

while (Boolean) do {while program; end

and procedure applications
z = agglg (P, x)

The input identifiers of a while program are those identifiers that are used
before they are assigned to; the output identifiers are those identifiers
assigned to wlthin the while program and subsequently used outside.

While programs are. easily translated into data flow programs using pro-
cedures describe by Fosseen [37]. Now consider extended while programa in

which statements that construct records, or select components of records are

72

permitted. Since values (trees) are never altered during execution of ex-
tended while programs, the same translation procedures can be used for trans-
lating extended while programs into data flow programs.

A procedure ias represented as Follows:

p: procedure;

{while program)

~end p;

The while pfogrgm which is the body of procedure p has a single input identi-
fier arg and a single output identifier res. Within the téxt in which pro-
cedure p appears, p will have as its value the procedure déscribed by the while
program. This value may be used in conatrueting records, and may be used in

an apply statement of the form

z = apply(p, %)

This statement initlates an activation of procedure p with arg bound to the
value of x. When the activation terminates the result structure {the value
of ggg) is returned.

To correctly implement a cluster, we must choose 2 representation for in-
stances of the data type of the cluster (which were called objects in Section
C), and specify how statements cdlling for use of a cluster operation are to
be translated. Furthermore, the implementation must only allow an operation to
be used with instances of a data type if the operation belongs to the defining
cluster.

Instances of a data type will be represented by a special kind of value,
called an object, which we add to the base language. .Figure 3 shows an object

that represents a stack, i.e. an instance of the stack cluster discussed in

73

‘top' 'elements' 'push’ ';Lp' 'empty '
(:{:) flex-
array poptxt ‘emttxt
b el - s v v
representation operations

Figure 3. Representation of an ingtance of the stack cluster.

Section C. An object has two parts identified by the special selectors

env (for environment) and txt (for text). For instances of the stack clus-
ter, the env-component contains the representation of a stack and is, for
example, a record having an integer component for the stack index and a com-
ponent of type fle#-arfay for the stack elements. For simplicity the param-
eter element_type of rep in Figure 2 has been ignored. The env-component is
distinct for each instance of a cluster. The ggg-componént is a record con-
taining one operator for each operation of the data * pe; for simplicity we
consider just push, pop and empty. The t®t-component is shared by -all in-
stances of a cluster, An object is constructed by the expression
obiect(rep, txt) where rep is any value and txt Is a recbrd of operatoras,

An operator is a new textual construct of the base language, and is an

aextension of the procedure construct:

7%

p: operator;
{while program}

end p;

In the case of an operator, the whilé program has tworinput identifiers, env
and arg, and twoloutput identifiers, new and res. Finally, we add a ngw:primi-
tive oper which bears the same relation to operators as ggg%; does to pro-
cedures. A statément

vy i= oper(x, 'p',. v)
is valid only if x is an object and the Egg-component of x contains an op-

erator named p. Lf so, the operator p is tb be applied to object x:

}. Bind the input identifiers of operator p: bind env to the env-

component of x; bind arg to v.
2. Execute the body of opeérator p.

3. Form a new object with new as its env-component and x.txt as its

txt-component; make this new object the value of =x.

4. Set y = res.

The coding of the stack cluster in this extended language is given in
Figure 4. 'The text as a whole is a procedure containing declarations of op-
erators pushitxt, poptxt and emttxt which implement the stack operations. The
procedure comstructs and returns an object that represents a stack of zerc
clements. The dﬁta type flex-array is assumed to be implemented as a primi-
tive cluster of the language; a call on procedure flex-array returns a vector
of zero elements. In the coding of the operators, certain conventiona hawve

been used: If an operation (such as push) produces no regult value, no

75

assigmment to res is required; if an operator (such as empty) causes no
change in the cluster instance, O agsignment to new is required. Two op-

erations of the flex-array cluster are used:

store(cons('index' = i, 'value' = v))

which stores v as the ith element of the array, and

v = access (i)

which returas the value of the ith element.

The statement

stackSpush (s, t)

in procedure Polish_gen would be translated as

oper (s, 'push’, t)
We see that if oper is the only means for accessing components of cobjects,
then it is impossible to invoke cluster operations except for application to

instances of the asgsociated data type. This fulfills one aspect of the strong

type checking desired in the structured programming language. However, in
stack$push{s, t)

the check that s i{s an instance of the stack cluster is not included in the
implementation of Figure 4. Thus s could be an instance of scme other cluster
having an operation named push. There would ﬁe no type conflict between Op-
erator and operand, yet the action would not be the programmer's intent.

Also, we have included ro check that elements of stacks.are of a specified

type. Means for implementing thezse checks are being studied.

stack: grocedure;

76

elmts := apply{flex-array, pull);

value := cons('top' = 0, 'alements' = elmts);
" cluster := cens('push' = pushtxt, 'pop’' = poptxt, Tempty '

- reg = Dbject(value, cluster):

pushtext:

POPELXE:

emttxt!:

ggg stack;

_ogerator H
g != env; v T:4rg;

i =13 . 'tt;p' + 1;

elmts := s - 'elements';
gggg(elmts, '‘store', ggﬂg!'index'
new := gggg('top' = i, 'elements'

end pushtxt:

operator;

5
i =3 'top';

elmts := s - 'elements';

o

+Hh

=
It

0 then error;
eg = uger(elmts, laccess', 1)

i =i - 1;

new := cong('top’ i, 'elements'

R

res '= (3 - 'top' = 0);

end emttxt;

Il

i, 'value'

elmts);

= elmta);

Figure 4 . Coding for the stack cluster.

emttxt);

v);

g r A s

77

™. 1ISSUES FOR FURTHER STUDY

Although a large class of programs can be translated into the data
flow language, several aspects of programming are not encompassed by the
language as presented in Attachment B,

One such aspect is the representation of computations performed by module

activations that communicate with each other through ports or communication

variables. Such computations are often implemented using the techniques of
coroutines, but this seems too undisciplined, and has the drawback that the
¢oncurrency in the computation 1s not easily recognized. .we.have suggested

a possible textual Eorm:for cooperating modules [38], but the general prop-
erties, construction rules and semantics are yet Lo be workéd out in terms of
a data flow model. ‘

Another importank aspect CONCerns prograﬁs that cannot be represented as
modules with Eunctiénal behavior -- for example, a program that gives several
users ability to independently update a file. We plan to design an extension
of the data flow laﬁguage that will encourage the writing of well-structured
programs for these applications, while giving Ehe programmer a guarantee of
Eunctionality if he évoids use of the primitive constructs that define the ex-
tension.

The data flow procedure language incorporates a number of unusual con-
straints:

1. Absence of 5223‘5

2. All procedures are functional -- no side effects.

3, Values are trees -- cyelic structures are not encompassed.

4. Values are not altered.

————p -

78

Thege assumptionsiyield a language in which concurrently executable parts
are easily.recognized, and which seems attractive for realization on a ma;
chiﬁe of matched afchitecture.

We plan to investigate the constraints incorporated into the data flow
language and evaluate their significance bofﬁ with respect to the use of the
language as & aemantic basis for structu;ed programming and as a new framework

for computer architecture.

E. PROPOSED RESEARCH

J. B. Dennis and B. H. Liskov propose Lo:
1. Continve development of a structured programming language.

2, Design a base language that supporta the semantics of the struc-

tured programming language.

3. Build an interpreter for the base language and a trangslator to
translate from the structured programming language to the base

language.
4, Design and construct a machine that realizes the base language.

5. Build a programming system around the structured programming lan-

guage to permit comvenient use of the language.

IE {s our intent that the semantica of the structured programming lan-
guage and the base language be closely related so simple translation rules
will suffice for converting structured programs into base language programs.
The difference between the two languages is that the base langunage is an in-
ternal representation for procedures and data structures, and its design is

concerned exclusively with the cleanest and simplest schemes for representing

79

the desired semantics in an effectively realizable form. The structured
programming language, being an external language, must have a textual form
which is carefully human engineered for convenient use by programmers. The
design of both languages will involve a thorough understanding of the seman-
tics of data types, and we will continue our studies in this area,

As a first test of the structured programming language and base language,
we propose to build alsoftware implementation, The implementation will con-
sist of an interpreter for the base language and a translator from the struc-
tured programming ianguage to the base language. The process of building these
programg will provide a verification of the semantic definitidns of both lan-
guages., Also, although we expect the implementatiom to run very slowly, it
will enable us to actually execute a few sample programs written in the struc-
tured programming language. Thig exercise will provide valuable information
about the human engineering of the gtructured programming 1anguage and about
the completeness of the base language.

The machine language of the proposed computer iz intended to be simply a
transliteration of the base language. The complexity of the machine will be
bounded in two ways: We will use the most direct means puséible for realizing
base language constructs. In this way gimplicity uf the basé language will be
reflected in simplicity of the machine architecture. We will also use the
most straightforward approach to building the machine. At present we envision
asaembling the machine from commercial units including mieroprogrammable pro-
cessars, packaged memory units and standard peripherals. Iﬁ this way hard-
ware development effort will be kept low.

A programming system is required if the gstructured programming language

{8 to see significant use. The programming system will provide filing,

80

editing and debugging facilities designed expressly for uée with the struc-
tured programming language.

Structured programming is concerned with the efficient development of
large programs so as to give confidence in their correctness. Thus the vali-
dation of any proposal for aiding the practice of structured programming must
include a test of its wvalue in the construction of large programs. A con-
vincing demonstration of our structured programming language will be pogsible
only by making the language available to an appropriate user community for
use in building real programs -- an effective implementation of the language
is essential.

An adequate implementation of the structured prograwming language must
provide strong data typlng of user defined types, storage allocation with re-
tention, and objects whose natural representation is unbounded in both depth
and exteng. Such constructs are so poorly supported by existing hardware,
that a software implementation on a conventional computer will not effectively
support the development and ﬁse éf large, complex programs. The simplest way
to provide an efféctive implementation is to make use of the machine specified
by the base langunage, a machine specially organized to efficiently support the
semantic constructs of the language. |

Implementation of the structured programming language.in terms of a pre-
cisely defined base language will also ensure that the gemantics of the etruc-
tured programming language are precise, and provide a basis for proofs of cor-
rectness of programs in the language. In addition, such an implementation will
serve to evaluate the adequacy and completeness of the base language., If a
data flow form of base language is used, we will be able to messure the level

of concurrency that may be exploited in the execution of real programs.

8L

Professors Dennis and Liskov are unusually qualified by experience to
undertake the proposed project. Professor Dennis wrote and checked out a
widely used program for the transportation problem [39], developed hardware
and software for one of the earliest time-shared computers f40], and partici-
pated in the conceptualization of Multies, Professor Liskov conceiﬁed and
implemented the Venus syscem [21], in which the concepts of structured pro-
gramming were applied to a multi-user computer system constructed from both
sofrware and microprograms, and has contributed to the areas of structured

programming and design methodology [7, 2].

El. SUPPORTING STUDLES

In addition to the proposed language and system design project, we expect
to contimue work in closely allied theoretical areas. These include formal
semantics, modes of data, schematology, program correctness, and advanced

computer architecture.

Formal semantics: It will be necessary to develop precise definitions
of the structuréd programming language and the base language. This is re-
quired because¢ the relationship between the two languages must be thoroughly
understood and because the bage language is intended to be a precise founda-
tidn for the verification of program correctmess. Furthermore, since the base
language will be the specification for the proposed machine, completeness and
accuracy of the definition is important Eo avoid discovery of ambiguities and
contradictions during construction of the system,

It is likely that we will use some form of interpretive model as an aild
in assuring correctness of the hardware realization of the base language.

However, specifying the semantics of a language axiomatically, as Hoare and

82

Wirth have done for Pascal [41] is a good way of uncovering poorly designed
aspects of the language, and at the same time, stating the semantics in a

form directly applicable to proofs of program correétness. An axiomatic defi-
nition is particuiariy natural for the data flow 1anguage since all data val-
ues that affect ghe action of a well formed paft of a data flow progranm are
passed through its input links, and all val ues resulting from its ackion are
daelivered at the output iinks -- no alias problems or side effects are possible.

Modes of data: A. E. Fischer and M. .J. Fischer have been investigating

the general problem of specifying and using properties and relations among
modes of data. A mode in their system, Aleph-1 [25], may model an abstract
data type or a fumction cluster, depending on its properties. A particular
data object may belong tc more than one mode, and a function may be defined
on more than one wmode. For example, SQUARE MATRIX can be defined to be a sub-
mode of MATRIX which consists of those matrices whose two dimensions are
equal. A function such as matrix imverse defined on the mode SQUARE MATRIX
will be applicable only.to square matrices,'whereas any function defined on
MATRIX may be applied to either square or non-gquare matrices. M. J. Fischer
plans to continue this work with A. E. Fischer on the development of Aleph-1
and to validate the design through an experimental implementation, already
begun on the PDP-10 at Project MAC. Ways of incorporating their ideas into
the structured programming language will also be studied.

Schematology: An important role for the developiﬁg theory of program
. gchemas is as a guide 'to identifyinglfundamental semantic constructs ~-- for
instance, showing in what sense recursion adds expressive power beyond that
possible using iteration [42]. Our work in schematology has been concerned

with determinacy of schemas in which concurrency of program parts is

a3

represented, and with ident;fying "nonproductive" parts of program schemas
[43). We have studied formally schemas that model the structure of data tlow
programs [44], and have found the data flow model to be a useful vehicle for
jnovestigating equivalence questions about gchemas.

Architecture: We are studying architectural issues raised by assuming
a base language as the gpecification of syétem function. In particular, we
are interested in structures for memory hierarchies designed to store values
in the form of trees, and orgénizations of processing hardware that will yield

highly parallel execution of programs expressed in a data flow representation.

E2., SYNTACTIC SPECIFTCATION OF PROCRAMMING LANGUAGLS

The now classic_approach to systematic compller writing assumes that the
language to be compiled is specified using Backus Mormal Form (BNF)., Many as-
pects of programmning languages are jdeally specified in this way.

.However, considerable ingenuity may be required to write an efficient
compiler for the gpecified language. .The trend is to incorporate this ingen-
uity into a compiler-compiler 1in the form of a large quantity of code. The
language designer wishing to take advantage of the ingenuity embedded in a
compiler-compiler is faced with two unattractive alternatives: He can attempt
to transfer an existing compiler -compiler to hig computer system, but this is
difficult given the current state of the art in softw.re portability. Other-
wise, he must reimplenent the compiler-compiler, which defeats the original
goal of easy and convenient compiler construction.

Another problem is th;t ENF is not ideal for describing every aspect of

programming languages. While the canonical example of Chis limitation is the

84

inability of BNF to describe symbol tables, many trivial but useful con-
structs are, at best, awkward to describe.

- Yet another issue is modularicy. While BNF is Qometimes advertised as
the medium for a structured prograﬁming approach to compiler writing, it is
possible to write very obscure BNF definitions, with complex interactions be-
tween non-terminals. Moreover, nothing about BNF encourages a style of defi-
nition that avoids these complexities.

V. R. Pratt.has.been exploring alternatives Lo Backus Normal Form and his
paper on a top-down operator precedence metalanguage [45) describes such an
alternmative. The.watalanguage differs from BNF in two respectd, First, con-
ceptual emphasis is placed on the terminals {lexical tokens) of the language,
and second, most of the syntax is implicit in the semantics. The lexical em-
phasis allows more modularity in a language definition than is generally as-~
gociated with BNF. This makes a given language easier to implement, provides
a simple extension mechanism, and is suited to a compiler which can be parti-
tioned according to the different problem domains of its users. The embedding
of syntax in semantics, while not inherently beneficial, in practice turns out
" to simplify the language defimition.

Fischer and Pratt have also considered the problem of implementing the
metalanguage, They combine a top-dowm approach with oper#tor precedence tech-
nigues to yield a very fast single-pass parser that is gimple to implement.
The metalanguage is designed to be interpreted directly, rather than being
compiled as is normally the case with BNF, which reduces the size of the ays-
tem needed for implementing compilers to a trivial amount of code,

These techniques have been used by two groups, the SCRATCHPAD project
[46] at IBM, Yorktown Heights, and the MATHLAB project at Project MAC, MIT.

Both groups had been using other parsing techniques, but found Pratt's

85

techniques more attraétive. Tn addition, Fischer and Pratt have written a
surprisingly compact compiler-compiler that has been unsed to implement an
interactive extensible programming language called CGOL (Computational Gen-
eralized Operator Language). One application for this language is as a syn-
tactic front-end for LISP. A small amount of further work is needed on CGOL
to make it more accessible to the LISP community of MIT. In addition, the
possibilicy of using this method for the syntactic specification of the struc-

tured programming language described above will be investigated.

10,

11,

12,

13.

14,

15.

86

REFERENCES

B. W, Boehm; Software and its impact : a qualitative agsessment.

Datemationm, Vol. 19, No. 3 (May 1973), pp 48-59.

"B, H. Liskov, A design methodology for reliable software systems.

AFIPS Conference Proceedings, Vol. 41, Part 1 (December 1972), pp 191-199.

E. W. Dijkstra, Go to statement considered harmful. Comm. of the ACM,
vol. 11, No. 3 (March 1968), pp 147-148. .

£, W, Dijkstra, Notea on structured programming. Structured Programming
(C.A.R., Hoare, Ed.), Academic Press, New York and Londom, 1972, pp 1-82.

D. L. Parnas, Information distribution aspects of design methodology.
Proceedings of the IFIP Congress, August 1971.

D. L. Parnas, On the criteria to be used in decomposing systems into modules.
Comm. of the ACM, Vol. 15, No. 12 (December 1972}, pp 1053-1058.

B. H. Liskov and E. Towster, The Proof of Correctness Approach to Reliable
Systems. Report MIR-2073, The Mitre Corp., Bedford, Mass., July 1971.

E. W. Dijkstra, A Short Introduction to the Art of Propgrammuing.
Report EWD 316, Technische Hogeschool, Eindhaven, The Netherlands, August 1971.

C. A. R. Hoare, Proof of a program: FIKD. Comm. of the ACM, Vel. 14, Na. 1
(January 1971), pp 39-45.

W. Wulf and M. Shaw, Global variable considered harmful. SIGPLAN Notices,
yol. 8, No. 2 (February 1973), pp 28-34.,

C. A. R. Hoare, Hints on Programming Language Design. An invited address at
the ACM SIGACT/SIGPLAN Symposium on Principles of Programming Languages,
Qctober 1973.

C. A. R, Hoare, Procedures and parameters: an axiomatie approach.
Proceedings of the Symposium on the Semantics of Algorithmic Languages
(E. Engeler, Ed.), Springetr-Verlag, Berlin-Heidleberg-New York, 1971.

E. W. Dijkstra, 1972 ACM Turing asward Lecture: The humble programmer.
Comm. of the ACM, Vol. 15, Ko. 10 (October 1972), pp 859-866.

E. I. Organick, Computer System Organization, The B5700/B6700 Series.
Academic Press, New York and London, 1973.

H. Richards, Jr. and R. J. Zingg, The logical structure of the memory re-

source in the SYMBOL-2R computer. Proceedings of a Symposium on High-Level
Lenguage Computer Architecture, SIGPLAN Notices, Vol. 8, No. 11 (Movember 1973),
pp 1-10.

15,

17.

18.

19,

20.

2l.

22,

23.

24,

25.

26.

27,

28,

29,

87

J. W. Anderberg and C. L. Smith, High-level language tranglation in

Symbol-2R. Proceedings of a Symposium on High-Level Language Computer
Architecture, SIGPLAN Norices, Vol. 8, No. l1 (November 1973), pp 11-19,

P. C. Hutchison and K., Ethington, Program execution in the SYMBOL-2R
Computer. Proceedings of a Symposium on High-Level Language Computer
Architecture, SIGPLAN Notices, Vol. 8, No. 11 (November 1973), pp 20-26.

H. Richards, Jr. and C. Wright, Jr. Tntroduction to the SYMBOL-ZR Pro-
gramming language. Proceedingg of a Symposium on High-Level Language Com-
puter Architecture, SIGPLAN Notices, Vol. 8, No. 11 (November 1973),

pp 27-33. '

A. Hassitt, J. W. Lageschulte, and L. E, Lyon, Implemantdtion of a high level
language machine. Comm, af the ACM, ¥ol. 16, No. 4 (April 1973), pp 199-212.

L. P. Deutsch, A Lisp machine with very compact pPrograms. Proceedings of
the Third International Joint Conference on Artificial Intelligence,
Stanford Umiversity, Stamford, Calif., August 1973.

B. H. Liskov, The design of the Venus operating system. Corm. of the ACM,
Vol. 15, No. 3 (1972), pp 144-149.

J. Adello, Investigation of Whether Ixisting Languages Can Support Data
Representation for Structured Programming. S5.M. Thesis, Department of
Electrical Engineering, MIT, Cambridge, Maas., forthcoming.

N. Wirth, The programming language Pascal. Acta Informatica, Val. 1, No. 1
(May 1971), pp 35-63.

§, N, Zilles, Data Algebra: A Specification Technique for Data Structures.
Ph.D Thesis, Department of Flectrical Engineering, MIT, Cambridge, Masa.,
forthcoming.

A. E. Fischer and M. J. Fischer, Mode modules as representations of domains,
ACM STGACT/SIGPLAN Symposium on Principles of Programming Languages (1973},
pp 139~143. - _

F. J. Corbato and J. H. Saltzer, Multiecs -- the first sevia years.
AFIPS Conference Proceedings, Vol. 40, 1972, pp 571-583.

. B. Dennis, Segmentation and the design of multiprogrammed computer gystems.
of the ACM. Vol. 12, No. &' (October 1965), pp 589-602.

J. B. Dennig, Modularity. Advanced Course on Software'gggineering, Lecture
Notes in Economies and Mathematical Sysgtems, Springer~Verlag, 1973,
pp 128-182,

p. H. Vanderbilt, Controlled Information Sharing in a Camputer Utility.
Report TR-67, Project MAC, MIT, Cambridge, Mass., October 1969.

88

30, D. A. Henderson, Jr., The Binding Model: A Semantic Base for Modular Pro-
gramming., Ph.D Thesis, Department of Electrical Engineering, MIT,
Cambridge, Mass., forthcoming.

31, J. B. Dennis, Programming generality, parallelism and'ccmputer archi-
tecture. Information Processing 68, North-Holland Publishing Co.,

Amsterdam, 1969, pp 484-492,

32, J. B. Demnis, On the design and specification of a common base language.
Proceedings of the Symposium on Computers and Automata, Polytechnic Press
of the Polytechnic Institute of Brooklyn, N. Y., 1971, pp 47-74.

33, S. N. Amerasinghe, The Handling of Procedure variables in a Base Language.

—— P ——— e —— —r | —

S, M. Thesis, Department of Electrical Engineering, MIT, Ceambridge, Mass.

1972.

34. J. B. Johnston, The contour model of block structured processes. Proceedings
of a Symposium on Data Structures in Programming Languapes, SLGPLAN Notices,

vol. 6, Ne. 2, ACM (February 1971), pp 55-82,

45. D. J. Ellis, Semantics of Data Structures and References. S. M. Thesis,
Department of Electrical Engiceering, MIT, Cambridge, Mass., forthcoming.

36. I. T. Hawryszkiewycz, Semantics of ‘Data Base Systems. Ph,D Thesis, Depart-

ment of Electrical Engineering, MIT, Cambridge, Mass., September 1973,

37. J. B. Fosseen, Representation of Algorithms by Maximally Parallel Schemata.

S.M, Thesis, Department of Electrical Engineering, MIT, Cambridge, Mass.,
June 1972,

38. J. B. Dennis, Coroutines and parallel computation. Proceedings of the Fifth
Amnual Princeton Conference on Information Sciences and Systems, March 1971.

39. J. B. Demnis, A high-speed computer technique for the transportation problem.

J. of the ACM, April 1958.

40, J. B. Dennis, A multi-user computer facility for education and rezearch,
Comm. of the ACM, Vol. 7,No.9 (September 1964), pp 521-529.

41. C. A, R. Hoare and N. Wirth, An Axiomatic Definition of the Programming Lan-

guage Pascal. Eidgenossische Technische Hochschule, Zurich, Berichtre Der
Fachgruppe Computer-Wissenachaften.

42. M. S. Paterson and C. E., Hewitt, Comparative schematology. Record of the

Project MAC_Conferemce on Concurrent Systems and Parallel Computation, ACM,

New York 1970, pp 119-127.

43, J. P. Linderman, Productivity in Parallel Computation Schemata.
Report TR-111, Project MAC, MIT, Cawbridge, Mass., December 1973,

44. J. B, Dennis and J. B, Fosseen, Introduction to Data Flow Schemas.
Submitted for publication. ' ’

45.

46,

89

V. R. Pratt, Top down operator precedence. ACM SIGACT/SIGPLAN Symposium
on Principles of Programming Languages (1973), pp 41-51.

J. H. Criesmer and R. D. Jenks, SCRATCHPAD/1 -- An interactive facility

for symbolic mathematies. Proc¢. Second ACM Symposium on Symbolic and
Algebraic Manipulation, 1971.

