Decidability of Equivalence for a Class of Data Flow Schemas

Joseph E. Qualitez

March 1975

Thie work was supported by the National Science Foundation
under research grant GJ-34671.

This document was originally published ag
Computation Structures Group Memo 100-1,
November 1974.

-]1-

In this paper we examine a class 6f_computation schemas and consider the
problem of deciding when pairs of elements in this c¢lass represent equivalent
programs. We are able to show that equivalence is decidable for a non-trivial
class of wnmary operator data flow schemas, and consider the applicability of
this result to the problem 6£ deciding equivalence in related models of

computation.

The model described below is a restricted version of the data flow schema
described by Dennis and Fosseen in [1]. The reader is referred to that source

for a more complete discussion of the properties of data flow schemas.

I. Unary Operator Schemas

A unary operator data flow schema (UDFS) is a bipartite directed graph

in which the two types of nodes are links and actors. There are two types of
links and five types of actors, as shown in Figure 1. Data links are repre-

sented by solid dots and control links by open dots (Figure la); the arcs be-

tween actors and links are data arcs or control arcs, according to the type of
link. |

Figure 1b illustrates the various types of actors. DOf these, two deserve
comment !

An operator has a single input data arc and a single outpulk data arc.

The data link from which the input arc emanates is the ipput link of the op-
erator: the data link at which the output arc terminates is the operator output
link. FEach operator is labelled with a function letter selected from a set F
of function letters for the schema; at least ome operator i labelled with

each letter in F.

A decider has a single input data arc and a single output contreol arc.
Input links and output links for deciders are defined in manners analogous to
those for operators. Each decider in a schema is labelled with a predicate letter
selected from a set P of predicate letters for the schema; each letter in P
labels at least one decider in the schema.

A UDFS S has an ordered set IN(S) of schema input links, and an ordered
set OUT(S) of schema output linkg. No arc terminates on any input link of 8,

b)

operator

T-gate

F-pate

FIGURE

control link

<>

O
decider

merge node

while at least one arc terminates on each nmon-input link of 8; at least one
arc originates at each nonoutput link of S. Only data links may be in IN(S)
or QUT(S), and the sets need mot be disjoint, If card (IN(S)) = m and

card (QUT(S)) = n, we say that S is an (m,n) - UDFS.

An interpretation I for a UDFS 8 with funection letters Fs and predicate

letters PS consists of:

i) A domain D of values.
£1) An assignment of a total function Pg: D D to each £ in Fg.
iii) An aasignment of a total predicate ﬂp: D + {true, false} to each
p in PS; .
iv) An asgignment of a valqe vy € D to the ith input link of 8 for each
i, lecisx card(IN(S)).

Let S be an (m, n)-UDFS with functiom letters Fg, and let L be the set of

symbols b1> Bys =oes An Then the expression set of S, EXP(8), is the set

*

FS . Ly {(null].

Let S be a UDFS. A configuration af S coneists of:

i) An association of an expression in EXP(S) with each data arc of the
schema.
ii) An association of one of the expressions [exue, false, null} with

each control arc of S.

A computation by S 1s a_(pnssibly infinite) sequence of configurations
Vs Vs sees “E’ 9k+1’ ... where each Vo4l ie obtained from vy by firing some en-
abled node in the schema, and v, ie the initial configuration of S. The firing
rules for the various types of nodes are depicted in Figure 2. (The condition
for which a node is enabled, i.e. firable, is indicated by an as:eriék, and the
regult of firing the enabled node is shown to the right.) As computational
concurrency is an important aspect of the data flow model, several nodes may
be enabled in a given configuratiom, any one of which néy be fired to produce
a successor coufiguration of a computation.

A computation C by a UDFS § is complete if either C is infinite, or C 1ls

finite and no node in S is enabied in the final configuratiom in C; otherwise
¢ is a partial computation. Unless noted otherwise, "computation” shall refer

to a complete computation.

(b)
null null
" v b b
(c) * * (d) *
v#null null vioull
£ I £
7 null
null fev

(g) (h)

FIGURE 2.

..5_
The initial configuration v, is that in which the expression A; 1s
associated with the date arc(s) emanating from the ith input link of 8, the

expression false igs associated with certain control arcs In g (in a manner

described later), and the expression null is associated with all other arcs
in 5.

_Each actor in a data flow schema is a determinate. system, although the
gchema itself need not be, since the mergé node is not perasistent (i.e. once
enabled it may be disabled without firing if non-null expressxons becoma as-

sociated with both data input ares). By adopting a few gimple rules regarding

the interconnection of these systems, determinacy is assured for the schema as

a whole (see, for example {31). The rules for comstructing "well-formed"

data flow schemas are as follows:

A well-formed schema (WFS) 1s a UDFS Formed by an acyclic composition of
component UDFS's, where each component is an operator, a conditional sc¢hema,
or an iteratiom schema.

The schema R shown in Figure 3a ia a conditional schema, provided that
P and Q are well-formed UDFS's, 1 s 1 < k., The links w, ¥y, ¥y Koy Ygrreos x5 ¥y
Qwhlch are mot necessarily distinct) are the input links of the conditional schema,
links zq, %5 -**>» z, are the output linkas; the gchemas Pl’ Q> Pg» Qgs ceey B Qe
comprise tha bodz of the conditional schema, and nodes my, My, ...y M are the

condltlonal merge nodes of the schema
The schema shown in Figure 2, is an jiteration schema, provided that Ri is

a well-formed UDFS, 1 < L < £- {The link zE and the preceding F-gate may Or

may not exist.) The links Xqs Rgs *o- (not necegsarily distinct) are the input
links of the iteration schemz, the links 31’ Zpy rees ﬂ 1 and z, (1f it exists) arg

the output links of the iteratlon schema; the UDFS's Rl’ 20 ""RL comprise the

body of the 1teration gchema, and nodes My s Ty, ..,mﬂ are the iteration merge nodes

of the schema.
The decider assqciated with a conditional schema R is a conditional decider

and is said te control schema R; that agsociated with an jiteraticn schema R' is

an iteration decider and is gaid to contrel R'. The input control arcs of iteratiom

merge nodes in a WIS are precisely those with which the value false is associated

in the initial configuration of the schema.

Examples of well-formed schemas and the "programs" they represent are given

in the Appendix.

(b) Iteration schema,

FIGURE 3.

1I. Equivalence of WES's

let § be a WFS and © some computation by 5. Then for each data link

x in S, the expression history of ¥ is the sequence of non-null expressions

assoclated with the incident arc of x during computation C.

When an epabled node of a schema fires during a computation, the subsequent
non-null expressicn associated with the emanating arcs of the nede is
completely determined by those associated with the incident arcs, unless the
node is a decider. 1f the schema has been providad an interprétationm, then
the output expression resulting from the decider‘s firing is also determined
by the input arc's expression, simce a total predicate will be asgociated with
the decider and, in an obvicus fashion; a value from the domain will be asso-
ciated with each element in the expression set. Hence, while the specification
of an interpretation for a WFS S does not determine a unique computation for the
gchema, each (complete) computation by an interpreted schema defines the same expres-
sion history for each data 1ink in the schema. In fact, such is still the
case if, rather than providing an interpretation for the schema, we provide,
for each predicate letter p appearing in the schema, a total predicate np:
(FXP(3)) » {true, false}. In general, however, we will still have specified
more than is needed to determine the expressions associated with the output
arcs of 5 at the conclusion of any finite computation by S, since each predi-
cate will be evaluated at only finitely many input expressions. This motivates
the following definitions:

Let S be a WFS and d a decider in 5. Then a test by d is a pair (g, d}
where BE is an element of EXP(S). Each firing of a decider during a computa-
tion by § defines a test by that decider in the obvious manner: the expression
E is simply the expressiom associated with the input are of the decider at the
time of the firing.

If C is a computation by §, the logic sequence of C is constructed as
follows:

We begin with the empty sequence; each time a decider fires during com-
putation C, we append the pair (r, N) where T is the test defined by the firing
and N € {true, false} is the outcome of the test, i.e. the control value asso-
ciated with the output arc of the decider immediately after firing. The

resulting sequence is the logic sequence of C.

Let S and 8' be WFS's (5" not necessarily distinct from S), and let T
and T' be tests made by deciders d and d' in § and S', respectively., Then T
and T' are similar tests if their first components are identical and their
second components are labelled with the same predicate letter. Let L be the
logic sequence of a computation C by S and L' the logic sequence of a computa-
tion C' by 8'. Then L and L' conflict at tests T, 7' if (T, N} is in L and
(T', N°) is in L', where N € {true, false }, N is the logical complement of
N, and T and 1’ are similar tests. Logic sequences L and L' are consistent
if they do not conflict at any pair of tests. A computation is proper if its

logic sequence is self-consistent.

Let S and S' be (m,n)-WFS's, and let C and C' be proper computations by
S and S', respectively. Then C and C' are {output) equivalent if edither both
are infinite, or beth are finite and each defines the same expression his-
tory fer the ith achema output link, 1 < i < n. The schemas S and S' are
(strongly) equivalent if, for all proper computatioms C by S and C' by 8',
the logic sequences'of C and C' are consistent only if C and C' are equiva-

lent.

It is convenient at this time to introduce & notion of equivalency among
data links of WFS8's. Let x be a data link of a WFS S and y & data link of a
WFS S'. Then links x and y are equivalent links if, for each proper computa-
tion C by 8 and consistent proper computation C' by S8', the expression history
of x defined by C is the same as that of y defined by €', whenever C and C'
are finite. A WFS S is reduced if it contains no pair of equivalent data

links.

1II. Free Schemas

A WFS 8 is a free WFS (FWFS) if, for each computation C by 5, tests
7 and 7' are made during C only if the first components of r and T' differ,
or the predicate letters labelling the second components of v and 7' differ.
(Intuitively, a schema S is free if no predicate ia ever applied twice to the
same expression during a computation by the schema.) We note that freeness
of 5 ensures that each computation by § is proper, regardless of the outcome of
any test made during the computation. |

IV. Decider and Schema Productivity

Intuitively, a test r made during a computatiom C by a WFS § is pro-
duective if the ocutcome of the test affecta the output behavior of the schema
for that computation., Formally: Let S be a WFS, and let 1 be a test made
during a proper computetian'c by Sl Then + 1ls productive if there exists a
computation C' by S guch that the logic sequences of C and C' conflict only
at tests T, T' (;or some T' made during C) and C and C' are not equivalent.

A decider d in a WFS 8 is groductive if d makes a productive test during
gome computation by S. A schema § is decider productive if each decider in
§ 1s productive.

A WFS S is said to be in standard form Lif it is reduced and decider pro-

ductive.

V. Decidability of Link Equivalence im FWFS's

In this section, we prowe that it ia decidable, for any pair of data
links x and 7y in a FWFS S, whether or not x and y are equivalent. (This re-
sult is a corollary of the result reported in [1]; the alternative proof
given here is far simpler, although not readily generalizable to the entire
¢class of Dennia-Fesseen schemas.)

Some additional notation shall prove useful. Let 5 be a FWFS and let
'7Lbe the set of nodes of §. We may define a partial ordering '" among the
elements of %as follows:

n>n' Lf and only if:

=10~

(i) n' 18 a decider of 5 and m is a node other than a decider; or

(1i) n and n' are deciders controlling schemas R and R' in 8, respectively,
guch that neither decider is within the body of the schema con-
trolled by the other, and some input link of R' lies on a path from

aome output link of R to some output link of 8.

(Note that the well-formedness of S ehsures that ">" is indeed a partial

orderlng)
A cnmputatlon C by a FWFS S is properlg,ordered if no node n fires in a

configuration v of C if a node a' is enablied in v such that n' > n. We note
that for each computation C by S there is an equivalent computation C'by §
guch that C' is properly ordered.

Intuitively, properly ordered computations have the property that the firing
of deciders is held up until only deciders are enabled. Algo, if a decider is
fired at some point in a computation by a schema, then no loop-free path from
any schema fnput link to that decider contains a node controlled by a decider
which is also enabled at that point in the computation -- otherwige, chis other
decider would be fired first, N

Let S be an FWFS and C a computation by 3. Then the gutcome sequence of
C is the sequence of ordered pairs obtained from the logic sequence of C by
deleting the first component of each test appearing in any pair in the se-
quence; 1.e. if (74, Nl), (12, Nz), cees Qrk, Nk), (Th+1’ Nk+1)’ ... 18 the
logic sequence of C, then the gutcome sequence of C is the sequence
| (E(ry)s Np), Elry), Npdy ., (E(Tk). N (E(Tk+1) L where E(7,)

denotes the second component of T;. We note that the freeness of § ensures

that the set of outcome sequences of computations by § is a regular set.

Theorem 1: Let S be a FWFS and let x and y be data links in S. Then it is
decidable whether or not x and y are equivalent links.

Proof: As is the case with logic sequences, we note that many computations
by an FWFS may have the same outcome sequence, but that all computa-
tions having the same outcome sequence define the same expression
hiatories for each schema data link.

Let Lx be the language [QBld ig the outcome sequence of some
finite computation C by §, B € EXP(S) is the last element in the expres-
sion history of x defined by C (B is the empty string if the expression
history of x defined by C is empty), and 5 is a gpecial symbol not
appearing in EXP(S)}.

-il-

Let Ly be the language defined in a similar fashion for link ¥.
We note that the freeness of S implies that x and y are equivalent
links if and only if L = Ly’ cince if the expression histories of
x and y differ for some computation by 8, then in particular the last
elements of the histories differ for some computation by 8.

We may construct a deterministic pushdown automaton M% (see, for

example [4]) which recognizes Lx as follows:

1‘1X will have stored in its finite state control a deseription of
the schema S. Scaming an input string of the form oSB, 1'1x will push ,
« into its stack, ensuring as it does so that ¢ is indeed an outcome sequence
of some properly ordered computation by S. After scanning the special symbol
5, Mx will begin to ''trace a path" from link x backward through the
schema §. As merge nodes are encountered in the path, symbols of «
are popped from the stack tolde;ggminé which of the poss;E}g_Baths are
followed. (The fact that o is the outcome gsequence of ; praperly ordered
computation ensures that the required outcomes are atored in the stack in
the correct order.) As operators are encountered in the path, symbols of P
are gcanned to ensure that P is the correct expression for the path followed,
i.e. as each operator is encountered, the next gymbol of P is scanned to en-
gure that it ig the function symbol labelling the operator. Finally, if and
when the ith input link of § is encountered, the last two gymbols cof § are
scanned to ensure that they are ﬁiS.

In a similar manner we may construct an automaton M which recog-
nizes the language L?. The.automaca Mi and M& have the property that
in accepting or Tejecting any input string, the direction of the stack
head changea only once; hence the work of Valiant [4] implies that the
equivalence of Mi and HY (and hence that of 1inks x and y) is decidable.

Before stating the next result, we introduce additional notation:
For any FWFS 5, let the boundary Llinks of 5, BOUND(S), be the union of QUT(S) and

the set of data links which are input links to iteration deciders. The well-formednes.
of S ensures that sach node of § must lie on a path from IN(S} to BOUND(S). {(Note
that a node need not lie on a path from TN(S) to OUT(S}.)

Corollary 1.1: Let 5 be a FWFS. Then we may effectively construct from § an

§' iz reduced.

equivalent FWFS 8' such that

-12=

Proof: For each pair of equivalent llnks x and ¥y in §, we replace all arcs
emanating from link x by arcs emanating from link y and delete link x.
We then delete all nodes no longer on a path from IN(S) to BOUND(S).
This procedure is repeated until no pair of equivalent links remains.

The resuvlt achema is 5'.

vI. Decidabilitz_gg Productivity Far AFWFS 's.

It has been shown [2] that the equivalence problem for the ¢lass of

_WFS's is recursively undecidable. It follows immediately that decider pro-

ductivity 16 an undecidable property for the class, since the schema S of
Figure & is a WFS if Sl and 52 are WFS's, and decider 4 is productive Lif

and only if Sl and S2 are not equlvalent. It is currently an open problem

whether or not praduct1v1ty is & decidable property for the class of FWis's,

since the ability to decide productivity impliesg the ability to determine the
equivalence of arbitrary FWFS's. (Note that the schema S of Figure 4 is free
if Sl and 32 are free schemas.)

We are able to show, however, that productivity is a decidable property
of a subclass of the FWFS's:

Let S be an arbitrary FWFS. Then S satisfies Property A if each decider
in § is labelled with a predicate letter not appearing elsewhere in the schema;
in such a ecase, we say that § is an AFWFS.

Tn this section of the paper we show that it is decidable whether or not
a decider in an AFWFS is productive. Unfortunately, this does not directly
imply the decidability of equivalence for the class of AFWFS's, since the
gchema S of Figure 4 is not, in gemeral, an AFWFS, even if both §, and 5, are

We note that if § is an AFWFS and d is an iteration decider in 5, then
each test made by d is productive, Thus, it is sufficient to prove that
it is decidable whether or nat a conditional decider d in an arbitrary
AFWFS is productive.

Some additional notaticn is useful:

Let S be a - FWES ﬂnd d a conditiconal decider in 3. Let m be a 1 1rge
node controlled by d. Then m is pull if, whenever C and C' are computations
by S conflicting'only at tests made by d, the ezpression history of the output
link of m defined by C is the same as that defined by ¢'. (Informally, m is
null if the sequence of non-null expressions associated with the output arc of m

is independent of the outcomes of tests made by d during any computation by 5.)

IN(S) = (=x]
OUT(8) = {z]

13-

FIGLURE 4.

~14-

We note that there is no reason to extend the concept of null node to the
merge nodes controlled by iteration decidera, smince such nodes cannot be null:
the length of the expression history of such a node's ocutput link depends on
the number of times the controlling decider fires.

Clearly, any conditional decider which controls only null nodes must be
non-productive. Hence, the identification and elimination of such nodes is a
necessary step in the identification of non-productive declders. Unfortunately,
while it is an easy task to eliminate null merge nodes from a schema, the elim-
ination of such nodes is not in itself sufficient to ensure the productivity of
each decider in the schema, as demonstrated by the schema of Figure 5. Schema 5
contains no null merge nodes, yet decider d is non-productive: the output of the
merge node m is used solely as input to decider d"”, and m exhibitg non-null be~
havior {i.e. the expressicn history for the output link of m defines the outcome
of the test by decider d) for precisely those computations during which m' ex-
hibits null behavior. It would seem that a necessary and sufficient condition
to ensure that a schema § is decider productive 1s that there exist a computation
by S during which each conditional merge node exhibits non-null behavior; as we
ghall see, this is nearly the case.

Before presenting the next lemma, we consider a simple transformatiom which
may be applied to AFWFS's:

Let R be a (portion of) a conditional schema within S as shown in Figure ba,

(We say that R is a conditional construct controlled by d; schema P is the true

alternative of R, schema Q the false alternative,) Then Transformation T con-

gists of moving gate t1 past schema P, and moving gate f1 past schema Q, as il-
lustrated in Flgure 6b. We note that if P and Q are free of iceration schemas,
then the application of Transformation T to R results in an AFWFS which is equiva-

lent to S; in such a case, we say that T is applicable to R.

Lemma 2.1: Let S be an AIWFS, Then for each merge node comtrolled by a condi-

tional decider of S, it is decidable whether or not the node is null,

Proof: Let §" De the AFWFS obtained from § by applying T wherever applicable in

the schema. It 1is clear that if T is not applicable to a conditicnal con-
struct agsociated with a merge node m in the schema, then m cannot be null.
(Since at least one alternetive of the construct contains iteration de-
ciderg which might diverge if enabled, the expression history of m's out-
put link depends in general on the outcomes of tests made by the controlling

decider.) Hence, the only candidates for null nodes in S$" are those condi-

-15~-

TTTT T

AN S

z

{u,v,wox]}

{2z}

IN(S) =

OUT(S) =

FIGURE 5,

-16-

Rs

~
o
—r

(b)

FIGURE 6.

Corollary 2.1.1:

_]_7_

tional merge nodes in which the paths from the associated gates to the
merge consist of a single data arc. But it is clearly decidable whether
or not such a node is mull, since it is null if and only if the input

1inks of the associated T and F gates are equivalent.

Let S be an AFWFS. Then we may construct an AFWES §' from §

Proof:

such that §' is equivalent to S and g' is free of null merge nodes.

For each null merge node m {n §, we merge the output link of m with the

input link of either associated gate, and then delete both associated

gates and node m. We then delete all nodes no longer on a path from

IN(S) to BOUND(S); the remaining schema is g'.

Lerma 2.2: Let S be an AFWFS, Suppose that Transformation T is not applicable

Le

o r—

Proaf:

ro a conditiomal construct agsociated with a merge node m driven by a

decider d. Then d is productive.

gince Transformation T is not applicable to the construct, one altermative
of the construct (say the true alternative) contains an iteration decider
labelled with some predicate letter p. Property A ensures that the

False alternative cannot contain a gimilarly labelled decider. Since

8 is free, the p-labelled decider can diverge (i.e; perform an infinite
series of tests, each with outcome true) in response to a Crue outcome

of a test made by d, but not in response to a false outcome, Thus d is

productive.

3: Let S be an AFWFS free of null merge modes. Suppose that x is an

output link of a merge node driven by a conditional decider d, and that
a data path exists from link x to BOUND(S). Then d is productive,

By hypothesis, there exist.finite computations C and C' by S such that

G and C' confllct only ‘at a test T made by d, and such that the expre551on
history of % defined by C dlffers from that of x deflned by C'. More-
over, since there is a data path from x to a link y € BOUND(S), then

C and C' can be chosen in such a way as Lo ensure that the expression
nistory of y defined by C differs from that of v defined by G'. If

y € OUT(8), the productivity of 4 is immediate; Lif y is the input link

of an iteration decider d' in S, the productivity of d follows directly
from Property A and the freeness of the schema: sincé a test T' is made

by d' during ¢ which is not made by d’ durlng ¢' (or vice versa), we

~18=-

may certainly construct a computatiom C" by S such that C" is infinite
and conflicts with one of the finite computations C and C' only at test T,

thus implying the productivity of decider d.

The proof of the following result is a straightforward, albeit tedious

exercise, and is left to the reader:

Lemma 2.4: Let Ty Tar ot TRe Tl be 2n-tuplea (n > 0) of words over an
alphabet V, let Rl, Rys vnes
and let L be the language Tl-Rl »Toe RQ ees Ty Rk Tl {The concate-
nation operation is extended to tuples of words in the cbvious manner:
1f o = (wgs s 200> a, Y and B = (Bl, Bos <res ﬁ y are tuples of char-
acter strings, then o - ﬂ is the tuple {ul Bl’ ay BZ’ vees @ -B ¥

Then: {((yw & L){di, 1 = i g n) {components 2i-1 and 21 of w are iden-
tical)) = ((gi, 1 < i £« n) (yw € L} (components 29-1 and 2i of W are iden-
tical)).

Ry be sets of 2n—tuples of words over V,

Some additional terminology is needed before presenting an important

corollary of the above Lemma:

Let S be a WF5, Then the set of main deciders of 5, HAIND(S) is the set of

deciders in 5 which do not occur within the body of some iteration schema in 5; the
set of main links of S, MAINL(S), is the set of links in § which do not occur within
the body of some iteration schema in 8, less the output links of merge nodes con-
trolled by main iteration deciders of 5. We note that if x is a link in MAINL(S),

the expression history of x defined by any computation C by 5 consists of at most
a single element.

Corollary 2.4.l; Let S be a reduced FWFS and let X =

(xls Vi3 Fgs Yo o X Yn)
be an ordered set of data links in MAINL(S) such that no merge node driven
by a conditional decider in MATND{S) lies on a data path from IN{(S) to an
element of X. Then there exists a computation C by 5 such that for all i,

l< i< n, the expression history of x, defined by € is not the same as
that of vy defined by C.

Proof: iégué.=“(d1, dZ’ vy dk) be an enumeratian of the iteration decideré in
MAIND(S) such thatr if d, > d (where > 1is rhe partial ordering of

the nedes of 5 defined previously), then i > j; let Cidenote the class

of finite, properly ‘ordered ccmputations by S. Then for any data link x ia

X, the expression history of x defined by any computation € in (3}

-19-

consiats of a single word « of the form
ak+1(x) . Bk(x, C) o ctk(xl » Bk-l(x’c) LR crz(:t) . Bl(x,C) . o.rl(x) where
Bi(x, ¢) denctes the (possibly empty) portion of W due to the firings
of operators in the jteration schema controlled by di; czi(x) denotes
the Fixed portion of w due to the operators which fire between the
last firing of di_and the first Eiring of di+l’ 1< i< k; and
% (x) denotes the portion of w due to the operators which fire after
the last firing of dk' {(Note that the o's are the same in all computa-
tions in ()
For each i, 1 £ 1 < k + 1, let Ty be the Zn-tuple (ui(xl), ggi(yl),
Ui(xz): O’i(}'z)s -y di(x‘n)’ Cﬂ'i(yn))-
For each j, 1 ¢ i < k, let Rj be the set of 2n-tuples
(5 Gegn Oy ByGps Oy Byl O By@g O ooy Byl O
.o eNlc el .
T Meinally, let L = * * or,
nally, let L= mp 5 « & Tt Feg * oo ‘TzaRl ‘1
(Intuitively, L = [(gx . Ey’ % ,E',yz, R Exn’ yn)l for some com-
putation C in L, & is the (singleton) expressicn history of limk ©
defined by C, W £ {xl, Yys Xgs Ygo crvo X yn]]).

We have:

{{y computations C 1nC) (7i < n)(the expression histories of links Xy
;a,nd v defined by C are the same)) & ((Fe € LY (7L < n) (components
24=1 and 2i of W are jdentical)) e ((#L < n)(w € 1) (components 2i-1
and 2i of W are ide_ntical)) e ((71 < n) (¥ computations C inG,)(the
expresaion histories of L and v defined by C are the game}) o S

ig not reduced.

Corollary 2,4,2: Let 5 bea FWFS free of null merge nodes, amd let M =

my, WY, s 3 Wp be a set of merge nodes in 8 such that for each i,
1=i<n, my satisfies two properties:
1) m; is controlled by & conditional deciée'r_: in MATND{S); and
ii) no merge node controlled by a conditional decider in MAIND{S) lies
on a data path from IN(S) to mj.

Then there exists a computation C by S such that each element of M

exhibits non-null behavior during C.

-20-

Proof: We may assume, without loss of generality, that Transformation T is
not applicable to the conditional constructs associated with the ele-
ments of M. For each i, 1 « i £ n, let X and ¥ denote the input
data links of the gates associated with merge node m, . By the pre-
ceeding corollary, there is a computation C by S such that the expres-
sion history of X, and that of ¥, defined by C differs for all i, and

the result follows immediately.

Theorem 2: Let S be an AFWFS and d a decider in S. Then it is decidable

whether or not d is productive.

Proof: 1. We first show that productivity of d is decidable if d is in
MAIND(S):

We may assume that § is in standard form, and that Transformation T
is not applicable in 5. Decider d must be productive 1f 4 fails to
satisfy the following conditions:

i. d is a conditional decider, by Lemma 2.1.

ii, All merge nodes controlled by d have the property that the
paths from the associated gares to the merge nodes consists
of single data arcs {(otherwise by Lemma 2.2, Transformation T
is applicable), and by Lemma 2,3, there are no data paths
from the output link of any merpge node controlled by 4 to
BOUNLD(S), i.e. each path from the output Link of a nerge
contrelled by d to BOUND(S) contains at least one main con-

trol link.

Asgume that decider d satisfies the above conditions. Let D be

" the set of conditional deciders in MAIND(S) to which paths exist from
the output links of merge.nodes controlled by d. Iet % be the set of
AFWFS's obtained from 8 by fixing, in all possible combinations, the
cutcomes of tests made by the main conditional deciders not in D, and
replacing the associated conditional comstructs by the approp.:ate al-
ternatives. Let L' be the set of AFWFS's obtained from E by removing
null merge nodes Ffrom the schemas, as outlined in the proof of
Corollary 2.1.1. <Clearly, d is productive in § if and only if d is
productive in some element of T'. But d is productive in some element

of &' if 1t appears at all in some element of E':

-21-

Suppose d appears in some element of Z'. Then in particular, it must
appear in some schema S' in Z' in which there is a path p from the output
link of a merge node driven by d to BOUND(8'), such that no merge node driven
by a conditional decider in MAIND(S') lies on a path from IN(S') to an input
link of any main merge node in path p. By Corollary 2.4.2, there iz a compu-
tation C by 8' such that each merge node in o driven by a conditional decider
in MAIND(S') exhibits non-null behavior during Cj hencé, the test made by
d during € is productive and the productivity of d in schema S is thus

ensured,

2. It remains to be shown that the productivity of d is decidable if d is

not a main decider of S. Some additional notation is useful:

Let S be a WFS and » a decider in S, The level of r in S is 0 if r is in
MAIND(S), and is k+l if r is in MAIND(R), where R is an iteration schema in

S driven by a decider of level k in 5.

We now show that if d is & conditional decider of level k > O
in an AFWFS S, then the decidability of productivity for d reduces to
chat for no more than two conditiomal deciders of level k-1 1in an
AFWFS S' constructed from §; the theorem then follows immediately by
induction on the level of a conditional decider.
Let 8 be an AFWFS and let d be a conditional decider of level
k>01in5., Let R be the iteration gchema in 8 of which d is a main
node, and let d' be the decider drl;lng ﬁ_m—Egélé;;'d'liéZ_ZS one "loop" of the
iteration schema controlled by d', i.e. a loop free data path exists to 4 frem
one merge node m controlled by d'(Flgure 7a); let x be the output link of m.
1f there is a path from X to d', then d is productive in § if and only if it
is productive in the body of schema R (which is decidable, since d is a main
conditional of R). If no such path exists, d is productive in § iff the outcomes
of its firings affect the expression history of X, and the expression history of
% affects the output expressions of the schema, i.e. if and only if d is produc-
tive in R and decider d" ia productive in the schema rTesulting from its insertion
in § as shown in Figure 7b. (In the figure, f i a new function letter mot ap-
pearing in S and p is a new predicate letter not appearing in S.) Again d is a

main decider of R and since d" is of level k-1 in S, the regult follows.

-929-

T S o m—— e w—

x. h
e —— Al _
i [
| _
(| !
__ 5 |
o |
) 1 :
- P
b Y
b |
|
| I_
a 13 - _
B _
_F lllllll —?
i _
= 1
-y —— — —— i
re

FIGURE 7.

-23-

Corollary 2.1: Let S be an AFWFS. Then we may construct from 3 an

AFWFS S' such that § and S' are equivalent, and §' is decider pro-

ductive.

Proof: We simply eliminate the merge nodes. controlled by any non-productive
deeider d in S exactly as 1f they' were null nodes. The resultant

schema is S'.

VIT. Decidability of Equivalence for AFWFS's

In this section we prove the main result of this paper: equivalence is
decidable for the clase of AFWFS's.
The following Lemma and its Corollaries provide a basis for the proof:

Lemma 3.1: Let S and $' be equivalent reduced AFWFS's, and let C be a
finite ccmﬁutation by 5. Then thEre_exists a computation C' by S'
such that the logic sequences of C and C' are consistent and such that
for each productive test r made during C, e similar test ' is made

during C'.

Proof: Let S and S' be as above and let C be any computation by S. Let
Tyr Tos »ova To Tpgys oo be an enumeration of the productive te?ta

made during C, and let c be the set of computatione by S' which have

logic sequences consistent with that of C. The following procedure may

be used to select the required computation C':

i. Set 1 =1, set Ci - C,

i1, Choose an element C" from Ci. If a test q‘; gimilar to test
T4 ig made during C", go to step (iv). _

i11. By definition of productivity, there exiasts some computation
Cy by S, whose logic sequence conflicts with that of C only
at test T, and which is not equivalent to C. Thig computation

cannot be equivalent to C", and hence its logic sequence must

conflict with that of C" at a test t such that no test similar
to 7 ig made during C. Let C’ be the subset of Ci congisting
of those elements whoase loglc sequences conflict with that of
C" only at test 7. (Note that C' must be non-empty.) Set
Ci to Cz' and go to step (ii).

-4 -

iv, Let(? be the subset of (:i consisting of those elements

in which test r! is made. Set C,y=C" seti=i+1.
‘Ga to step (1L).

Corollary 3.1.1: Let S, S' be equivalent productive AFWFS's. Let PI and

PI' be the sets of predicate letters labelling the iteration deciders

in § and S' and let P, and P.' be the sets of predicate letters

labelling the conditional deciders in S and S', respectively. Then

- f = L}
PI = PI and PC = PC .

Progf: The first equality follows from the fact that each test made by an

iteration decider in an AFWFS iz productive, the second from the pro-

ductivity of each conditional decider in S and S’.

Corollary 3.1.2: Let S and S§' be equivalent productive AFWFS's. Let fM and

FM be the sets of predicate letters labelling iteration deciders in

MAIND(S} and MAIND(8'), respectively, and let ﬂ“ and PM be the setks
of predicate letters labelling the conditional declders in MAIND{(S)

and MAIND(S'). Then P’I‘ - P'I*' and Pl‘é and Plg'.

Proof: Again, the first equality follows directly from the productivity of

reach test made by an iteration decider in either schema; the second
follows from the observation that if d fs a productive conditional
decider in an iteration subschema of an AFWFS, then d can make a pro-

ductive test each time the body of the subschema is executed.

The previous Corollaries are important becguse they imply that
simflarly labelled deciders are gimilarly 'nested” within iteration sub-
schemas in equivalent AFWFS's. In particular, within the main deciders of
equivalent AFWFS's we are asgured of finding similarly labelled conditional
and iteration deciders.

Before proceeding to the next result, we introduce some additional
notation:

Let 8 be an AFWFS, and let Se be an AFWFS constructed from § by creating
a new output link for each main iteration decider as shown in Figure 8(a) if

the gate g already exists in S, or as shown in Figure 8(b) otherwise. Then

-25=

OUT(S)= {zl,zz,...,zn} OUT(Se)= {Z1,235++932ns %]}

xnew

OUT(S,)= [21:229---:zn!xnew}

OUT(S)= {21230 00s2y)

FIGURE 8,

=26=

the schema Se is a main extension of S. We note that if x is the new output

1ink associated with a decider d inSe, then the expression associated with

the incident are of x at the terminatiom of any finite computation by S

ig the

last element of the expression history of the input link of d.

Temna 3.2: Let S and 8' be (m,n)-AFWFS's such that for each iteration de~

Proof:

cider in MAIND(S) there is a similarly labelled iteration decider in
MAIND(S'), and vice versa, Let 5 and 5,' be main extensions of S
and S' such that the order in which the new output links of Se and
SE' are created (in terms of the predicate letters labelling the main
iteration deciders) are the same in each case. Then S and 5' are
equivalent iff whenever C and C' are consistent computations by SE
and Se' such that the corresponding main iteration deciders of tha
schemas fire the same number of times during the computations, then

¢ and C' are squivalent.

Let 5, §', 8, Sel be as sbove and assume that S_ and Se' satisfy the

conditions of the Lemma.

"[F". We note that for each computation by & schema there is a
computation by its main extemsion possessing the same logic sequence,
and vice versa; we note also that if Ce.and Ce' are equivalent compu-
tations by Se and SE', then C and C' are equivalent computations by
S and 8', where C is the computation by § possessing the same logic

sequence as the computation C, by S/ and similarly for €' and Ce"

* appear equivalent for all

We now simply cbserve that if Se gnd Se
pairs of consistent computations in which corresponding main iteration
deciders fire an equal number of times, then they must, in fact, be
equivalent since the last pair of tests performed by corresponding main
jiteration deciders (and thus each pair of tests perforned) during any
pair of consistent computations must be the same. The equivalence of S
and §' follows immediately.

"Only if": If S and §' are equivalent, then the expression
histories of similarly labelled iteration deciders defined vy any pair
of finite, consistent computations by the gchemas must be the same,
otherwise we could easily alter one so that it diverged without vio-

lating the consistency of the computatioms. Thus Se and Se are

guaranteed equivalent.

-27=

The significance of Lemma 3.2 is this: if we wish to determine
whether or not a pair of AFWFS's are equivalent, we may construct from

them a paeir of main extensions and test this pair of AFWFS's for equiva-

lence under the assumption that corresponding main iteration deciders must
always fire an equal number of times during pairs of consistent computations.
1f the extensions are equivalent under this asgumption, the Lemma guaranteeés
that the original schemas are equivalent,

1t is convenient at this point to introduece a notion of size for well-
formed schemas. The following definition, while not the most obvious, will
prove to be quite useful:

Let S be a WFS. Then the size of S, SIZE(S), is the number of merge

nodes controlled by iteration deciders in the schema.

Qur procf of the decidability of equivalence for AFWFS's will involve an
induction on the size of the schemas being compared. (We note that if 3 is
an AFWFS of size 0, then S can be equivalent only to another AFWFS of size 0O;
moreover, equivalence is trivially decidable in guch a case since the number
of distinct computations by the schemas is ¢inite and an exhaustive analysis
is sufficient.)

Beczuse of the length and nature of the argument needed to prove the
next lemma, the proof of the lemma will be deferred to the next section of

the paper:

Lemmna 3.3: Let S and 8' be AFWFS's such that the labelling of deciders in
the achemas satisfies the conditions required of equivalent AFWFS's by
Corollarieg 3.1.1 and 3.1.2. Then the problem of deciding whether or
not S and S' are equivalent can be reduced to the problem of deciding
equivalence for no more than 1 pairs of AFWFS's, each of size no greater
than k, such that each schema is free of main conditional deciders,
where i is & constant bounded by (4 + 1)(33)2 , 4 is the number of main
conditional deciders in S or §', and k is the maximum of SIZE(S) and
STZE(S'}.

-28-

Proof: (See Section VIII.)

To demonstrate the decidability of equivalence for AFWFS's, it is
gufficient to show that if S and 8' are AFWFS's such that MAIND(S) and
MAIRD(S') are free of conditional deciders, and k {s the maximum of
SIZE(S) and SIZE(S'), then the problem of deciding whether or not S and S'
are equivalent reduces to the problem of deciding equivalence for two pairs
of AFWFS's, each schema of size less than k. To this end we present the

following Lemma :

Lemma 3.4: Let X, X', Y, Y' and Z' be sets of words over some alphabet T, and

1 X - X' and EB: X = Z' be total func-

. * %
tions; let f2: Y —~ (¥') be a total function such that for each

%
let vy be a word in T . Let £

#
¥,p € ¥ we have fz(ﬂ;) . fztp) = Ez(q; g). Suppose we have, for each
o € X and each B € ¥, the following equalities:

o v a=1£0) - f{w
2. ¥ B a=E(m v £,8) - £

' *
Then for each W €Y we have y + W - 5 = fafa) . fz("-‘) - flfﬂ’)-

Proof: We know from (1} and (2) that the assertion is valid for W = g and for
® € Y. Assume the assertion is valid for all W € ¥, 0 < i < iy. Then

cthe agsertion is valld for %11103 €Y G 25 follows:
Let W m W, - W, W oEY 0) m?. € Y. We consider three cases:

Cagse 1, g = fl{u), ¥ = f3 {@). We have by assumption

Y‘“]_'&'=Y'f2(ml)'d and y-wz-anyvfz(wz)'gg,from
which we have Wy e, = £,(0y) - fz(wz) = fz(wl . wz) and thus
Y - wl - wz L fs(ﬂ’) * fz(ml . mz) ' fl(Ct')o

Case 2. o=u" Flo), uér v = £.(w). Then:

Vpl{Cy * 0" = falo) « £,00) - £, () =
rrp - £1€) = £4a) » £,(p) * £5()) =
(v ©pru==£{ ") =
hrptumyson 03 =
{p CH= £,(p))]
Substituting w, and w, for p ylelds:
TM= o £,(0)

wz TpEpt fz(mz)

-29=-

Then:

yewro=y W e £

=y . ml . m2 CONTR f1°“)

=y oW By £ (o)

=y c fz(w]_) . fz(“’g) . f1(°‘)
£u (o) « £5(0 ¢+ W) £, (@)
Eq(e) « £, ~ £; ()

Case 3. u * o= fl(a), HEM Y= f3(m) T e

The proof for Case 3 is gimilar. to that for Case 2 and is left

to the reader.
hs)

The following Lemma provides the remeining needed result:

Temma 3.5: Let S and 3' be standard form (m,n)-AFWFS's guch that each is

Proof:

free of main condit ional deciders. TLet k be the maximum of SIZE(S)
and SIZE(S'). Then either it is decidable if S and 8' are equivalent,
or the problem of deciding whether or not § and §' are equivalent can
be reduced to the problem of deciding equivalence of two pairs of

AFWES's, each of size less than k.

If the size of either schema is 0, equivalence is trivially
decidable. Suppose that the size of both schemas is greater than O:
Let x denote the first output 1ink of § for which there exlsts
a path £rom IN(S) to x containing & merge node controlled by an it-
eration decider. (Some such link axists.). Let %' dencte the corre-
gponding cutput 14nk of §'. Because of the absence of main condi-
tional deciders in S, we have that there exists im 5 a single loop-
free data path from IN(S) to x, as shown in Figure 9. (In the figure,
the Oi's represent operator gchemas, the Ri's jteration constructs.)
We have by hypothesis N > 0, and thus may congider the final iteration
construct R, encountered in the path from IN(S) to x.
Since S 1s reduced, the expression associated with the incident
arc of x at the conclusion of a complete computation by § depends,

in general, on the aumber of times the decider dN controlling Ry

' fires during the computation, Hence 1f x' is to be equivalent to X
q

FIGURE 9.

-31-

we must encounter am iteration comstruct R' controlled by a gimilarly
labelled decider d' on the path from IN(S') Eo x',

Let C be a finite computation by S and C' a consistent compu-
tation by S'. We can write the expression agsociated with the incident
arc of ¥ at the conclusion of C as YBy, where o and By are the ex-
pressions associated with the input and output arcs, respectively, of
RN during C. Similarly, we can write the expression associated with

' and

the incldent arc of =' during computation C' as y'8'y', where o
B'y' are the expressions associated with the input and output arcs of
R'. We note that if x and x' are equivalent links, the expressiom o'
is completely determined by the expression g. Less cbvious, perhaps,
ig the fact that y' is also completely determined by o! let 7' be a
test made during C'. Then if y' is dependent on the outcome of !

it must be the cage that a test ¢ similar to ¢' is alsoc made dur ing
computation C and that either ¢ or B (v is fixed) is dependent on the
gutcome. But P is dependent only on tests made by deciders in the
body of RN’ and hence it must be o which is dependent on tha outcome
of v. Thus y' must be completely determined by o, thig in turn
implying that B! is a function of B. From Lemma 3.4, therefare, we

maey conclude that if x and x' appear equivalent for all computations

_in which the deciders contralling RN and Rt fire no more than once

with outcome true, then x and x' are equivalent iff dN and 4' have
equivalent input linka. We thus have the following reault: let Se

S ' be main extensions of S and S' constructed as in Lemmz 3.2. Let
Sel he the schema obtained from S by merging the falae data input link
of node oy (the merge node assoclated with conatruct RN) with ites out-
put link and deleting RN let S, ey be the schema obtained from S be re-
placing the construct RN by a copy of its body as shown in Figure 10.
Let Sp+ and Set, be the schemas obtained in like mammer from S '. Then
link x is equivalent to link x' iff the output 1link correspounding to
link x' in Se'l is equivalent to the output link corresponding to link
x in 5, and the output link corresponding to link x' in S, is
equivalent to that corresponding to link ¥ in Sez. This in turn im-
plies that S is equivalent to §' iff §, 1s equivalent to Senl and Se2
is equivalent to Se.z. Since each of the AFWFS's Sel, Senl, Sez, Setz
is of size no greater than k-1, the result follows.

=32-

FIGURE 10.

=33=-

Theorem 3: let S and S' be AFWFS's. Then it is decidable if 8 and $' sre equivalent.

Proof: We may assume that 8 and §' are in gtandard form. The result then follows

from Lemmaz 3.3 and 3.5 by induction on the maximum size of 5 and S'.

VIII.

-3

Proof of Lemma 3.3:

Our equivalence Tesult will be complete once we have demonstrated the

validity of Lemma 3.3.

The proof of the following result is similar to the proof of Corollary

2.4.1 and is left to the reader.

Lemma 3,.3.1: Let S5 and S' be (m,n)-AFWFS's such that there are no conditional

deciders in MAIND(S) or MAIND(S'). Let x and y be the ith and jth
output links of schema $, 1 « 1, j < n, and let x' and y' be the ith
and jth output links of schema S'. Suppose that x and x' are not
equivalent and y and y' are not equivalent, Then there exist finite,
consistent computatioms C by 8 and ¢' by §' guch that the expressicn
assoclated with the incident arc of link x at the conclusion of C dif-
fers from that associated with the incident arc of link x' at the
conclusion of C', and the expression associated with the incident are
of link y at the conclusion of C differs from that associated with

link y' at the conclusion of C'.

For convenience, the Lemma 3.3 1s reproduced below:

Lemma 3.3: Let § and S' be (m,n)-AFWFS's such that the labelling of deciders

in the schemas satisfies the conditions required of equivalent AFWFS's
by Corollaries 3.1.1 and 3.1.2, Then the problem of deciding whether
or not 5 and §3' are equivalent can be reduced to the problem of de-
clding equivalence for no more than j. pairs of AFWFS's, each of size
no greater tban,’[, such that each schema is free of main conditional
deciders, where ,1. is & constant bounded by (g + 1)(35)2, ¢ the number
of main conditional deciders in S or §', and 4 is the maximum of
SIZE(S) and SIZE(S'). |

Let S_ and § ' be the main extensions constructed from $ and S',
respectively, as in Lemma 3.2, (We note that SE and SE' are

{m, j)-AFWFS's for some j = n.) We shall assume that Se and_Se' contain
some main conditionsl deciders, otherwise the lemma is trivially true.
Let e, dénate the number of guch deciders, and assume that they have
been ordered in some fashion, similarly {according to predicate letter)

in each scheﬁa.

35

We define a conditional asgsignment for Se or Se' to be a

co-tuple of expressions from the set {null, true, false} and note

that each finite computation by either schema determines, in obvious
faghion, a conditional assignment for the schema: the ith component
of the tuple, 1 < 1 < Cyr is true if the ith main conditional in the
schema fires with outcome true during the computation, falge if the
ith main conditional fires witth ocutcome false dﬁring the computation,
or null if the ith main conditional does not fire at all during the
computation, A conditional assipnment is said to be valid if it is,
in fact, determined by some finite computation by the schema.

Let V denote a valid conditional assignment for schema 5_(5.").
Then we may construct a schema S{V) from V and Se(Se') as follows:
each gonditional construct driven by the ith main conditional in
Se(se') is replaced (as in Figure 1la) by ita true alternativa if
the ith component of V is true, or by its false alternative (as in
Figure 1lb) if the ith component of V is false; all nodes no longer
on a path to a boundary node are deleted. The decider is then deleted,
and 1ts input link made the j+ith output link of S{(V). When this pro-
cedure has been carried out for each main conditional, we create
a new j + kth output link for each k such that the kth decider in Se(SE‘]
does not appear in S(v), i.e. such that null iz the kth component of V,
The resultant schema iz S{V).
_M_hié;iiﬁﬂé-thé-set of AF&&ETE_fEEGj]V ié.;_;;iia_coﬁditional assign-
ment for Se} and let &' be the set {S(V')[V' is a valid conditional
assigmnment for Se'}. (The cardinality of either set is less than 31.)
Now, S and S' are not equivalent if and only if the following condition
holds:

For some S(V) in T and S(V') in %', there exists finite consistent
computations C by S(V) and C' by S(V') such that the expressions as-
sociated with the jth output links of S(V) and S(V') differ at the
conclusion of the camput-:a.tiona, for aome 4 < j and all d\between j+1
and j+c such that the 41:!! components of V and V' differ,

=36~

(a)

(1)

FIGURE 11.

-37-

By Lemma 3.1.1, we may compare for equivalence the pair of
schemas Formed by deleting from S(V) and S5({(V') all output links
after the jth (and all links no longer on a path to a boundary limk),
and the pairs of schemas obtained from S(V) and S(V') by deleting,
for each }such that the ith co?pouenta of V and V' differ, all
output links other than the j+-agh putput links. We thus compare for
equivalence no more than (¢+1) pairs of schemes, each free of main
conditionals, and we do these comparisons for each element in

T x T'; the result follows.

IX. Extensions of the Result

The result presented in this paper is a rather sfecialized result but
guggests an approach to the problem of deciding equivalence in more general
models. 1In particular, the fellowing generalizations are suggested:

1. Demonstrating the dec:‘.dabiii.ty of equivalence for the class of
FWFS's, i.e. elimination of Property A as a condition of tha proof.

2, Demonstrating the decidablility of equivalence for a class of
schemas satisfying Property A in which opei‘ators with more than a
single input link are permitted, and/or in which deciders with more
than a single input link are permitted.

3. Demonstrating the declidability of equivalence for a class of AFWFS's
in which the output links of deciders may be interconnected by a
net of Boolean actors sc that conditional and iteration constructs
may be controlled by an interconnection of deciders, rather than by

a single decider.

it is the opinion of the author that the first generalization is the most
imporcant of those suggested, since tha FW?S's are capable of modelling the
controls of some very interesting clasaes of automata; some progress in this
direction has been made.

The second generalizatfon is also of interest: an analysis of the results
presented here demonstrate that the generalization to n¥ary deciders presents
little more than notational difficulties; the generalization to n-ary op-
erators aleo appears streightforward.

It is not clear precisely what problems are caused by the existence of Boolean
actors, but it is felt that, provided only free schemas are examined, the problems

introduced will be minor.

-38-

Referenceg

Dennia, J. B., and J. B. Fosseen. An Intreduction to Data Flow Schemas.

Computation Structures Group Memo 81, Project MAC, M.I.T., Cambridge,
Mags., September 1972.

Leung, C. Unpublished notes.

Patil, S. 8. Closure properties of intercommections of determinate

systems. Record of the Project MAC Conference on Concurrent Systems and

Parallel Computation, ACM, New York, 1970, pp 107-116,

Valiant, L. Decidability of equivalence for finite-turn deterministic

pushdown automata, Symposium on Theory of Computing, AGM, April 1974,

- APPENDIX

Examples of Well-Formed Unary Operator Data Flow Schemas

- Al -

The following "programs' are represented by the schemas of Figure

(a) Sq: fw}l ~ {21 (b) S9: {u,v} = {z}
beging begin;
xs=fl{w); : IF p(v) then do;
yi=g{x); wi=£(u);
zi=h(y); Z:=w;
end; end;
else doj
x:=g(w)
vi=£{x);
S H
end;
end ;

{c) 53: [wyx] - {¥,2)

begin;

wli=w;

x] :=x;

WHILE p(xl) do;
w2:=wl;
wir=f{w2);
whes=g(w3);
wlz=wh;
x2r=x1
x3:=f£(x2);
xrli=x33
“end;

yi=wl:

2:=x1;

end:

5 Iw 52 v

i
x IN(S) = {w]

g] OUHsD= ()
¥

h

m(52) = {U,V}

) 0UI(S,) = (2]

{(a) Operator Schema (b) Conditional Schema

IN(S3) = [w,x]

OUT(S,) = {y,z}

(¢) Iteration Schema

FIGURE Al,

- A3 -

The following "program” is represented by schema S, Figure A2:

S:{uv,wl = {z1}

begin;

uls=f{u);

wilz=g{w);

w2;=g(wl);

IF p{w2) then do;
u2:=g(ul);
ud:=f(u2);
zl:=u3;
end;

else do;

vli=v;

WHILE p'{vl) do; .
vli=h{vl);
end;

zl:=vl;

end;

z:=h(zl);

and;

ul

m

ul

v
W
F
{ | wl
H T F I
| I £
' h vl p I w2
| .
: T F ! D
1 I
ul
T F
zl
IN(S) = [u,v,‘&"}
N ouT(s) = {2}

FIGURE AZ,

Ty e—— — ey —

R (U

o

v,w)

{u,

IN(S) =

ouz(s) = {z}

FIGUBE A3.

