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Abstract

Secure processors enable new sets of applications such

as commercial grid computing, software copy-protection,

and secure mobile agents by providing security from both

physical and software attacks. This paper proposes new

hardware mechanisms for memory integrity verification and

encryption, which are two key primitives required in single-

chip secure processors. The integrity verification mecha-

nism offers significant performance advantages over exist-

ing ones when the checks are infrequent as in grid comput-

ing applications. The encryption mechanism improves the

performance in all cases.

1. Introduction

Many emerging applications require physical security as

well as conventional security against software attacks. For

example, in Digital Rights Management (DRM), the owner

of a computer system is motivated to break the system se-

curity to make illegal copies of protected digital content.

Similarly, mobile agent applications [5] require that sensi-

tive electronic transactions be performed on untrusted hosts.

The hosts may be under the control of an adversary who is

financially motivated to break the system and alter the be-

havior of a mobile agent. Therefore, physical security is

essential for enabling many applications in the Internet era.

Conventional approaches to build physically secure sys-

tems [20, 22] are based on building processing systems con-

taining processor and memory elements in a private and

tamper-proof environment that is typically implemented us-

ing active intrusion detectors. Providing high-grade tamper-

resistance can be quite expensive [1]. Moreover, the appli-

cations of these systems are limited to performing a small

number of security critical operations because system com-

putation power is limited by the components that can be en-

closed in a small tamper-proof package. In addition, these

processors are not flexible, e.g., their memory or I/O sub-

systems cannot be upgraded easily.

Just requiring tamper-resistance for a single processor

chip would significantly enhance the amount of secure com-

puting power, making possible applications with heavier

computation requirements. Secure processors have been re-

cently proposed [12, 21], where only a single processor chip

is trusted and the operations of all other components includ-

ing off-chip memory are verified by the processor.

To enable single-chip secure processors, two main prim-

itives, which prevent an attacker from tampering with the

off-chip untrusted memory, have to be developed: memory

integrity verification and encryption. Integrity verification

checks if an adversary changes a running program’s state.

If any corruption is detected, then the processor aborts the

tasks that were tampered with to avoid producing incorrect

results. Encryption ensures the privacy of data stored in the

off-chip memory. To be worthwhile, the verification and en-

cryption schemes must not impose too great a performance

penalty on the computation.

Given off-chip memory integrity verification, secure

processors can provide tamper-evident (TE) environments

where software processes can run in an authenticated envi-

ronment, such that any physical tampering or software tam-

pering by an adversary is guaranteed to be detected. TE en-

vironments enable applications such as certified execution

and commercial grid computing, where computation power

can be sold with the guarantee of a compute environment

that processes data correctly. The performance overhead of

the TE processing largely depends on the performance of

the integrity verification [21].

With both integrity verification and encryption, secure

processors can provide private and authenticated tamper-

resistant (PTR) environments where, additionally, an ad-

versary is unable to obtain any information about software

and data within the environment by tampering with, or oth-

erwise observing, system operation. PTR environments

can enable Trusted Third Party computation, secure mo-

bile agents, and Digital Rights Management (DRM) appli-

cations.

In this paper, we describe new hardware schemes to effi-
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ciently verify and encrypt all or a part of untrusted external

memory. Our integrity verification scheme maintains incre-

mental multiset hashes of all memory reads and writes at

run-time, and verifies a sequence of memory operations at a

chosen later point of time. Our encryption scheme uses one-

time-pad encryption and time stamps, and overlaps the de-

cryption computation from the corresponding data access.

This enables a processor to overlap decryption computation

with data access and hide most of the decryption latency.

We evaluate our new schemes, viewing them as hardware

mechanisms in a microprocessor. We compare them to the

most efficient existing schemes, namely, hash tree integrity

checking and direct block encryption. Simulations show

that our integrity verification scheme outperforms the hash

tree scheme when the checks are infrequent, e.g., less than

once a million memory accesses. For example, a processor

only needs to check the integrity of previous memory op-

erations at the end of an execution for a certified execution

application in commercial grid computing. In these cases,

the performance overhead of our scheme is less than 5% in

most cases and 15% in the worst case. On the other hand,

the hash tree scheme has less than 25% overhead for many

cases, but may cause more than 50% degradation when on-

chip caches are small. Therefore, our integrity verification

scheme significantly reduces the performance overhead of

TE processing. Our new scheme has the added benefit of

reducing memory space overhead from 33% for a typical

hash-tree scheme to 6.25%.

Simulations also demonstrate that the one-time-pad en-

cryption scheme outperforms the existing direct block en-

cryption in all cases. The one-time-pad scheme incurs about

8% performance overhead on average, and 18% in the worst

case. The direct encryption incurs about 13% performance

degradation on average, and 25% in the worst case.

The assumed model and how integrity verification and

encryption are used in secure processors is presented in Sec-

tion 2. The hash-tree mechanism for memory verification

and our new scheme are described in Section 3. The con-

ventional encryption mechanism and our new mechanism

based on a one-time-pad and time stamps are discussed in

Section 4. Section 5 discusses implementation issues. In

section 6 we evaluate the schemes on a superscalar proces-

sor simulator. We discuss related work in Section 7 and

conclude the paper in Section 8.

2. Secure Computing Model

We consider systems that are built around a single pro-

cessor with external memory and peripherals. We do not

consider multiprocessor systems in this paper.

Figure 1 illustrates the model. The processor, imple-

mented on a monolithic integrated circuit (IC), is assumed

to be trusted and protected from physical attacks; its inter-

nal state cannot be tampered with or observed directly by
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Figure 1. Our secure computing model.

physical means. The processor can contain secret informa-

tion that identifies it and allows it to communicate securely

with the outside world. This information could be a Physi-

cal Random Function [8], or the secret part of a public key

pair protected by a tamper-sensing environment [20].

The trusted computing base (TCB) consists of the pro-

cessor chip and optionally1 some core parts of the operating

system that plays the part of the Nexus in Palladium [4] or

the security kernel in AEGIS [21]. The processor is used

in a multitasking environment, which uses virtual memory,

and runs mutually mistrusting processes. External memory

and peripherals are assumed to be untrusted; they may be

observed and tampered with at will by an adversary.

The system provides programs with two secure execu-

tion environments: tamper evident (TE) and private tamper

resistant (PTR). In the TE environment, the integrity of a

program’s execution is guaranteed. The PTR environment

ensures the privacy of instructions and data in addition to

integrity. Once a program has entered a secure execution

environment using a special instruction, the TCB protects it

and provides it with an additional instruction to sign mes-

sages with the processor’s private key. The resulting signa-

ture is used to prove to a user that he is seeing the results of

a correct execution of his program.

Since the adversary can attack off-chip memory, the pro-

cessor needs to check that it behaves like valid memory.

Memory behaves like valid memory if the value the pro-

cessor loads from a particular address is the most recent

value that it has stored to that address. We therefore require

memory integrity verification. The TCB needs to ensure the

integrity of memory accesses before it performs a signing

operation or stores data into non-private memory space.

For PTR environments, we additionally have to encrypt

data values stored in off-chip memory. The encryption and

decryption of data values can be done by a hardware en-

1In some models, the operating system may be entirely untrusted.
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gine placed between the integrity checker and the off-chip

memory bus, as in AEGIS.

We assume that programs are well-written and do not

leak secrets via memory access patterns. We do not handle

security issues caused by bugs in an application program.

3. Integrity Verification

This section presents a new memory integrity verifica-

tion scheme, which has a significant performance advantage

over existing methods. We first briefly summarize existing

hash-tree schemes, and then introduce the new scheme.

For memory integrity verification, a simple solution

based on message authentication codes (MACs) does not

work. XOM [12] uses a MAC of the data and address for

each memory block for authentication. Unfortunately, this

approach does not prevent replay attacks; valid MACs guar-

antee that a block is stored by the processor, but do not guar-

antee that it is the most recent copy. Therefore, we exclude

the simple MAC scheme.

In our description of algorithms, we use a term chunk

as the minimum memory block that is verified by integrity

checking. If a word within a chunk is accessed by a pro-

cessor, the entire chunk is brought into the processor and its

integrity is checked. In the simplest instantiation, a chunk

can be an L2 cache block.

3.1. Cached Hash Tree: CHTree

Hash trees (or Merkle trees) are often used to verify the

integrity of dynamic data in untrusted storage [14]. Figure 2

illustrates a binary hash tree. Data (V1, V2, etc) is located

at the leaves of a tree. Each internal node contains the hash

of the concatenation of its children. The root of the tree is

stored in secure memory where it cannot be tampered with.

A chunk consists of children of one node that are covered

by the same hash. In the figure, one chunk contains two

hashes or the same amount of data. For simplicity, we make

the chunks the same as the L2 cache blocks. As a result, a

tree with higher arity requires larger L2 blocks.

To check the integrity of a node in the tree, the processor

(i) reads the node and its siblings from the memory, (ii) con-

catenates their data together, (iii) computes the hash of the

concatenated data, and (iv) checks that the resultant hash

matches the hash in the parent. The steps are repeated all

the way to the root of the tree.

To update a node, the processor checks its integrity as

described in the previous paragraph while it (i) modifies the

node, and (ii) recomputes and updates the parent to be the

hash of the concatenation of the node and its siblings. These

steps are repeated to update the whole path from the node

to the root, including the root.

With a balanced m-ary tree, the number of chunks to

check on each memory access is logm(N), where N is the

V1

h1=h(V1.V2)

V2 V3 V4

h2=h(V3.V4)

root = h(h1.h2)

chunk

Figure 2. A binary hash tree. Each internal

node is a hash of its children.

number of chunks in the verified memory space. The loga-

rithmic overhead of the hash tree can be significant. For ex-

ample, [9] showed that applying the hash tree to a processor

can slow down the system by as much as factor of ten. The

experiments used 4-GB memory and 128 bit hashes.

The performance overhead of using a hash tree can be

dramatically reduced by caching the internal hash chunks

on-chip with regular data. The processor trusts data stored

in the cache, and can access them directly without any

checking. Therefore, instead of checking the entire path

from the chunk to the root of the tree, the processor checks

the path from the chunk to the first hash it finds in the cache.

This hash is trusted and the processor can stop checking.

When a chunk is evicted from the cache, the processor

brings its parent into the cache (if it is not already there),

and updates the parent in the cache. We refer to this opti-

mized hash tree scheme as CHTree.

Previous work [9] showed that, in all cases, CHTree

clearly outperforms the basic hash trees where only regular

data is stored in the cache. In this paper, we use CHTree

for comparison. See [9] for more details and variants.

3.2. Log Hash Integrity Checking

CHTree checks the integrity of memory after every

memory access. However, checking after each access im-

plies unnecessary overhead when we are only interested in

the integrity of a sequence of memory operations.

We introduce a new approach of verifying memory in-

tegrity with low run-time overhead. Intuitively, the proces-

sor maintains a read log and a write log of all of its opera-

tions to off-chip memory. At runtime, the processor updates

logs with minimal overhead so that it can verify the integrity

of a sequence of operations at a later time. To maintain

the logs in a small fixed amount of trusted on-chip storage,

the processor uses incremental multiset hash functions [6].

When the processor needs to check its operations, it per-

forms a separate integrity-check operation using the logs.

Since the multiset hash functions are used to maintain
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logs, we refer to our scheme as a log-hash scheme. The

particular function we use is MSet-Add-Hash based on

the hash function MD5 [17]. MSet-Add-Hash requires

one MD5 operation using a secret key in the processor, and

one addition operation over a fixed number of bits to up-

date the multiset hash incrementally. The details and formal

proofs of the security of MSet-Add-Hash and the log-

hash memory integrity checking scheme are in [6]. In this

paper, we extend the scheme to work with trusted caches

and on-demand memory allocation, give a brief overview

of why it works, and evaluate the scheme’s performance.

3.2.1 Algorithm: LHash

Figure 3 shows the steps of the Log Hash (LHash) integrity

checking scheme. We describe the operations assuming that

the chunk is the same as an L2 cache block and the cache

is write-allocate. The processor keeps two multiset hashes

(READHASH and WRITEHASH) and a counter (TIMER)

in trusted on-chip storage. We denote the (READHASH,

WRITEHASH, TIMER) triple by T .

To initialize T , add-chunk is called on each of the

chunks that need to have their integrity verified. This oper-

ation effectively remembers the initial value of the chunks

in WRITEHASH.

At runtime, the processor calls read-chunk and write-

chunk to properly update the logs. When a chunk gets

evicted or invalidated from the cache, the processor logs

the chunk’s value by calling write-chunk. WRITEHASH is

updated with the hash of the corresponding address-chunk-

time stamp triple. If the chunk is dirty, the chunk and the

time stamp are written back to memory; if the chunk is

clean, only the time stamp is written back to memory.

The processor calls read-chunk to bring a chunk into the

cache. READHASH is updated with the hash of the address-

chunk-time stamp triple that is read from the off-chip mem-

ory. TIMER is then increased to be strictly greater than the

time stamp that was read from memory.

In order to check memory, all chunks that are not in

the cache are read so that each chunk has been added to

READHASH and WRITEHASH the same number of times.

If READHASH is equal to WRITEHASH, then the memory

was behaving correctly (like valid memory, cf. Section 2)

during the sequence of memory operations since the last in-

tegrity checking operation. This checking is done in the

integrity-check operation in Figure 3.

The WRITEHASH logs information on the chunks that,

according to the processor, should be in memory at any

given point in time. The READHASH logs information on

the chunks the processor reads from memory. Because the

checker checks that WRITEHASH is equal to READHASH,

substitution (the RAM returns a value that was never written

to it) and replay (the RAM returns a stale value instead of

Initialization Operation

add-chunk(T , Address, Chunk):

1. TimeStamp = T .TIMER.

Update T .WRITEHASH with the hash of

(Address·Chunk·TimeStamp).

2. Write (Chunk, TimeStamp) to address, Address, in mem-

ory.

Run-Time Operations

• For a cache eviction or an invalidation

write-chunk(T , Address, Chunk):

1. TimeStamp = T .TIMER.

Update T .WRITEHASH with the hash of

(Address·Chunk·TimeStamp).

2. If a block is dirty, write (Chunk, TimeStamp)

back to memory. If the block is clean, only write

TimeStamp back to memory (we do not need to write

Chunk back to memory).

• For a cache miss, do read-chunk(T , Address):

1. Read the (Chunk, TimeStamp) pair from Ad-

dress in memory.

2. Update T .READHASH with the hash of

(Address·Chunk·TimeStamp).

3. Increase T .TIMER:

T .TIMER = max(T .TIMER, TimeStamp+1)

and store Chunk in the cache.

Integrity Check Operation

integrity-check(T ):

1. NewT = (0, 0, 0).

2. For each chunk address covered by T , check if the chunk is in

the cache. If it is not in the cache,

(a) read-chunk(T , address).

(b) add-chunk(NewT , address, chunk), where chunk is

the chunk read from memory in Step 2a.

3. Compare READHASH and WRITEHASH. If different, there is

a read that does not match its most recent write, therefore raise

an integrity exception.

4. If the check passes, T = NewT .

Figure 3. LHash Integrity Checking Algorithm.

the one that is most recently written) attacks are prevented.

The purpose of the time stamps is to prevent reordering at-

tacks in which RAM returns a value that has not been writ-

ten yet so that it can subsequently return stale data.

The processor performs an integrity-check operation

when a program needs to check a sequence of operations,

or when TIMER is near its maximum value. Unless the

check is at the end of a program’s execution, the processor

will need to continue memory verification after an integrity-

check operation. To do this, the processor initializes a new

WRITEHASH while it reads memory during an integrity-

check. If the integrity check passes, WRITEHASH is set
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to the new WRITEHASH, and READHASH and TIMER are

reset. The program can then continue execution as before.

In the case where we do not know at initialization how

much memory the processor will use, new addresses can

be added to the protected region by calling add-chunk on

them on demand and using a table to maintain the list of

chunks that have been touched. For example, the processor

can use the program’s page table to keep track of which

pages it used during the program’s execution. When there

is a new page allocated, the processor calls add-chunk for

all chunks in the page. When the processor performs an

integrity-check operation, it walks through the page table

in an incremental way and reads all chunks in a valid page.

In this scheme, the page table does not need to be trusted.

If an adversary changes the page table so that the proces-

sor initializes the same chunk multiple times or skips some

chunks during the check operation, the integrity check will

fail in that READHASH will not be equal to WRITEHASH

(as long as each chunk is read only once during the check).

4. Memory Encryption

Encryption of off-chip memory is essential for providing

privacy to programs. Without encryption, physical attack-

ers can simply read confidential information from off-chip

memory. On the other hand, encrypting off-chip memory

directly impacts the memory latency because encrypted data

can be used only after decryption is done. This section dis-

cusses issues with conventional encryption mechanisms and

proposes a new mechanism that can hide the encryption la-

tency by decoupling computations for decryption from off-

chip data accesses.

We encrypt and decrypt off-chip memory on an L2 cache

block granularity using a symmetric key encryption algo-

rithm since memory accesses are carried out for each cache

block. Encrypting multiple blocks together will require ac-

cessing all the blocks for decrypting any one of them.

4.1. Advanced Encryption Standard

The Advanced Encryption Standard (AES) [16] is a

symmetric-key encryption algorithm approved by the Na-

tional Institute of Standards and Technology (NIST). We

use AES as a representative algorithm.

AES can process data blocks of 128 bits using cipher

keys with lengths of 128, 192, and 256 bits. The encryp-

tion and decryption consist of 10 to 16 rounds of four trans-

formations. The critical path of one round consists of one

S-box look-up, two shifts, 6-7 XOR operations, and one 2-

to-1 MUX. This critical path will take 2-4 ns with 0.13µ
technology depending on the implementation of the S-box

look-up table. Therefore, encrypting or decrypting one 128-

bit data block will take about 20-64 ns depending on the im-

plementation and the key length. Thus, decryption can add

significantly to memory latency.

When the difference in technology is considered, this la-

tency is in good agreement with a custom ASIC implemen-

tation of Rijndael in 0.18µ technology [11, 19], which re-

ported that the critical path of encryption is 6 ns and the crit-

ical path of key expansion is 10 ns per round with 1.89 ns

latency for the S-box. Their key expansion is identical to

two rounds of the AES key expansion because they support

256-bit data blocks. Therefore, the AES implementation

will take 5 ns per round for key expansion, which results in

a 6 ns cycle per round, for a total of 60-96 ns, depending on

the number of rounds.

4.2. Direct Block Encryption

Cache Block (B)

AES

B[1]

AES AES AES

B[2] B[3] B[4]
IV =

(0...0,Addr,RV)

Encryption

Key

EB[1] EB[2] EB[3] EB[4]

EB

RV In Memory

AES-1 AES-1 AES-1 AES-1Key

B[1] B[2] B[3] B[4]

B

DecryptionIV

Figure 4. Encryption mechanism that directly

encrypts cache blocks with AES.

The most straightforward approach is to use an L2 cache

block as an input data block of the AES algorithm. For ex-

ample, a 64-B cache block B is broken into 128-bit chunks

(B[1], B[2], B[3] and B[4]), and encrypted by the

AES algorithm. Figure 4 illustrates this mechanism with

Cipher Block Chaining (CBC) mode. In this case, the en-

crypted cache block EB = (EB[1], EB[2], EB[3],

EB[4]) is generated by EB[i] = AESK(B[i]⊕ EB[i-

1]), where EB[0] is an initial vectorIV. IV consists of the

address of the block and a random vector RV, and is padded

with zeros to be 128 bits. This prevents adversaries from

comparing whether two cache blocks are the same or not.

After the encryption, the random vector RV is stored in the

off-chip memory along with the encrypted data (EB).

4.3. One-Time-Pad (OTP) Encryption

To hide decryption latency, we propose a scheme that de-

couples the AES computation from the corresponding data

access by using one-time pads [1] and time stamps.

Figure 5 and 6 illustrate the scheme. In the figures,

a cache block, B, consists of four 128-bit chunks (B[1],

B[2], B[3], and B[4]), and a processor holds a counter

TIMER in secure on-chip storage.
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B[1] B[4]

EB[1] EB[2] EB[4]

B[1] B[2] B[3] B[4]

B

AES-1Key AES-1 AES-1 AES-1

B

B[2] B[3]

Encryption Pad (OTP)

EB

EB[3]

( Fixed Vector, 

Address,

Time Stamp, 1 )

( Fixed Vector, 

Address,

Time Stamp, 2)

( Fixed Vector, 

Address,

Time Stamp, 3 )

( Fixed Vector,

Address,

Time Stamp, 4 )

TS

Pad

Generation

Encryption

In Memory

Decryption

Figure 5. Encryption mechanism that uses
one-time-pads from AES with time stamps.

• For an L2 cache write-back

write-back-block(Address, B):

1. Increment TIMER. TS = TIMER.

2. For each 1 ≤ i ≤ 4

(a) OTP[i] = AES−1

K
(V, Address, TS, i).

(b) EB[i] = B[i] ⊕ OTP[i].

3. Write TS and EB to memory.

• For an L2 cache miss

read-block(Address):

1. Read the time stamp (TS) from memory.

2. For each 1 ≤ i ≤ 4

(a) Start OTP[i] = AES−1

K
(V, Address, TS, i).

3. Read EB from Address in memory.

4. For each 1 ≤ i ≤ 4

(a) B[i] = EB[i] ⊕ OTP[i].

5. Cache B.

Figure 6. OTP Encryption Algorithm.

To encrypt and write a dirty cache block to memory2,

the TIMER is incremented, and the block is encrypted by

XOR’ing each 128-bit chunk B[i] with an encryption pad

OTP[i]. The pad is computed using the AES decryption

on (V,Address,TS, i) with a secret key K . V is a fixed bit

vector that makes the input 128 bits, and can be randomly

selected by the processor at the start of program execution.

TS is a time stamp that is the current value of TIMER. Fi-

nally, the encrypted block and the time stamp are stored in

off-chip memory. Note that the counter TIMER should be

separate from the one for the LHash scheme as they are

increased at different rates.

To read an encrypted block from memory, the proces-

sor first reads the corresponding time stamp from memory.

To improve performance, it is also possible to cache time

2If the block that is being evicted is clean, it is simply evicted from the

cache, and not written back to memory.

stamps on-chip. Once the time stamp is retrieved, we imme-

diately start with the generation of the OTP using AES. The

pad is generated while EB is fetched from memory. Once

the pad has been generated and EB has been retrieved from

memory, EB is decrypted by XOR’ing with the pad.

When the TIMER reaches its maximum value, the pro-

cessor changes the secret key and re-encrypts blocks in the

memory. The re-encryption is very infrequent given an ap-

propriate size for the time stamp (32 bits for example), and

given that the timer is only incremented when dirty cache

blocks are evicted from the cache. We do not need to in-

crement TS during re-encryption, because Address is in-

cluded as an argument to AES−1

K
, thus guaranteeing the

unicity of the one-time-pads.

Security of the Scheme The conventional one-time-pad

scheme is proven to be secure [1]. Our scheme is an instan-

tiation of a counter-mode encryption scheme, and can easily

be proven to be secure, given a good encryption algorithm

that is non-malleable [13].

4.4. Impacts on Memory Latency

Compute

Encryption

pad

(AES)

XOR

Compute

encryption

pad

(AES)

Time Stamp

(Cache, Predict)

Access

Memory

Decrypt

the last 

chunk

(AES)

XOR

Access

MemoryAccess

Memory

(a) (c)(b)

First

Chunk

Last

Chunk

Time

Stamp

Random

Vector

First

Chunk

Last

Chunk

Figure 7. Impacts of encryption mechanisms

on memory latency.

The direct encryption scheme serves our purpose in

terms of security, however, it has a major disadvantage

for performance. In Figure 7 (a), the AES decryption is

performed immediately after each 128-bit chunk is read.

Therefore, if the AES decryption takes 40ns, we will get

the decrypted result for the last chunk 40ns after the last

chunk is read. The decryption latency is directly added to

the memory latency and delays the processing. We assume

that the latency of any L2 miss is determined by the de-

cryption of last 128-bit chunk (EB[4]). The latency may

be slightly reduced for accesses to the first chunk if each

128-bit chunk is returned separately. However, this requires

more complicated miss handling.

In the new scheme, after the time stamp is read, we

perform AES computation to generate encryption pads as

shown in Figure 7 (b). This computation is overlapped with
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the following bus accesses for the encrypted cache block.

After the last chunk is read, most of the AES computation

is done and a processor only needs to perform an XOR to

obtain the entire decrypted block. For example, if it takes

80 ns for reading the time stamp, and an additional 40 ns

for the cache block, we can hide 40 ns of the AES latency.

When overlapping the AES computation with data bus

accesses is not sufficient to hide the entire latency, the time

stamp can be cached on-chip or speculated based on recent

accesses. In these cases, the AES computation can start as

soon as the memory access is requested as in Figure 7 (c),

and completely overlapped with the long memory accesses.

The ability to hide the encryption latency improves pro-

cessor performance. Further, it allows to use a cheaper im-

plementation of the AES algorithm with longer latency.

5. Implementation Issues

This section discusses some practical issues in imple-

menting integrity verification and encryption on real sys-

tems. The discussion pertains to both existing and new

schemes.

5.1. Memory Layout

To implement the memory checking and the encryption

schemes, the layout of meta-data such as time-stamps and

hashes should be determined. The layout should be simple

enough for hardware to easily compute the address of the

corresponding meta-data from the address of a data chunk.

We give an example layout for the LHash scheme where

we use the beginning of the memory space for data and the

end of the space for time stamps.

Time stamps are laid out linearly at the end of the mem-

ory space starting at TSBase. Therefore, the address of a

time stamp can be computed by

T imeStampAddr = TSBase +
Addr

BChunk

× BTS .

BChunk is the chunk size, and BTS is the time-stamp size.

For the encryption scheme, we use the same linear layout

with a different base address to determine the address of

time stamps or random initial vectors.

5.2. Checking Virtual Memory

When the operating system cannot be trusted, the secure

processor must verify the virtual memory space rather than

physical memory space3. The algorithms simply use virtual

addresses in computing hashes or AES. The only non-trivial

problem is determining the physical address of meta-data.

3Note that we do not need the additional overhead of verifying virtual

memory space when there is a trusted security kernel. In those cases, a

processor just verifies physical address space.

In our solution, an L2 cache block contains its virtual ad-

dress and the owner process’ ID. Note that the cache does

not have to be virtually-addressed. On a cache eviction, the

processor uses the mapping described in Section 5.1 and

computes the virtual address of the corresponding meta-

data. Finally, the processor converts this virtual address to

the physical address. For this we use a TLB; in practice,

we should not use the processor core’s standard TLB and

should use a second TLB to avoid increasing the latency

of the standard TLB. The second TLB is also tagged with

process identifier bits which are combined with virtual ad-

dresses to translate to physical addresses.

Though having virtual address information and secure

process IDs appears to be expensive, they are required also

for on-chip protection in secure processors without a secu-

rity kernel [21]. Our method does not require actual physi-

cal space for time stamps of unused virtual memory space.

Physical memory for time stamps can be allocated on de-

mand.

5.3. Untrusted I/O

Our integrity verification and encryption schemes allow

only the primary processor to access off-chip memory. For

untrusted I/O such as Direct Memory Access (DMA), a part

of memory is set aside as an unprotected and unencrypted

area. When the transfer is done into this area, a trusted ap-

plication or OS copies the data into protected space, and

checks/decrypts it using a scheme of its choosing.

6. Evaluation

This section evaluates our integrity verification and en-

cryption schemes compared to the existing schemes through

analysis and detailed simulations.

6.1. Simulation Framework

Our simulation framework is based on the SimpleScalar

tool set [3]. The simulator models speculative out-of-order

processors with separate address and data buses. All struc-

tures that access the main memory including an L2 cache,

the integrity checking unit, and the encryption unit share the

same bus. The architectural parameters used in the simula-

tions are shown in Table 1. SimpleScalar is configured to

execute Alpha binaries, and all benchmarks are compiled

on EV6 (21264) for peak performance. We used a small

buffer for time stamps to exploit spatial locality because

time stamps are only 4 B while the memory bus is 8-B wide.

For all the experiments in this section, nine SPEC2000

CPU benchmarks [10] are used as representative applica-

tions. To capture the characteristics in the middle of com-

putation, each benchmark is simulated for 100 million in-

structions after skipping the first 1.5 billion instructions.
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Architectural parameters Specifications

Clock frequency 1 GHz

L1 I-caches 64KB, 2-way, 32B line

L1 D-caches 64KB, 2-way, 32B line

L2 caches Unified, 1MB, 4-way, 64B line

L1 latency 2 cycles

L2 latency 10 cycles

Memory latency (first chunk) 80 cycles

I/D TLBs 4-way, 128-entries

TLB latency 160

Memory bus 200 MHz, 8-B wide (1.6 GB/s)

Fetch/decode width 4 / 4 per cycle

issue/commit width 4 / 4 per cycle

Load/store queue size 64

Register update unit size 128

AES latency 40 cycles

AES throughput 3.2 GB/s

Hash latency 160 cycles

Hash throughput 3.2 GB/s

Hash length 128 bits

Time stamps 32 bits

Time stamp buffer 32 8-B entries

Table 1. Architectural parameters.
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Figure 8. Baseline performance of simulated

benchmarks for L2 caches with 64-B blocks.

Figure 8 shows the baseline characteristics of these

benchmarks. Benchmarks mcf, applu, and swim show

poor L2 cache performance, and heavily utilize the off-chip

memory bandwidth (bandwidth-sensitive). The

other benchmarks are sensitive to cache sizes, and do not

require high off-chip bandwidth (cache-sensitive).

We use the term “baseline” to refer to a standard pro-

cessor without integrity verification or encryption. In the

following discussions, we evaluate the overhead of security

mechanisms compared to the baseline system with the same

configurations. We note that these overheads are optimistic

because additional hardware costs for the security mecha-

nisms can potentially be used to improve the baseline.

Unfortunately, our simulation framework does not allow

us to simulate slightly larger caches that incorporate a few

hundred thousand bits of extra space in lieu of the addi-

tional gates required for integrity verification and encryp-

tion. However, Figure 8 suggests that our estimation is not

overly optimistic. Even if we consider the baseline with L2

caches that are twice as large, it only improves the baseline

performance by 22% on the average. Therefore, we can

consider the pessimistic overhead of the schemes to be at

most 22% larger than the optimistic overhead. We also note

that our overhead estimation does not affect the compar-

isons between the new schemes and the old schemes since

they have comparable hardware costs.

6.2. Integrity Verification

This subsection evaluates the log hash integrity check-

ing scheme LHash and compares it to the hash tree scheme

CHTree. For all integrity checking schemes, we used

chunks that are the same as L2 cache blocks.

6.2.1 Space Overhead

Integrity checking schemes need memory space for hashes

or time stamps in addition to the data they verify. The ad-

ditional memory space compared to data chunks is approxi-

mately 1/(mCHTree−1) for CHTreewith a mCHTree-ary

hash tree and BTS/BChunk for LHash. For typical values

(mCHTree = 4, BTS = 4 Bytes, BChunk = 64 Bytes),

the overheads are 33% for CHTree and 6.25% for LHash,

respectively. Therefore, LHash requires significantly less

memory space compared to CHTree. Note that increasing

the arity of the hash tree for less space overhead is usually

not viable; it implies larger L2 blocks, which often degrades

the baseline performance without integrity verification.

The major logic component to implement the schemes

is a hash (MAC) computation unit. To evaluate the cost of

computing hashes, we considered the MD5 [17] and SHA-

1 [7] hashing algorithms. The core of each algorithm is an

operation that takes a 512-bit block, and produces a 128-bit

or 160-bit (for SHA-1) digest. In each case, simple 32-bit

operations are performed over 80 rounds, which requires on

the order of 625 1-bit gates per round. The logic overhead

depends on how many rounds need to be implemented in

parallel to meet the required throughput.

For CHTree, the hash of BChunk (typically 64 Bytes)

needs to be computed for each memory read/write. For

LHash, two hashes of BAddress + BChunk + BTS (typi-

cally 72 Bytes) for each memory read. Therefore, LHash

would require about 2-3 times more hash throughput and

would have about 2-3 times more logic overhead compared

to CHTree. For a memory throughput of 1.6GB/s, the cir-

cuit size will be around 5,000 1-bit gates for CHTree and

10,000 to 15,000 1-bit gates for LHash.

6.2.2 Run-Time Performance

We first investigate the performance of the LHash scheme

ignoring the overhead of the integrity-check operation. For

applications with very infrequent integrity checks such as

certified execution, the overhead of the integrity-check op-

eration is negligible and the results in this section represent
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the overall performance. The effect of frequent integrity

checking is studied in the following subsection.

Figure 9 illustrates the impact of integrity checking on

the run-time program performance. For four different L2

cache configurations, the normalized IPCs (instructions per

clock cycle) of cached hash trees (CHTree) and log-hashes

(LHash) are shown. The IPCs are normalized to the base-

line performance with the same configuration.

The results clearly show the advantage of the log-hash

scheme (LHash) over the conventional hash tree scheme

when we can ignore the integrity-check overhead. For all

cases we simulated, LHash outperforms CHTree. The

performance overhead of the LHash scheme is often less

than 5% and less than 15% even for the worst case. On the

other hand, the cached hash tree CHTree has as much as

50% overhead in the worst case and 20-30% in general.

The figure also demonstrates the general effects of cache

configuration on the memory integrity verification perfor-

mance. The overhead of integrity checking decreases as we

increase either cache size or cache block size. Larger caches

result in less memory accesses to verify and less cache con-

tention between data and hashes. Larger cache blocks re-

duce the space and bandwidth overhead of integrity check-

ing by increasing the chunk size. However, we note that

increasing the cache block size beyond an optimal point de-

grades the baseline performance.

Integrity checking impacts the run-time performance in

two ways: cache pollution and bandwidth consumption.

L2 Data Miss-Rate (%)

Bench 256KB 4MB

-mark Baseline CHTree LHash Baseline CHTree LHash

gcc 2.92 3.46 2.93 1.06 1.74 1.06

gzip 16.04 23.77 16.04 1.10 1.10 1.10

art 63.19 63.77 63.19 0.91 0.91 0.91

twolf 36.10 52.05 36.10 0.65 0.65 0.65

vortex 9.07 14.85 9.07 1.30 1.31 1.30

vpr 30.24 41.95 30.24 16.65 18.28 16.65

applu 29.10 29.41 29.10 29.09 29.09 29.09

mcf 49.56 55.32 49.56 41.53 42.71 41.53

swim 24.18 27.29 24.18 23.68 23.69 23.68

Table 2. L2 miss-rates of program data for in-
tegrity verification schemes.

Cache Pollution Table 2 illustrates the effects of integrity

checking on cache miss-rates. Since LHash does not store

hashes in the cache, it does not affect the L2 miss-rate.

However, CHTree can significantly increase miss-rates for

small caches since it stores its hash nodes in the L2 cache

with program data. In fact, the performance degradation of

the CHTree scheme for cache-sensitive benchmarks such

as gzip, twolf, vortex, and vpr in the 256-KB case

(Figure 9) is mainly due to cache pollution. As you increase

the cache size, cache pollution becomes negligible as you

can cache both data and hashes without contention.
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Figure 10. Off-chip bandwidth consumption
of memory verification schemes for a 1-MB L2

with 64-B blocks. The bandwidth consump-

tion is normalized to the baseline case.

Bandwidth Consumption The bandwidth consumptions

of the integrity checking schemes are shown in Fig-

ure 10. The LHash scheme theoretically consumes 6.25%

to 12.5% of additional bandwidth compared to the baseline.

In our processor implementation, however, it consumed

more (8.5% to 20%) because our bus width is 8B while

the time stamps are only 4B. CHTree consumes additional

bandwidth for hashes, which can be significant depend-

ing on the L2 cache performance. For bandwidth-sensitive

benchmarks, the bandwidth overhead directly translates into

the performance overhead. This makes log-hash schemes

much more attractive even for processors with large caches

where cache pollution is not an issue.

6.2.3 Overall Performance

The last subsection clearly demonstrated that the LHash

scheme outperforms the hash tree scheme when integrity-
check operations are ignored. In this subsection, we study

the integrity checking schemes including the overhead of

periodic integrity-check operations.

Let us assume that the log-hash schemes check mem-

ory integrity every T memory accesses. A processor ex-

ecutes a program until it makes T main memory accesses,

then checks the integrity of the T accesses by performing an

integrity-check operation. Obviously, the overhead of the

checking heavily depends on the characteristics of the pro-

gram as well as the check period T . We use two represen-

tative benchmarks swim and twolf – the first consumes

the largest amount of memory and the second consumes the

smallest. swim uses 192MB of main memory and twolf

uses only 2MB of memory. A processor only verifies the

memory space used by a program.

Figure 11 compares the performance of the memory in-

tegrity checking schemes for varying check periods. The

performance of the conventional CHTree scheme is indif-

ferent to the checking period since it has no choice but to

check the integrity after each access.
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Figure 9. Run-time performance overhead of memory integrity checking: cached hash trees (CHTree)

and log-hashes (LHash). Results are shown for two different cache sizes (256KB, 4MB) and cache
block size of 64B and 128B. 32-bit time stamps and 128-bit hashes are used.
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Figure 11. Performance comparison between LHash and CHTree for various checking periods.

LHash-RunTime indicates the performance of the LHash scheme without checking overhead. Results
are shown for caches with 64-B blocks. 32-bit time stamps and 128-bit hashes are used.

On the other hand, the performance of the log-hash

scheme (LHash) heavily depends on the checking pe-

riod. The LHash scheme is infeasible when the application

needs to assure memory integrity after a small number of

memory accesses. In this case, CHTree should be used.

The performance of LHash converges to the run-time

performance for a long period such as hundreds of millions

to billions of accesses. In certified execution, commercial

grid computing, secure mobile agents, and Trusted Third

Party, the execution only needs to be verified at the end. For

these applications, LHash is better for any program with

more than a billion accesses. All SPEC benchmarks and

most programs fall into this category, and the performance

improvement is given by Figure 9.

6.3. Encryption

6.3.1 Space Overhead

Both direct block encryption and one-time-pad encryption

use the same size random initial vectors and time stamps.

Therefore, the memory space overhead will be the same for

both schemes. For typical 4-B random vectors and time

stamps with 64-B cache block, the overhead is 6.25%.

The main area overhead of the encryption schemes is the

logic required by the AES algorithm. Given the gate counts

of the AES implementation of [19], a 128-bit AES encryp-

tion without pipelining costs approximately 75,000 gates.

For 1.6GB/s throughput, the module needs to be duplicated

four times, which corresponds to the order of 300,000 gates.

Using a simpler encryption algorithm such as RC5 [18]

can substantially decrease the gate count, at the cost of de-

creased security. Both direct encryption and one-time-pad

encryption will have the same logic overhead because they
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require the same encryption throughput.

6.3.2 Performance
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Figure 12. The overhead of direct encryption

and OTP encryption (64-B L2 blocks).

Figure 12 compares the direct encryption mechanism

with the one-time-pad encryption mechanism. The instruc-

tions per cycle (IPC) of each benchmark is normalized by

the baseline IPC. In the experiments, we simulated the case

when all instructions and data are encrypted in the mem-

ory. Both encryption mechanisms degrade the processor

performance by consuming additional memory bandwidth

for either time stamps or random vectors, and by delaying

the data delivery for decryption.

As shown in the figure, the memory encryption for these

configurations results in up to 18% performance degrada-

tion for the one-time-pad encryption, and 25% degradation

for the direct encryption. On average, the one-time-pad

scheme reduces the overhead of the direct encryption by

43%. Our scheme is particularly effective when the decryp-

tion latency is the major concern. For applications with low

bandwidth usage such as gcc, gzip, twolf, vortex,

and vpr, the performance degradation mainly comes from

the decryption latency, and our scheme reduces the over-

head of the conventional scheme by more than one half.

6.3.3 Re-Encryption Period

As noted in Section 4, the one-time-pad encryption mech-

anism requires re-encrypting the memory when the global

time stamp reaches its maximum value. Because the re-

encryption operation is rather expensive, the time stamp

should be large enough to either amortize the re-encryption

overhead or avoid re-encryption.

Fortunately, the simulation results for the SPEC bench-

marks show that even 32-bit time stamps are large enough.

In our experiments, the processor writes back to memory

every 4800 cycles when averaged over all the benchmarks,

and 131 cycles in the worst case of swim. Given the

maximum time stamp size of 4 billion, this indicates re-

encryption is required every 5.35 hours (in our 1 GHz pro-

cessor) on average, and every 35 minutes for swim. For

our benchmarks, the re-encryption takes less than 300 mil-

lion cycles even for swim, which has the largest working

set. Therefore, the re-encryption overhead is negligible in

practice. If 32-bit time stamps are not large enough, the

re-encryption period can be increased by having larger time

stamps or per-page time stamps.

6.4. PTR Processing

Finally, we study the performance of PTR processing

by simulating integrity verification and encryption together.

Previous work [21] has shown that these two mechanisms

are the primary concerns for the performance of PTR pro-

cessing. We compare the performance using our new

schemes with the performance using CHTree and direct

block encryption. In the new schemes, two separate time

stamps are used for integrity verification and encryption.
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Figure 13. The performance overhead of PTR
processing with the conventional schemes

and the new schemes (64-B L2 blocks).

Figure 13 demonstrates that our new schemes signifi-

cantly improve the performance of PTR processing over

the existing schemes. With existing schemes, PTR process-

ing incurs up to 60% performance degradation in the worst

case (mcf), and around 40% overhead in most cases. With

LHash and one-time-pad encryption, PTR processing can

be done with 23% overhead even in the worst case, and less

than 15% in most cases.

7. Related Work

Blum et al. [2] addressed the problem of securing var-

ious data structures in untrusted memory. They proposed

using a hash tree rooted in trusted memory to check the in-

tegrity of arbitrarily large untrusted RAM. Their approach

has a O(log(N)) cost for each memory access. [9] shows

how caching of internal nodes of the tree can significantly

improve the performance of the scheme. The log hash

scheme we introduce can perform better than a hash-tree

based scheme because it checks sequences of memory oper-

ations, rather than checking each operation. Blum et al. [2]
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also proposed an offline checker to check the correctness of

RAM after a sequence of operations have been performed

on RAM. Their scheme computes a running hash of mem-

ory reads and writes. We have used their offline checker as

a basis for designing our log hash checker, though there are

key differences between the two checkers. Their checker’s

implementation uses ǫ-biased hash functions [15]; these

hash functions can be used to detect random errors, but are

not cryptographically secure. For our log hash checker, we

have used incremental multiset hashes [6], which are cryp-

tographically secure. Furthermore, our log hash checker can

use smaller time stamps without increasing the frequency of

checks, which leads to better performance.

Previous designs of secure processors [12, 21] directly

use encryption algorithms such as DES, Triple DES, and

AES to encrypt and decrypt memory; this can appreciably

increase memory access latency for reads. We have used

one-time pads to hide virtually all the decryption latency.

8. Conclusion

Memory integrity verification and encryption are key

primitives required to implement secure computing systems

with trusted processors and untrusted memory. They are

also responsible for almost all of the performance over-

head of tamper-evident and private tamper-resistant pro-

cessing. We have presented a new memory verification

scheme based on maintaining an incremental hash of logs

of memory operations, and a new encryption scheme based

on one-time-pads and time stamps. The new integrity verifi-

cation scheme offers significant performance improvement

for applications with infrequent memory checks, while the

encryption scheme is good for any application. With the re-

duced overhead, the new schemes make secure processors

usable over a wider range of applications.
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