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Abstract

We describe a hardware scheme to authenticate all

or a part of untrusted external memory using trusted

on-chip storage. Our scheme uses Merkle trees and

caches to e�ciently authenticate memory. Proper

placement of Merkle tree checking and generation is

critical to ensure good performance. Na��ve schemes

where the Merkle tree machinery is placed between

caches can result in a large increase in memory band-

width usage. We integrate the Merkle tree machinery

with one of the cache levels to signi�cantly reduce

memory bandwidth requirements.

We present an evaluation of the area and perfor-

mance costs of various schemes using simulation. For

most benchmarks, the performance overhead of au-

thentication using our integrated Merkle tree/caching

scheme is less than 25%, whereas the overhead of au-

thentication for a na��ve scheme can be as large as

10�. We explore tradeo�s between external memory

overhead and processor performance.

Introduction

Secure processors (e.g., [Yee94] [SW99], [LTM

+

00])

can enable many applications such as copy-proof soft-

ware and certi�cation that a computation was carried

out correctly. Additionally they hold promise in help-

ing to implement secure computing systems that are

resistant to viruses and other forms of attacks [CPL].

Even if secure processors are built, in order to build

secure computing systems, one of the problems that

needs to be solved is the authentication of untrusted

external memory. This memory is typically accessed

via an external memory bus, or may be networked in

some fashion to the secure processor. While the se-

cure processor is running, an adversary may corrupt

the memory values in the external memory. The se-

cure processor should be able to detect any form of

memory corruption. Typically, the secure processor

will cease the execution of the running task(s) when

it detects memory corruption.
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To achieve security
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In this paper, we are not concerned with the correction of

and high performance, it is critical to have an e�-

cient authentication scheme that does not slow down

the processor. In this paper, we describe hardware

schemes to e�ciently authenticate all or a part of

untrusted external memory using a limited amount

of trusted on-chip storage.

We propose a on-line scheme for memory authen-

tication. Our scheme uses hash trees (also called

Merkle trees) and caches to e�ciently authenticate

memory. Na��ve schemes where the Merkle tree ma-

chinery is placed between caches, e.g., between L1

and L2 caches, can result in a factor of logN in-

crease in memory bandwidth usage (where N is the

memory size), thereby degrading performance signif-

icantly. In our proposed scheme, we integrate the

Merkle tree machinery with one of the cache levels

to signi�cantly reduce memory bandwidth require-

ments.

We present an evaluation of the area and perfor-

mance costs of various on-line schemes using simula-

tion. For most benchmarks, on a superscalar proces-

sor, the performance overhead of authentication us-

ing our integrated Merkle tree/caching scheme is less

than 25%, whereas the overhead of authentication

for a na��ve scheme can be as large as 10�. We show

tradeo�s between external memory overhead and se-

cure processor performance.

We describe related work in Section 1. The as-

sumed model is presented in Section 2, and moti-

vating applications are the subject of Section 3. An

on-line caching scheme for memory authentication is

described in Section 4. We evaluate the scheme im-

plemented on a superscalar processor in Section 5.

1 Related Work

Merkle trees [Mer80] were proposed as a means to

update and validate data hashes e�ciently by main-

taining a tree of hash values over the objects.

corrupted data in memory. An adversary may be able to de-

stroy the entire contents of memory causing an unrecoverable

error. Thus, the secure processors we consider do not protect

against denial-of-service attacks.
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Blum et al. addressed the problem of securing vari-

ous data structures in untrusted memory using a hash

tree rooted in trusted memory [BEG

+

91]. They con-

sider both o�-line detectors that use a hashed trace

of all accesses (including values read or written, loca-

tions accessed and times of access) and an on-line de-

tector, which uses Merkle trees. The on-line scheme

described by Blum et al. has a O(log(N )) cost for

each memory access. The o�-line scheme targets

the detection of memory errors, and does not secure

memory against attacks from an adversary.

Maheshwari, Vingralek and Shapiro use Merkle

trees to build trusted databases on top of trusted

storage [MVS00]. This work is similar to ours in

that trusted memory can be viewed as a cache for

untrusted disk storage { their scheme exploits mem-

ory locality to reduce disk bandwidth. Our work ad-

dresses the issues in implementing Merkle tree ma-

chinery in hardware and integrating this machinery

with an on-chip cache to reduce the logN memory

bandwidth overhead. The caching algorithm of Sec-

tion 4 is more general in that a single hash can be

used for multiple cache blocks. This scheme can po-

tentially reduce untrusted memory size overhead and

cache pollution without increasing cache block size.

Shapiro and Vingralek [SV01] address the prob-

lem of managing persistent state in DRM systems.

They assume that each memory reference results in a

MAC computation and therefore discount the possi-

bility of securing volatile storage because it requires

large overheads. They assume that volatile memory

is inside the security perimeter.

In [DS02] allusions are made to a smartcard system

that would use a Merkle tree with large pages of RAM

at its leaves, combined with caching of pages in in-

ternal memory. Their discussion, however is strongly

directed towards smartcard applications, and they do

not appear to consider caching nodes of the Merkle

tree.

2 Model

In this paper we are considering a computer system

with the following properties:

� There is a high performance processor that con-

tains a secret that allows it to produce keys to

perform cryptographic operations such as sign-

ing or encrypting that no other processor could

do for it. This secret can be a private key from a

public key pair as in XOM [LTM

+

00], or it can

be a Physical Unknown Function [GCvDD02].

Symmetric key schemes are inapropriate as we

want many mutually mistrusting principals to

be able to use the system.

� Operations that take place inside the processor

are assumed to be private and tamper-evident.

� The processor has su�cient on-chip storage to

perform its cryptographic operations on-chip.

� The processor has a trusted on-chip cache.

� Everything outside the processor is untrusted, in

particular the memory. By untrusted, we mean

that there is an adversary who knows everything

about the system except for the processor's se-

cret.

The objective of the system is the following:

� A user wants to use the system to perform a com-

putation that produces one or many results, to

which cryptographic primitives are then applied.

The reason for the cryptographic primitives will

be illustrated in section 3.1.

� The computation will involve the processor and

external memory.

� We want the computation to be carried out at

speeds that are as close as possible to the speed

of a conventional insecure processor.

� We want a high probability of detecting results

that contain errors induced by tampering from

the adversary. This probability must be high

even if the adversary chooses the program to run.

The objective of the adversary is the following:

� The adversary wants to tamper with the mem-

ory in such a way that the system produces an

incorrect result that looks correct to the user.

In this paper we will solve this problem by pro-

viding an authentication mechanism for the o�-chip

memory. In the next section we show how this in-

tegrity can be used in applications.

3 Applications

3.1 Certifying the Execution of a Pro-

gram

The main focus of this paper is to explore memory

authentication. However, memory authentication is

only useful if it is performed on a processor that con-

tains a secret, and the processor is able to perform

some simple cryptography on it. We will not go into

the details of the cryptography that is necessary, but

for ease of understanding, we provide an example of

use.

Alice has a problem to solve that requires a lot of

computing power. Bob has a computer that is idle,

and that he is willing to rent to Alice. If Alice gives
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Bob her problem to execute, and Bob gives her a

result, how can she be sure that Bob actually carried

out the computation? How can she tell that Bob

didn't just invent the result?

One way of solving this is by having a processor

that has been certi�ed by its manufacturer, that con-

tains a secret, and that is equipped to deal with prob-

lems such as the one Alice has.

Alice sends this processor her problem expressed

as a program. The processor uses Alice's program

combined with its secret key through a collision re-

sistant scheme to produce a key that is unique to

the processor-program pair. The processor then exe-

cutes Alice's program without allowing any interfer-

ence from external sources. The processor executes

the program in a deterministic way to produce the

result Alice desires. It then uses the key it generated

to sign the result before sending it to Alice.

As long as Alice's computation can all be done on

the processor, things go well. However, for most algo-

rithms, it is likely that Alice will need to use external

memory. How can she be sure that Bob isn't tam-

pering with the memory bus to make Alice's program

terminate early while still producing a valid certi�cate

for an incorrect result? This is precisely the question

that we try to answer in this paper by providing an

e�cient means to authenticate memory operations.

When Alice receives the signed result, she is able to

check it. At that point she knows that her program

was executed on a trusted processor, and that the ex-

ternal memory performed correctly.
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If the program

did not contain a bug then Alice has the correct re-

sult.

Without the ability to perform some kind of cryp-

tography, the memory authentication would be use-

less except to detect faults in the memory (which

could be detected much more cheaply with simple er-

ror detecting codes). Indeed, executions carried out

on the real processor would be identical to results

carried out on a processor simulator, on which any

kind of tampering can be done with the data.

Of course, in real systems Bob will want to con-

tinue using his computer while Alice is calculating.

Systems like Palladium or XOM provide this func-

tionality as we shall see in the following sections. But

in each case, they still need authenticated memory.

3.2 Palladium

Microsoft's proposed security model, Palladium

[CPL], may be enhanced by authenticated memory.

Indeed, Palladium works by providing a mechanism

whereby the Operating System (OS) can prove to an

2

If Alice's program stored data on disk, we assume that it

took measures to authenticate the data.

application that it is trusted, and that it was loaded

properly (so no mischievous code was able to load be-

fore the OS). The application program, knowing that

it is being protected by a security kernel that was

properly loaded, can be con�dent that it will receive

whatever protection it requires for proper execution.

But in order to make this model work, it has to be

impossible for a hacker to break the system's security

by modifying the secure kernel as it goes over the

bus between external memory and processor. This

can be done by always keeping the security kernel on

the processor. But this wastes on-chip storage when

the security kernel is not in use (most of the time).

Another option is to use authenticated memory such

as we describe it in this paper.

3.3 XOM architecture

The eXecute Only Memory (XOM) architecture

[LTM

+

00] is designed to run security requiring appli-

cations in secure compartments that can only com-

municate with the rest of the world on an explicit

request from the application.

This protection is achieved on-chip by tagging data

with the compartment to which it belongs. In this

way, if a program executing in a di�erent compart-

ment attempts to read the data, the processor detects

it and raises an exception.

For data that goes o�-chip, XOM uses encryption

to preserve privacy. Each compartment has a di�er-

ent encryption key. Before encryption, the data is

appended with a hash of itself. In this way, when

data is recovered from memory, XOM can verify that

the data was indeed stored by a program in the same

compartment. XOM prevents an adversary from

copying encrypted blocks from one address to another

by combining the address into the hash of the data

that it calculates.

3.3.1 Exploiting Replay Attacks

However, XOM's integrity mechanism is vulnerable

to replay attacks, which was also pointed out in

[SV01]. Indeed, in XOM there is no way to detect

whether data in external memory is fresh or not.

Freshness appears to be provided for from one exe-

cution of a secure application to another by having a

mutating key (essentially, a di�erent key for each ex-

ecution). Within a single execution of the secure ap-

plication, however, the key cannot be changed with-

out making data that was stored at the beginning of

execution unreadable. Therefore, an adversary can

do replay attacks by having the memory return stale

data that had previously been stored at the same

address during the same execution. In particular,
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XOM will not notice if writes to memory are never

performed except when memory is �rst initialized.

This 
aw in XOM's authentication could be ex-

ploited to violate the privacy of some programs. Con-

sider the following example:

for (i = 0; i < size; i++)

{

outputdata(*data++);

/* outputdata copies data

out of the secure

compartment */

}

If outputdata causes i to be swapped to mem-

ory, and if i and data are not in the same cache

line, then an attacker can cause the loop to be exe-

cuted many more times than it should. Assuming the

attacker knows where i is stored, he can record the

value of i during an iteration of the loop, and then re-

place the incremented value by the pre-recorded value

each time through the loop. In this way, outputdata

gets called with each data value up to the end of the

data segment, thus revealing a lot more to the out-

side world than initially intended. If data is stored

on the stack, it might be possible to replace it with an

address in the code segment to reveal a large portion

of the program's code.

To pull this attack o�, the adversary would pre-

sumably single step the program,
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ushing the cache

between steps. In this way, he can obtain a cache-

line level observation of the program's memory ac-

cess patterns. By observing loop like patterns in the

program counter, the adversary can search for loops.

Loops that cause data to be copied out of the secure

compartment can be identi�ed by the unencrypted

data that they are writing to memory, or, even bet-

ter, by the unprotected system calls that are being

called with the data.

4

All the adversary has left to

do is guess the location of i in the stack (the gen-

eral position of the stack will be apparent from the

memory access pattern).

Though this attack may seem involved, and despite

the fact that the code sample is somewhat unlikely, it

is quite plausible that a complex program will contain

similar vulnerabilities, which a motivated adversary

could �nd and exploit. There is a wealth of examples

from the smartcard world where attacks of similar

type have been carried out to extract secret informa-

tion, as can be seen in [AK97].

3

If single stepping is forbidden, a similar e�ect can probably

be obtained by generating an interrupt after a small number

of memory accesses. With luck, it would even be possible to

turn o� the processor's caches.

4

In fact, it might be possible to �nd a suitable loop simply

by observing patterns of system calls.

3.3.2 Correcting XOM

XOM can be �xed in a simple, though not optimal,

way by combining it with our memory authentica-

tion method. Essentially, XOM was attempting to

provide two forms of protection: protection from an

untrusted OS, and protection from untrusted o�-chip

memory. Its method for dealing with the untrusted

OS seems much more open an approach than the one

that is used by Palladium. It would make all the Pal-

ladium applications possible without forcing the use

of a certi�ed (and presumably commercial) OS. As

far as the protection of o�-chip memory goes, XOM

fails because memory is not properly authenticated.

Protecting memory integrity with hash trees would

solve XOM's problem.

4 Authentication Algorithm

4.1 Hash Trees

We verify the integrity of memory with a hash tree,

also called a Merkle tree (see [Mer80]). In a hash

tree, data is located at the leaves of a tree. Each

node contains a collision resistant hash of the data

that is in each one of the nodes or leaves that are

below it. A hash of the root of the tree is stored in

secure memory where it cannot be tampered with.

Figure 1 shows the layout.
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Figure 1: A hash tree. Chunks contain hashes that

authenticate data in chunks lower in the tree.

To check that a node or leaf in a hash tree has not

been tampered with, we check that its hash matches

the hash that is stored in its parent node, and that

the parent node has not been tampered with. We

repeat this process on the parent node, and on its

parent node, all the way to the root of the tree that

has its hash stored in secure memory. When writing
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to the hash tree, it is similarly necessary to update

all the nodes above the modi�cation up to the secure

root hash.

An m-ary hash tree allows integrity veri�cation

with a constant factor overhead in memory consump-

tion of m=(m�1). With a balanced tree, the number

of hash checks to perform is log

m

(N ), where N is

the amount of memory to be protected, expressed in

multiples of the size of a hash. The cost of each hash

computation is proportional to m (i.e., the amount

of data to hash).

These costs of using a hash tree are quite modest

considering that they allow a very small amount of

secure memory (typically 128 to 160 bits) to verify

the integrity of arbitrarily large amounts of memory.

For a 4-ary tree, one quarter of memory ends up be-

ing used by hashes, which is large, but not unaccept-

ably so. However memory bandwidth is a major con-

straint in high performance systems, and the number

of hashes that must be read from memory increases

very quickly with memory size and can easily exceed

10. Unless this access pattern is optimized, system

performance is sure to be dismal.

4.2 Hash Trees in the Memory Hier-

archy

Proper placement of the hash tree checking and gen-

eration machinery is critical in ensuring good per-

formance. On �rst thought, the machinery could be

placed between two layers of the memory hierarchy.

The higher layers would not know about the hash

tree. On a miss, they would use the hash tree ma-

chinery to read and authenticate data from the lower

part of the hierarchy. There are two logical places for

these operations to be carried out:

1. One possibility is to place the hash tree machin-

ery between L2

5

and external memory. This

way cached data can be retrieved very fast with-

out having to go through any integrity veri�ca-

tion. However, this option implies that L2 cache

misses will result in a whole path from leaf to

root of the hash tree being fetched from external

memory on a cache miss, which is unacceptably

slow.

2. Another possibility is to place the hash tree ma-

chinery between L1 and L2. Thus, frequently

used paths in the hash tree will end up being

cached in L2 and will not put such a high load

on memory bandwidth. The drawback is that ac-

cessing L2 becomes much more costly since each

access to L2 involves checking a whole path in

L2.

5

We are assuminga processorwith on-chip L1 and L2 cache.

Both schemes share a common drawback. Each

access that goes through the hash tree layer requires

log

m

(N ) hash checks, and consequently accessing all

the data that those hashes are to be computed on. In

Section 5 we use scheme 1 as a representative na

�

ive

scheme, and refer to it as naive. The following sec-

tion shows an optimized hash tree implementation

that gets around this problem and which makes hash

trees a reasonable choice in a high performance pro-

cessor.

4.3 Making Hash Trees Fast: chash

To make hash trees fast, we have to merge the hash

tree machinery with one of the cache levels. Values

that are stored in this combined cache are trusted,

which allows accesses to be performed directly on

cached values without any hashing, giving us the ad-

vantage of scheme 1 above. At the same time, data

that is needed for hashing can now be read from the

cache. This reduces the latency to the data as in

scheme 2, and has the additional advantage that if a

hash comes from the cache, it is trusted, and there-

fore it is not necessary to continue checking hashes

up to the root of the tree.

The following algorithms show how the combined

cache that has all these nice properties can be imple-

mented. In these algorithms the word cache refers to

the combined cache (which is assumed to be trusted),

and the word memory refers to the next level in

the memory hierarchy.

6

The memory is divided into

chunks that are the basic unit that hashes are com-

puted on. For now we will consider that chunks coni-

cide with cache blocks.

ReadAndCheckChunk: Reads data from exter-

nal memory and checks it.

1. Read the chunk from memory.

2. Return the chunk to the caller so that it can start

speculative execution.

3. Start hashing the chunk that we just read. In

parallel, recursively call ReadAndCheck to fetch

the chunk's hash from its parent chunk. If the

chunk is in fact the root chunk, its hash is fetched

directly from secure memory instead of calling

ReadAndCheck.

4. Compare the hash we just computed with the

one in the parent chunk. If they do not match,

raise an exception.

ReadAndCheck: Called when the processor ex-

ecutes a read instruction.

6

We will work with L2 as the cache, and o�-chip RAM as

the memory.
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1. If the data is cached, return the cached data. We

are done.

2. Call ReadAndCheckChunk on the data's chunk.

3. Put the read chunk into the cache.

4. Return the requested data.

Write: Called when the processor executes a write

instruction.

1. If the data to be modi�ed is in the cache, modify

it directly. We are done.

2. Otherwise, use ReadAndCheckChunk to get the

chunk data, and put it into the cache (we are

implementing a write-allocate cache here).

3. Modify the data in the cache.

Write-Back: Called when a dirty cache block is

evicted.

1. Compute the hash on the modi�ed chunk.

2. In a way that makes both changes visible si-

multaneously, write the chunk to memory and

change its hash in the parent chunk using the

Write operation described above (unless it is the

root chunk, in which case the hash is stored in

secure memory).

Intuitively, with this algorithm, when a node of

the hash tree is loaded into the cache, it is used as

the root of a new hash tree. This is valid because

the node is now stored in secure on-chip storage, and

thus no longer needs to be protected by its parent

node in the main hash tree. The performance ad-

vantage results because the new tree is smaller than

the original tree, which reduces the path from leaf to

node. As far as correctness goes, the algorithm's es-

sential invariant is that at any time, a hash contained

in the tree is a hash of the child chunk in memory.

7

On writes, the hash only gets recomputed when the

changes are written back.

Note that this algorithm implements a write-

allocate cache. This is sensible since performing a

word write requires the word's whole chunk to be

read in for hashing anyways. Nevertheless, a useful

optimization can be made, inspired by normal cache

technology: if write allocation simply marks unwrit-

ten words as invalid rather than loading them form

memory, then chunks that get entirely overwritten

don't have to be read from memory and checked.

This optimization eliminates one chunk read from

memory and one hash computation.

7

This invariant is in fact a bit too strong for this algorithm,

but will be necessary for the versions that are described in

the next sections. We could reduce the invariant to: hashes

of uncached chunks must be valid, hashes of cached chunks

can have an arbitrary value. The last step of the write-back

algorithm can then take place in two steps: update the hash,

then write the hash back to memory.

4.4 Multiple Cache Blocks per

Chunk: mhash

In the algorithm described above, we have assumed

that there is exactly one cache block per chunk. Since

the cache block is usually chosen to optimize the per-

formance of the processor when security is turned o�,

it turns out that the chunk size is completely con-

strained before the memory integrity option is even

considered. To allow more 
exible selection of the

chunk size, let us consider an improved algorithm

that does not require that chunks coincide with cache

blocks.

The modi�ed algorithm is described below. Parts

that are unchanged appear in small type. Note that

ReadAndCheckChunk returns the data that is in

memory. This data will be stale when the cache con-

tains a dirty copy of some cache blocks.

ReadAndCheckChunk

1. Read cache blocks that are clean in the cache

directly from the cache. Read the rest of the

chunk from memory.

2. Return the chunk to the caller so that it can start speculative

execution.

3. Start hashing the chunk that we just read. In parallel, re-

cursively call ReadAndCheck to fetch the chunk's hash from

its parent chunk. If the chunk is in fact the root chunk,

its hash is fetched directly from secure memory instead of

calling ReadAndCheck.

4. Compare the hash we just computed with the one in the

parent chunk. If they do not match, raise an exception.

ReadAndCheck

1. If the data is cached, return the cached data. We are done.

2. Call ReadAndCheckChunk on the data's chunk.

3. Put the read chunk into the cache, except for cache

blocks that are already cached in the dirty state.

4. Return the requested data.

Write

1. If the data to be modi�ed is in the cache, modify it directly.

We are done.

2. Otherwise, use ReadAndCheckChunk to get

blocks that are missing from the cache. Write

them to the cache (we are implementing a write-

allocate cache here).

3. Modify the data in the cache.

Write-Back

1. If the chunk is not entirely contained in the

cache, use ReadAndCheckChunk to get the miss-

ing data.

2. Mark all the chunk's cached blocks as clean.

3. Compute the hash on the modi�ed chunk.

4. In a way that makes both changes visible simultaneously,

write the blocks that were dirty to memory and

change its hash in the parent chunk using the Write operation

described above (unless it is the root chunk, in which case

the hash is stored in secure memory).
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This algorithm can be further optimized by replac-

ing the hash function by an incremental MAC (Mes-

sage Authentication Code). This MAC has the prop-

erty that single cache block changes can be applied

without knowing the value in the other cache blocks.

An example of such a MAC is presented in [BGR95],

it is based on a conventional MAC function h

k

and

an encryption function E

k

0

:

M

k;k

0

(m

1

; � � � ;m

n

) = E

k

0

(h

k

(1;m

1

)� � � ��h

k

(n;m

n

))

Given a value of the MAC, it can be updated

when m

i

changes by decrypting the value, subtract-

ing the old value of h

k

(i;m

i

), adding the new value

of h

k

(i;m

i

), and �nally encrypting the new result.

With this hash function, the Write-Back operation

can be optimized so that it is not necessary to load

the whole chunk from memory if part of it isn't in

the cache.

Write-Back

1. Read the parent MAC using the ReadAndCheck

operation.

2. Read the old value of the cache block frommem-

ory directly (without checking it so that we don't

have to read the whole chunk).

3. Calculate the new value of the MAC by doing an

update.

4. In a way that makes both changes visible simultaneously,

write the chunk to memory and change its hash in the parent

chunk using the Write operation described above (unless it

is the root chunk, in which case the hash is stored in secure

memory).

We will refer to the optimized algorithm as mhash

in Section 5.

4.5 Simpli�ed Memory Organization

We have chosen to adopt a very simple memory or-

ganization in which all of physical memory is authen-

ticated. Physical memory is assumed to be present

as a contiguous segment beginning at address 0 that

we want to authenticate completely. While this as-

sumption is quite restrictive as far as real systems go,

it is quite adequate for our purposes of studying the

performance cost of protecting RAM with hash trees.

The layout of the hash tree in RAM is equally sim-

ple. The memory is stored in equal sized chunks.

Each chunk can store data or can store m hashes.

Chunk are numbered consecutively starting from zero

so that a chunk's number multiplied by the size of the

chunk produces the chunk's starting address.

To �nd the parent of a chunk, we subtract one

from the chunk's number divided by m and round

down. If the result is negative then the chunk's hash

is stored in secure memory. Otherwise, the result is

the parent chunk's address. The remainder of the

division indicates the index of the chunk's hash in its

parent chunk.

The resulting tree is almost a balanced m-ary tree.

In general, the m balanced subtrees aren't quite bal-

anced as there aren't enough elements to �ll the last

level completely.

The interesting features of this layout are that it is

very easy to �nd a chunk's parent when m is a power

of two, and all the leaves are contiguous.

4.6 Real Life Issues

4.6.1 Direct Memory Access

For now we have considered that all of memory is

authenticated. This assumption breaks down when

data is inserted directly into memory by a device

through Direct Memory Access (DMA).

One way of dealing with this is to set aside an

unprotected area of memory for use in DMA trans-

fers. Once the transfer is done, programs can copy

the data into a secure bu�er before using it. This

method has the drawback of requiring an extra copy

of the data. But in many systems this is not a major

penalty as the operating system typically performs a

copy of incoming data from a kernel bu�er into user

space anyways.

Data coming from the DMA is untrusted (since it

comes from o� chip), so once it has been brought

into authenticated memory, it must be authenticated

by the application program using some scheme of its

choosing.

For safety, the processor should only allow reads

to unprotected memory when a special ReadWith-

outChecking instruction is used. That way a program

cannot be tricked into reading unauthenticated data

when it expects authenticated data.

4.6.2 Initialization

So far we have considered how the processor executes

when memory is authenticated. It is important to

consider how to initialize secure mode since a 
aw in

this step would make all our e�orts futile. Here is the

proposed procedure:

1. Turn on hashing, but for now do not

bother checking hashes during the ReadAnd-

CheckChunk. In this mode hash trees will be

computed, but no checking is done.

2. Touch (write to) each chunk that is to be covered

by the hash tree. In this way each chunk ends

up in the cache in a dirty state. As chunks are

written back, higher levels of the hash tree will

get updated.

7



3. Flush the cache. This forces all the dirty chunks

to be written back to memory. These write-

backs will cause their parent nodes to appear

in the cache in a dirty state. The parents will

in turn be written back to the cache, and so on

until the whole tree has been computed.

8 9

4. Turn on the memory authentication failure ex-

ceptions.

5. Generate the key that will be used by this

program for cryptographic purposes (see Sec-

tion 3.1).

At this point, the program is running in secure

mode, and its key has been generated. It can now run

and eventually sign its results, unless tampering takes

place resulting in the destruction of the program's

key.

4.7 Precise Exceptions

In the algorithms presented above, it has been stated

that hash checks related with ReadChunk can be

completed in the background while the returned value

is used speculatively. The question is: how far can

execution continue speculatively?

Since there is no general way of recovering from

tampering other than restarting the program execu-

tion from scratch, it appears that there is no need to

make memory authentication failure exceptions pre-

cise. Therefore, execution can proceed without wait-

ing for authentication checks to complete, and spec-

ulative instructions can commit.

There is however an exception to this rule as far

as cryptographic operations go. We saw in section 2

that the program can perform cryptographic opera-

tions using a key that is a function of the running pro-

gram. These operations must not allow their results

to be seen outside the processor before all preced-

ing hash checks have passed. Otherwise an adversary

would be able to make a change to some data just

before a program performs a cryptographic primitive

on it. With luck, the result of the operation could be

sent o�-chip before the hash checks completed, and

the adversary would have tricked the system into ap-

plying its cryptography on data to which it shouldn't

8

In fact, with this procedure, each hash might be computed

a number of times that is equal to the arity of the tree. The

procedure that is described here could be optimized to produce

only one computation of each hash, but this would require

added assumptions about the instruction set architecture to

describe precisely, and would not impact the security of the

scheme.

9

In the case where incremental MACs are used, all MAC

computations are incremental. So this cache 
ushing trick

would not work. Therefore, the initialization must be mod-

i�ed so that it actually computes a MAC from scratch.

have been applied. This attack would allow the ad-

versary to sign, encrypt or decrypt a message of his

choice even though he does not have the key.

Therefore, cryptographic instructions must act as

barriers for speculative execution of instructions that

rely on unauthenticated data. They will stall at the

commit stage until all hash checks have completed.

For debugging purposes, it might be desirable to pro-

vide a mode in which all instructions behave as bar-

riers.

5 Evaluation

This section evaluates our memory authentication

scheme using a processor simulator. First, we de-

scribe the hardware implementation of our algorithm

and the additional logic required by our scheme.

Next, the simulation framework used for the experi-

ments is described. Performance and memory space

overheads of the scheme are then discussed. We also

study the e�ects of various architectural parameters

on memory authentication performance. Finally, the

incremental MAC based method to reduce the mem-

ory overhead is evaluated.

5.1 Hardware Implementation

We describe the implementation of the chash

scheme. The mhash scheme uses the same datapaths

but requires additional control.

A hash checking/generating unit is added next to

the L2 cache. Whenever there is a L2 cache miss, a

new cache block is read from the main memory, and

added to the hash read bu�er unit which checks au-

thenticity (Figure 2 (a)). The hashing unit computes

a hash of the new cache block, and compares with

a previously stored hash, which is read from the L2

cache (or a root hash register if the hash happens to

be the root of the tree). If two hashes do not match

each other, a security exception is raised.

Similarly, when a cache block gets evicted from the

L2 cache, it is stored in the hash write bu�er unit

while writing back the block to the main memory

(Figure 2 (b)). The hash unit computes a new hash

of the evicted block and stores the hash back into the

L2 cache.

5.2 Logic Overhead

To evaluate the cost of computing hashes, we consid-

ered the MD5 [Riv92] (and SHA-1 [DEJ01]) hashing

algorithms. The core of each algorithm is an opera-

tion that takes a 512-bit block, and produces a 128-

8



=

root
hash

      hash
computation
      logic

L2

MEMORY BUS

Exception

stored hash of D

data block
D is read on
L2 miss

 hash
 read
buffer

(a)

      hash
computation
      logic

L2

MEMORY BUS

new hash

data block
writeback

hash
write
buffer

root
hash

(b)

Figure 2: Hardware implementation of the chash scheme. (a) L2 cache miss: read from the memory. (b) L2

write back: write to the memory.

bit (or 160-bit, respectively) digest.

10

In each case, simple 32-bit operations are per-

formed over 80 rounds. In each round there are 2

to 4 logic levels, as well as 2 adders. We noted that

with suitable skewing of the adders, rounds can be

performed in one cycle per round on average.

The total amount of 32-bit logic blocks that is re-

quired for the 80 rounds is 260 adders, 32 multiplex-

ers, 16 inverters, 16 or gates and 48 xor gates (for

SHA-1, 325 adders, 60 and gates, 40 or gates, 20

multiplexers and 272 xor gates). If these were all laid

out, we would therefore need on the order of 50,000

1-bit gates altogether. In fact, the rounds are very

similar to each other so it should be possible to have

a lot of sharing between them. To exploit this we

chose a hash throughput of one per 20 cycles. This

should allow the circuit size to be divided by a factor

of 10 to 20.

5.3 Simulation Framework

Our simulation framework is based on the Sim-

pleScalar tool set [BA97], which models speculative

out-of-order execution. To model the memory band-

width usage more accurately, separate address and

data buses were implemented. All structures that

access the main memory including a L2 cache and

the hash unit share the same bus.

The architectural parameters used in the simula-

tions are shown in Table 1. SimpleScalar is con�g-

ured to execute Alpha binaries, and all benchmarks

10

In fact, for variable length messages, the output from the

previous 512-bit block is used as an input to the function that

digests the next 512-bit block. Since we are dealing with �xed-

length messages of less than 512 bits, we do not need this.

Architectural parameters Speci�cations

Clock frequency 1 GHz

L1 I-caches 64KB, 2-way, 32B line

L1 D-caches 64KB, 2-way, 32B line

L2 caches Uni�ed, 1MB, 4-way, 64B line

L1 latency 2 cycles

L2 latency 10 cycles

Memory latency (�rst chunk) 80 cycles

I/D TLBs 4-way, 128-entries

Memory bus 200 MHz, 8-B wide (1.6 GB/s)

Fetch/decode width 4 / 4 per cycle

issue/commit width 4 / 4 per cycle

Load/store queue size 64

Register update unit size 128

Hash latency 80 cycles

Hash throughput 3.2 GB/s

Hash read/write bu�er 16

Hash length 128 bits

Table 1: Architectural parameters used in simula-

tions.

are compiled on EV6 (21264) for peak performance.

For all the experiments in this section, nine

SPEC2000 CPU benchmarks [Hen00] are used as

representative applications: gcc, gzip, mcf, twolf,

vortex, vpr, applu, art, and swim. These bench-

marks show varied characteristics such as the level

of ILP (instruction level parallelism), cache miss-

rates, etc. By simulating these benchmarks, we can

study the impact of memory authentication on vari-

ous types of applications.

To capture the characteristics of benchmarks in the

middle of computation, each benchmark is simulated

for 100 million instructions after skipping the �rst 1.5

billion instructions. In the simulations, we ignore the

initialization overhead of the hash tree. Given the

fact that benchmarks run for a long time, the over-

head should be negligible compared to the steady-

9



state performance.

5.4 Performance Impact of Memory

Authentication

On-line memory authentication requires computing

and checking a hash for every read from o�-chip mem-

ory. At the same time, a new hash should be com-

puted and stored on a write-back to memory. Mem-

ory authentication implies even more work for mem-

ory operations, which already are rather expensive.

Therefore, the obvious �rst concern of memory au-

thentication is its impact on application performance.

Fortunately, computing and checking hashes do not

always increase memory latency. We can optimisti-

cally continue computation as soon as data arrives

from the memory while checking their authenticity

in the background. Checking the authenticity of data

hurts memory latency only when read/write bu�ers

are full.

Authenticating memory tra�c, however, can de-

grade the memory performance in two ways: L2 cache

pollution and memory bandwidth pollution. First,

if we cache hashes in the L2 cache, hashes contend

with regular application data and can degrade the

L2 miss-rate for application data. On the other hand,

loading and storing hashes from/to the main mem-

ory increases the memory bandwidth usage, and may

steal bandwidth from applications.

Figure 3 illustrates the impact of memory authenti-

cation on application performance. For six di�erent

L2 cache con�gurations, the IPCs (instructions per

cycle) of three schemes are shown: a standard proces-

sor (base), memory authentication with caching the

hashes with a single cache block per chunk (chash),

and memory authentication without caching (naive).

The �gure �rst demonstrates that the performance

overhead of memory authentication can be surpris-

ingly low if we cache hashes. Even though the on-line

memory authentication algorithm based on a hash

tree can cause tens of additional memory accesses per

L2 cache miss, the performance degradation of chash

compared to base is less than 50% in the worst case

(mcf in the 64B, 256KB case). Moreover, the perfor-

mance degradation decreases rapidly as either the L2

cache size or the block size increases. For a 4-MB L2

cache, all nine benchmarks run with less than 20%

performance hit.

The importance of caching the hashes is also clearly

shown in the �gure. Without caching (naive), some

programs can be slowed down by factor of ten in the

worst case (swim and applu). In the case of the na��ve

scheme, even increasing the cache size or the cache

block size does not reduce the overhead. For example,

applu is still ten times slower than the base case with
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Figure 4: L2 cache miss-rates of program data for a

standard processor (base) and memory authentica-

tion with caching (chash). The results are shown for

256-KB and 4-MB caches with 64-B cache blocks.

a 64-B, 4-MB L2 cache.

Finally, Figure 3 shows the e�ect of changing the

L2 cache size and the L2 block size on the perfor-

mance. Having a larger L2 cache reduces authen-

tication performance since it reduces the number of

o�-chip accesses. A large L2 cache is likely to result

in better hash hit-rate without hurting application

hit-rate. Having a larger L2 block also reduces the

overhead of memory authentication by having less

levels in the hash tree. However, a non-optimal L2

block size can degrade the baseline performance as

shown in Figure 3.

In the following subsections, we discusses the per-

formance considerations of memory authentication in

more detail.

5.4.1 Cache Contention

Since we cache hashes sharing the same L2 cache with

a program executing on a processor, both hashes and

application data contend for L2 cache space. This can

increase the L2 miss-rate for a program and degrade

the performance.

The e�ect of cache contention is studied in Fig-

ure 4. The �gure depicts the L2 miss-rates of

the baseline case and memory authentication with

caching. As shown, for a small L2 cache, the miss-

rate can be noticeably increased by caching the

hashes. In fact, cache contention is the major source

of performance degradation for twolf, vortex, and

vpr. However, as the L2 cache size increases, cache

contention is alleviated. For example, with a 4-MB

L2 cache, none of the benchmarks show noticeable L2

miss-rate degradation. We note that increasing the

L2 block size (block = chunk) alleviates cache con-

tention by reducing the number of hashes to cover a

given memory space (not shown).
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Figure 3: IPC comparison of three di�erent schemes for various L2 cache con�gurations: standard proces-

sors without memory authentication (base), memory authentication with caching the hashes (chash), and

memory authentication without caching hashes (naive). Results are shown for di�erent cache sizes (256KB,

1MB, 4MB) and di�erent cache block sizes (64B, 128B).
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5.4.2 Bandwidth Pollution

Another major concern of the memory authentication

scheme is the increase in the memory bandwidth us-

age. In the worst case, one L2 cache miss causes the

entire hash hierarchy corresponding to the L2 block

to be loaded from memory.

Fortunately, the simulation results in Figure 5 in-

dicate that caching works very well for the hash

tree. Figure 5 (a) shows the average number of hash

blocks loaded from the main memory on a L2 cache

miss. Without caching the hashes, every L2 miss

causes thirteen additional memory reads for this con-

�guration as shown by the na��ve scheme. However,

with caching, the number of additional memory reads

is less than one for all benchmarks. As a result,

the overhead of the memory bandwidth usage with

caching is very small compared to the case without

caching (Figure 5 (a)).

For programs that have low bandwidth usage, the

increase of the bandwidth usage due to memory au-

thentication is not a problem since loading the hashes

just uses extra bandwidth. In our simulations, the

bandwidth pollution is a major problem only for mcf,

applu, art, and swim even though accessing hashes

increases the bandwidth usage for all benchmarks.

5.5 E�ects of Hash Parameters

There are two architectural parameters in our mem-

ory authentication scheme: the throughput of hash

computation and the size of hash read/write bu�ers.

This subsection studies the trade-o�s in varying these

parameters.

The throughput of computing hashes varies de-

pending on how the logic is pipelined. Obviously,

higher throughput is better for the performance, but

requires larger space to implement. Figure 6 shows

the IPC of various applications using memory au-

thentication with caching for varying hash through-

put.

As shown in the �gure, having higher through-

put than 3.2GB/s does not help at all. When the

throughput lowers to 1.6GB/s, which is the same

as memory bandwidth, we see minor performance

degradation. If the hash throughput is lower than

the memory bandwidth, it directly impacts and de-

grades the performance. In our experiments, the IPC

degraded as much as 50% for mcf, applu, art, and

swim. This is because the e�ective memory band-

width is limited by the hash computing throughput.

Therefore, the hash throughput should be slightly

higher than the memory bandwidth.

Figure 7 studies the e�ect of the hash bu�er size

on the application performance (IPC). The hash read

bu�er holds a new L2 cache block while its hash gets
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Figure 6: The e�ect of hash computation throughput

on performance. The results are shown for a 1-MB

cache with 64-B cache blocks. 6.4GB/s = one hash

per 10 cycles.
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Figure 7: The e�ect of hash bu�er size on perfor-

mance. The results are shown for a 1-MB cache with

64-B cache blocks.

computed and checked with the previously stored

hash. Similarly, the hash write bu�er holds an

evicted L2 cache block until a new hash of the block

is computed and stored back in the L2 cache. A

larger bu�er allows more memory transactions to be

outstanding. However, given the fact that the hash

computation throughput is higher than the memory

bandwidth, the hash bu�er size does not a�ect the

performance.

5.6 Reducing Memory Size Overhead

With one hash (128 bits) covering a 64-B cache line,

25% of main memory space is used to store hash val-

ues. This memory overhead also implies that these

hash values will contend for the L2 cache space and

comsume the memory bandwidth, which can result in

performance degradation. Therefore, reducing mem-

ory overhead is essential to reduce the overall memory

authentication overhead.

The most straightforward way to reduce mem-
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Figure 5: Memory bandwidth usage for a standard processor, memory authentication with caching, without

caching. The L2 cache is 1 MB with 64-B cache blocks. (a) The additional number of hash loads from

memory per L2 cache miss. (b) Normalized memory bandwidth usage (normalized with base).
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Figure 8: The performance of the mhash scheme with

two cache blocks per chunk. The results are shown

for a 1-MB cache.

ory overhead is to increase the L2 cache block size.

As shown in Section 5.4, having 128-B L2 blocks

rather than 64-B signi�cantly reduces the perfor-

mance degradation compared to the base case. On

the other hand, large block sizes often result in poor

baseline performance due to poor cache performance.

Another way to reduce the memory overhead is

to make one hash cover multiple L2 cache blocks.

However, in this case, all cache blocks covered by

the same hash should be fetched to authenticate any

one of them. Also, write back involves more memory

operations. Therefore, the mhash scheme with 2 or

more cache blocks per chunk tends to consume more

bandwidth than the chash scheme.

Figure 8 compares the performance of using one

hash per 64-B L2 block (chash-64B), one hash per

128-B L2 block (chash-128B), and one hash per two

64-B L2 blocks (mhash-64B). In general, mhash-64B

performs comparable to chash-64B. For benchmarks

with high bandwidth usage, mhash-64B performs

worse than chash-64B. For benchmarks sensitive to

L2 cache contention, it performs better. Therefore,

the right algorithm should be chosen based on the

type of main applications.

On the other hand, mhash-64B always outperforms

chash-128B. Moreover, increasing the L2 cache block

size can degrade performance even when the appli-

cation do not use memory authentication scheme.

Therefore, to reduce memory size overhead, it ap-

pears that is it always better to make one hash

cover multiple cache blocks rather than increasing the

cache block size.

Conclusion

We have presented a memory authentication scheme

that can be used to build high performance secure

computing platforms out of slightly modi�ed general-

purpose processors. By integrating the hash tree ma-

chinery with an on-chip (L2) cache, we arrived at a

memory authentication scheme with reasonable over-

heads. The evaluations we have carried out show, for

instance, that for large L2 sizes, performance over-

head is � 20%, area overhead is � 10; 000 gates, and

12:5 to 25% of untrusted external memory is used up

by hashes.

Ongoing work includes the investigation of o�-line

memory authentication schemes, and the generaliza-

tion of authentication schemes to SMP systems.
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