Quiz 1 Handout - Modified EDSACjr ISA

Here is the ISA for a slightly modified version of the EDSACjr.

In the notation used in the table below, M[x] stands for the contents of the memory location addressed by x. Accum refers to the accumulator. \leftarrow signifies that data is transferred (copied) from the location to the right of the \leftarrow to the location on the left. The immediate variable n is an address or a literal depending on the context. The EDSACjr architecture allows programmers to put constants at any point in the memory when a program is loaded. All addresses are word addresses.

Opcode	Description	Bit Representation
ADD n	$Accum \leftarrow Accum + M[n]$	00001 n
SUB n	$Accum \leftarrow Accum - M[n]$	00010 n
LD n	$Accum \leftarrow M[n]$	00011 n
ST n	$M[n] \leftarrow Accum$	00100 n
CLEAR	Accum ← 0	00101 00000000000
OR n	$Accum \leftarrow Accum \mid M[n]$	00110 n
AND n	$Accum \leftarrow Accum \& M[n]$	00111 n
MUL n	$Accum \leftarrow Accum * M[n]$	01000 n
SHIFTR n	$Accum \leftarrow Accum >> M[n]$	01001 n
SHIFTL n	$Accum \leftarrow Accum << M[n]$	01010 n
BGE n	If Accum ≥ 0 then PC \leftarrow n	01011 n
BLT n	If Accum ≤ 0 then PC \leftarrow n	01100 n
END	Halt machine	01101 00000000000

The shifts are arithmetic shifts. All words are 16 bits long. As in EDSAC, instructions are encoded as integers. The first 5 bits are the opcode and the last 11 bits form the immediate field (an 11-bit immediate address addresses up to 2048 words (16-bit) of memory -- twice that of the real EDSAC). Integers are represented in 16 bits, the most significant bit being a sign bit.