
Quiz 1 Handout - Physical Register File Design


This handout defines a simple RISC-V Out-of-Order processor. All register data is stored directly 
in a physical register file. The ROB simply contains tags that point to physical registers.


The processor follows the “Physical Register File” design seen in lecture. A diagram representing 
the processor is shown in Figure 1.


The processor follows the RISC-V ISA, though we will only focus on integer and control 
instructions, so you do not need to worry about memory instructions.


The processor has the following key stages:

1. Fetch: the instruction at PC is fetched from the instruction cache/memory

2. Decode & Rename: the fetched instruction is decoded. If the decoded instruction is a 

conditional branch, its direction is predicted by the branch predictor. The instruction’s 
architectural source registers are renamed to the appropriate physical registers. A destination 
physical register is assigned.


3. Reorder Buffer: the instruction waits to be executed in the reorder buffer. When all hazards 
are cleared, it is able to execute.


4. Commit: the instruction is committed.


Figure 1: Processor Overview









• Rename Table: mapping between architectural registers and physical registers

• Physical Register File: central physical register file that holds all register data

• Free List: available physical registers not currently assigned to any architectural register

• Reorder Buffer: holds inflight instructions and the tags of their input and output registers 

Arch. Reg. Physical Reg.

x0

x1 P7

x2 P8

x3

x4 P4

x5 P6

x6 P9

x7

Rename Table Physical Register File

Physical Reg. Value Present?

P0 37

P1 38

P2 823

P3 5900

P4 2816

P5 0

P6 1123

P7 314

P8 217

P9 415

P10

Physical Reg.

P10

Free List

Inum Use Ex Op PR1 
Present?

PR1 PR2 
Present?

PR2 Rd Last PRd PRd

…

I5 1 1 addi 1 P0 x1 P0 P1

I6 1 0 xor P2 P4 x2 P2 P3

I7 1 0 div P3 P5 x5 P5 P6

I8 1 0 bne P1 P9

I9 1 0 add P1 x1 P1 P7

I10 1 0 xor P3 P4 x2 P3 P8

Reorder Buffer

Figure 2: Current Processor State

Next to Commit

Next Available



Label List

A. Satisfy a dependence on _____ by stalling

B. Satisfy a dependence on _____ by bypassing a speculative value

C. Satisfy a dependence on _____ by bypassing a committed value

D. Satisfy a dependence on _____ by speculation using a static prediction

E. Satisfy a dependence on _____ by using a dynamic prediction

F. Write a speculative value using lazy data management

G. Write a speculative value using greedy data management

H. Speculatively update a prediction on _____ using lazy value management

I. Speculatively update a prediction on _____ using greedy value management

J. Non-speculatively update a prediction on _____

K. Check the correctness of a speculation on _____ and find a correct speculation

L. Check the correctness of a speculation on _____ and find an incorrect speculation

M. Abort speculative action and cleanup lazily managed values

N. Abort speculative action and cleanup greedily managed values

O. Commit correctly speculated instruction, where there was no value management

P. Commit correctly speculated instruction, and mark lazily updated values as non-speculative

Q. Commit correctly speculated instruction, and free log associated with greedily updated values

R. Illegal or broken actions


Blank Choices

i. Register Value

ii. PC value

iii. Branch direction

iv. Memory address

v. Memory value

vi. Latency of operation

vii. Functional unit

viii.Storage space


