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Computer System Architecture  
6.5900 Quiz #1 

October 11th, 2024 
 
 
 

 
Name: ___________________________        

 
This is a closed book, closed notes exam. 

80 Minutes 
 14 Pages (+1 Scratch) 

 
Notes: 
• Not all questions are of equal difficulty, so look over the entire exam and 

budget your time carefully. 
• Please carefully state any assumptions you make. 
• Show your work to receive full credit. 
• Please write your name on every page in the quiz. 
• You must not discuss a quiz's contents with other students who have not 

yet taken the quiz. 
• Pages 15 is a scratch page. Use it if you need more space to answer one of 

the questions, or for rough work. 
 
 
  

     
   Part A  ________     35 Points 
   Part B  ________     30 Points 
   Part C  ________     35 Points 

    
TOTAL          ________   100 Points 

Axel Feldmann
Solution
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Part A: Caches and Virtual Memory (35 Points) 
 
In this part, we will consider the memory system of the fictional Quadium processor. We 
will begin with a very simple version of this processor then refine/improve it in various 
ways across the questions. Across all parts, assume that the system has the following 
characteristics: 

- 32-bit addresses (both physical and virtual) 
- all memory accesses are 4-byte aligned 
- 4KB page size 
- 2 level page table stored in memory 
- the 1st level page table base is stored in a special register (cr3)  
- a single-level, physically addressed cache with 1-cycle hit latency. A cache miss 

takes 100 cycles end-to-end 
- an MMU that handles page table walks 
- page table data can be cached 

 
Question 1 (5 points) 
 
The initial prototype Quadium processor does not feature a TLB. Suppose a program tries 
to load virtual address 0x1000. What are the minimum and maximum possible access 
latencies? Ignore all sources of latency outside the memory access. Explain your 
reasoning. 
 
  

Axel Feldmann
3 accesses: 1 access L1 page table + 1 access to L2 page table + 1 access to data

Minimum 3 cycles, maximum 300 
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Question 2 (5 points) 
 
That seems slow! To address the long memory access latencies, the designers of the 
Quadium processor propose adding a single-entry hardware-managed TLB. The TLB is 
used on every access and shared between instruction and data memory. At the end of 
each access, hardware updates the TLB to contain the last translation. 
 
There is a problem with design. Please provide both a scenario where this design will 
work well and a scenario where it will work poorly. Short code snippets are a clear way 
of illustrating examples. 

Axel Feldmann
Works well: instructions that don’t touch memory

lbl: add x1, x2, x3
      j lbl

Works poorly: instructions that do touch memory - instruction fetch and data load will thrash each other

lbl: lw x1, offset(x2)
      j lbl
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Question 3 (5 points) 
 
Quadium page table entries have exactly the following format (no super pages). 

 
Both the first- and second-level page tables contain 1024 entries.  
 
Suppose that a process wants to map exactly 1GB of contiguous virtual memory from 
address 0x0 to address 0x3fffffff. How many bytes of memory would the requisite page 
tables consume in memory? 
 
  

First-Level Page Table Entry 

Upper 20 Bits of Physical Page Address 

Second-Level Page Table Entry 

Prot. Bits + Reserved 

31 12 11 0 

Upper 20 Bits of Page-Table Base Address Prot. Bits + Reserved 

31 12 11 0 

Axel Feldmann
2^30 bytes / 4096 (bytes / page) = 2^18 pages

2^18 pages / (2^10 pages / L2 page table) = 2^8

2^8 L2 page tables + 1 L1 page table = 257 total page tables

257 * (4096 bytes / page table) = 1052672 bytes



Name ____________________________ 
 

Page 5 of 15 
 

Question 4 (20 points) 
 
So far, the page tables we’ve studied in this course represent a “fully associative” 
mapping in that any page in virtual memory can be mapped to any page in physical 
memory. Note how this is unlike set-associative caches, where a specific address is 
mapped only to a single cache set. 
 
In the next two questions, we will consider applying similar mapping restrictions to 
virtual memory. Specifically, we will subdivide the virtual page number (VPN) into two 
parts: a “VPN Tag” and a “VPN Index” as follows: 
 

 
Our proposed restriction is that for every valid translation, the virtual address’s Virtual 
Page Index bits must match its corresponding physical address’s Physical Page Bits. 
Pages are still 4KB, so the page offset works the same way as it did before. 
 
 
Question 4.1 (3 points): Please state whether each of the following three virtual address 
to physical address mappings are valid under this restriction: 
 

- VA: 0xaafdc000 → PA: 0xdcfdc000 
- VA: 0xaafdd000 → PA: 0xdcfdc000 
- VA: 0x447dc000 → PA: 0xdcfdc000 

 
Question 4.2 (5 points): In ordinary address translation, the bottom 12 bits (page offset) 
of both the virtual and physical address must match. In this scheme, the bottom 22 bits 
must match. However, this scheme is different from just having 222 byte pages. Please 
explain how. 
 
 
 
 
 
 
 

Proposed Quadium Virtual Address 

VPN Index Page Offset 

31 12 11 0 

VPN Tag 

22 21 

Proposed Quadium Physical Address 

PPN Index Page Offset 

31 12 11 0 

PPN Tag 

22 21 

Axel Feldmann
valid

Axel Feldmann
invalid

Axel Feldmann
valid

Axel Feldmann
With 2^22 page size, 2^22 byte chunks need to be contiguous in both virtual and physical memory.

With 2^12 pages and the mapping restriction, even though we can’t map every virtual page to every physical page, a single 2^22 byte region of virtual memory can be mapped to many discontiguous pages in physical memory.
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Question 4.3 (7 points): Suppose that instead of a physically addressed cache, we re-
engineer the Quadium with a virtually indexed physically tagged (VIPT) cache. How 
would the proposed virtual to physical address mapping restriction affect the design and 
implementation of a VIPT cache? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Question 4.4 (5 points): Assume that the operating system uses demand paging. Please 
describe how this restriction affects the performance of demand paging. 
 
 
 

Axel Feldmann
Because VPN Index == PPN Index, we can use any of the lower 22 bits as cache index bits without introducing aliasing problems.

This allows us to have more cache sets than we would without the restriction.

Axel Feldmann
Because the mapping of virtual to physical pages is not fully associative, demand paging is more likely to incur “conflict misses”. Specifically, we could run out of free physical pages that map to a specific virtual address well before we actually run out of physical memory. This would cause additional swapping (poor performance) even though physical memory is not fully exhausted.
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Part B: Out-of-Order Processors (25 Points) 

 
Question 1 (20 points) 
 
This question uses the out-of-order machine described in the Quiz 1 Handout.  We describe 
events that affect the initial state shown in the handout. Label each event with one of the 
actions listed in the handout. If you pick a label with a blank (_____), you also have to fill 
in the blank using the choices (i—vii) listed below. If you pick “R. Illegal action”, state 
why it is an illegal action. If in doubt, state your assumptions. 
 
Example: I6 executes and writes its result to P3. P3 is set as present in I7’s and I10’s ROB 
entries. 
 
Answer: B, i 
 

1. I5 commits and returns P0 to the free list. 
 
 
 
 
 

2. Assume that all instructions up I7 commit. I7 executes and finds that P5 is equal 
to zero, triggering an exception. 
 

 
 
 
 

3. I8 executes and finds that P1 is not equal to P9, triggering a taken branch that was 
predicted as taken. 

 
 
 
 
 

4. Assume that the rename stage attempts to insert two more instructions into the 
ROB. The first, I11, successfully enqueues and uses P10 as its value of PRd. The 
second, I12, can no longer find any free physical registers. 
 

 
 
 
 
 
 

Axel Feldmann
Q

Axel Feldmann
N, M, L(i)

Axel Feldmann
K(iii)

Axel Feldmann
A(viii)
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5. I5 commits and now sets P1 as present in the physical register file. 
 
 
 
 
 
 

6. Assume I8 executes and finds that P1 is equal to P9, resulting in an untaken 
branch that was predicted as taken. 

 
 
 
 
 

7. Assume I7 triggers a divide-by-zero exception. I8 does not depend on I7, so it 
commits. 
 

 
 
 
 

8. Assume xor instructions take 5 cycles. I10 is unable to begin executing due to P3 
not yet being present. 

 
 
 
 
 

9. Assume that all instructions up to and including I7 have committed. I8 finishes 
execution and commits. It finds that P1 is not equal to P9. It updates the global 
branch history register. 
 

 
 
 
 

10. Assume that I5 and I6 have committed but I7 is still in-flight. I8 commits and 
returns P9 to the free list. 

Axel Feldmann
R, P1 is set as present on execute not commit

Axel Feldmann
L(iii), M

Axel Feldmann
R, this violates in-order commit

Axel Feldmann
A(i)

Axel Feldmann
Q, J(iii)

Axel Feldmann
R, this violates in-order commit
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Question 2 (5 points) 
 
When designing this processor, we first simulate it with an infinite-sized ROB. We find 
that across a set of benchmarks, it achieves an average IPC of 2. We also know that 
instructions take 10 cycles on average from entering the ROB to committing. When 
implementing the processor (no infinite-sized ROB anymore!), what is the minimum size 
you would suggest making the ROB?  

Axel Feldmann
Little’s Law: T = N / L

2 = N / 10

N = 20

So the ROB should be ≥ 20 slots
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Part C: EDSACjr (35 Points) 
 
For this part, you should consult the EDSACjr handout. 
 
 
Question 1 (5 points) 
 
Briefly, explain the architectural limitation that forces EDSACjr programs to depend on 
self-modifying code. 
  

Axel Feldmann
EDSACjr only has a single accumulator register and no index register, so it only supports absolute addressing. Addresses are stored as immediates in instructions. Therefore, for a single instruction to access multiple addresses, it must be modified.
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Question 2 (10 points) 
 
The following program computes the dot product of a vector with itself. Please write 
EDSACjr assembly to implement it: 
 
int total = 0; 
for (int i = 0; i < n; i++) { 
 total += A[i] * A[i]; 
} 
 
You should assume the following memory layout and may add temps as needed: 
 
 
  
A A[0] 

 A[1] 
 … 
 A[n-1] 
TOTAL total 
N n 
I 0 
ONE 1 
  
  
  

Data Memory Program 

loop: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
done: 

LD I 
SUB N 
BGE done 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
LD I 
ADD ONE 
ST I 
BGE loop 
END 

Axel Feldmann
TOTAL     0

Axel Feldmann
LD       A
MUL    A
ADD   TOTAL
ST      TOTAL

LD      ld_inst
ADD   ONE
ST      ld_inst

LD      mul_inst
ADD   ONE
ST      mul_inst

Axel Feldmann
ld_inst:

Axel Feldmann
mul_inst:
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Question 3 (6 points) 
 
Suppose we implement the EDSACjr ISA on a 5-stage pipeline shown below: 
 

 
Note that both instructions and data live in a single unified memory that has two ports. 
The memories are both single-cycle SRAMs and the processor is implemented on a 
modern technology node, not vacuum tubes. 
 
For just this question, assume no hazards and single-cycle memory accesses. Is pipelining 
this processor a good idea? How does pipelining this processor affect each of the 
following: CPI, frequency, number of instructions, and performance? 
 
  
  

PC Memory 
(port 1) 

Decode/ 
Read 

Accum. 

Memory 
(port 2) Execute Writeback 

Axel Feldmann
Iron Law of performance:

(instructions/program) * (clock cycles/instruction) * (time / clock cycles)

instructions/program: unchanged
clock cycles/instruction: unchanged (still 1 because no hazards)
time/clock cycle: down because shorter critical path

so, better performance
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Question 4 (7 points) 
 
One potential problem with pipelining the EDSACjr is that working on self-modifying 
code in a single unified memory introduces additional hazards. Specifically, instructions 
further along in the pipeline (earlier in program order) may modify instructions earlier in 
the pipeline (later in program order). Appropriately handling this hazard is essential to a 
correct pipelined EDSACjr implementation. 
 
Please assume that there are no other data or control hazards. 
 
In this first question, we will try to solve this hazard by stalling. Please describe the 
following: 

- How you would modify the hardware to handle this hazard by stalling. What 
structures would you add? What information needs to be stored in them? 

- How would stall signals be generated? 
- Where would they be consumed? 

 
To make your answer concrete, please provide a sequence of up to 3 instructions that 
would cause a stall and explain how stall signals are generated for that sequence.  

Axel Feldmann
- Add a register pipeline that contains the addresses of in-flight stores. When a store is decoded in Decode, write its address into the pipeline. In fetch, if PC == any address in the pipeline, stall the fetch stage and place a NOP into fetch’s output pipeline register. 
- Instruction sequence:

                ST inst_addr
inst_addr: ADD 37

For this sequence, when the ST is in decode, it generates a stall signal. The write to the fetch pipeline register is gated on this stall signal. Additionally, the PC update is also stalled by this signal.
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Question 5 (7 points) 
 
Now, instead of handling this self-modifying code hazard by stalling, we will handle it by 
bypassing. Please describe the following: 

- How you would modify the hardware to handle this hazard by bypassing. 
- What bypass paths need to be added? 
- Can bypassing fully avoid stalls? If yes, please justify. If not, please provide an 

example instruction sequence that would still result in some pipeline bubbles. 
 
Like in the previous part, please provide a sequence of up to 3 instructions to illustrate 
your thinking. 
  

Axel Feldmann
- Instead, we can bypass instruction stores from Decode to Fetch.
- If the instruction being decoded is a ST whose address field matches the PC in Fetch, then the pipeline register at the end of Fetch is set to the Accumulator
- This will fully avoid stalls:

                ST inst_addr
inst_addr: ADD 37

When the ST is in decode, the ADD is in fetch. However, the pipeline register at the output of Fetch is just set to the accumulator. In this way, bypassing is effectively able to fully remove this stall.
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Scratch Space 


