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Computer System Architecture  
6.5900 Quiz #3 

December 11th, 2024 
 
 
 

 
Name: ___________________________        

 
This is a closed book, closed notes exam. 

80 Minutes 
 15 Pages (+1 Scratch) 

 
Notes: 
• Not all questions are of equal difficulty, so look over the entire exam and 

budget your time carefully. 
• Please carefully state any assumptions you make. 
• Show your work to receive full credit. 
• Please write your name on every page in the quiz. 
• You must not discuss a quiz's contents with other students who have not 

yet taken the quiz. 
• Page 16 is a scratch page. Use it if you need more space to answer one of 

the questions, or for rough work. 
 
  

     
   Part A  ________     39 Points 
   Part B  ________     30 Points 
   Part C  ________     31 Points 

    
TOTAL          ________   100 Points 
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Part A: VLIW + Vector Processors (39 Points) 
 
Consider the following piece of code: 
 
// Assume: prefilled w/ uniform random numbers in [0, SIZE) 
// Values of SIZE will be provided in later questions. 
int32_t array[SIZE]; 
 
// Values of WIDTH will be provided in later questions 
int32_t indices[WIDTH] = { 0, 1, … WIDTH – 1 }; 
 
void func(int* result) { 
 for (int32_t round = 0; round < (1 << 20); round++) { 
  for (int32_t i = 0; i < WIDTH; i++) { 
   int32_t x = array[indices[i]]; 
   result[i] += (x & 1); 
   indices[i] = x; 
  } 
 } 
} 
In RISC-V assembly, this compiles to: 
     ... 
.outer: 
 mv a5, sp            // indices is stack allocated 
 mv a4, a0            // a4 = `result` 
.inner: 
 lw a1, 0(a5)         // a1 = indices[i] 
 slli a1, a1, 2       // a1 = a1 * 4 
 add a1, a1, t1       // compute index into array 
 lw a1, 0(a1)         // a1 = array[indices[i]] 
 lw a2, 0(a4)         // a2 = results[i] 
 andi a3, a1, 1       // a3 = array[indices[i] & 1 
 sw a1, 0(a5)         // indices[i] = x 
 add a2, a2, a3       // a2 += array[indices[i]] & 1 
 sw a2, 0(a4)         // store out results[i] 
 addi a4, a4, 4       // increment ptr into `results` 
 addi a5, a5, 4       // increment ptr into `indices`  
 bne a4, t0, .inner   // inner loop 
 addi a7, a7, 1       // increment `rounds` 
 bne a7, a6, .outer   // outer loop 
     ...  
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Question 1 (10 points) 
 
We now define the following in-order, single-threaded VLIW processor. Every cycle, it 
can issue a single instruction. A instruction contains several independent “operations”-- 
data (RAW, WAW, WAR) or control dependences between operations in the same 
bundle is undefined behavior. 
 
A bundle as 4 operation slots. Each slot can contain 1 ordinary RISC-V instruction. 
Precisely, each instruction has the following slots: 

- 1 load/store operation slot: can contain lw, sw 
- 2 ALU operation slots: can contain slli, add, andi, addi 
- 1 control operation slot: can contain bne 

 
All ALU instructions take 1 cycle to execute. The processor has full bypassing, so later 
instructions can use the results of earlier instructions on the next cycle. Memory 
operations take 1 cycle on a cache hit and 100 cycles on a cache miss. The processor has 
stalling logic to stall the entire pipeline on a cache miss. So, the results of memory 
operations can be used in the next cycle. 
 
Compile the assembly above into VLIW instructions for this architecture. Use the 
table below. Do not modify the assembly from the scalar code! Note: not all rows 
must be used. 
 
Instruction 
Number 

Load/Store 
Slot 

ALU 1 Slot ALU 2 Slot Control Slot 

1     

2     

3     

4     

5     

6     

7     

8     

9     

10     

11     

12     

13     

Axel Feldmann
mv a5, sp

Axel Feldmann
mv a5, sp

Axel Feldmann
lw a1, 0(a5)

Axel Feldmann
slli a1, a1, 2

Axel Feldmann
lw a1, 0(a1)

Axel Feldmann
add a1, a1, t1

Axel Feldmann
lw a2, 0(a4)

Axel Feldmann
andi a3, a1, 1

Axel Feldmann
sw a1, 0(a5)

Axel Feldmann
add a2, a2, a3

Axel Feldmann
sw a2, 0(a4)

Axel Feldmann
addi a4, a4, 4

Axel Feldmann
addi a5, a5, 4

Axel Feldmann
bne a4, t0, .inner

Axel Feldmann
bne a7, a6, .outer

Axel Feldmann
addi a7, a7, 1
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Question 2 (5 points) 
 
This VLIW processor has the following memory system: 

- 32 KB 16-way set associative cache with 32 byte cache lines 
- Cache hits take 1 cycle, cache misses take 100 cycles 
- Assume that the results and indices arrays are both cache-line aligned and are 

always cached, never evicted 
 
Assuming no branch mispredictions (branches induce no stall cycles), how many loop 
iterations per cycle would you expect your VLIW code to achieve in the following 
scenarios? (your answer will be a fraction, it is less than 1!) You should assume that time 
spent evaluating the outer loop is negligible. 
 

- Scenario 1: SIZE = (1 << 7), WIDTH = 128 
 
 
 
 
 

- Scenario 2: SIZE = (1 << 30), WIDTH = 128 
 
 
 
 
 
  

Axel Feldmann
Everything is a cache hit. 9 instructions take 9 cycles, so 1/9 iterations per cycle 

Axel Feldmann
Loading from array is nearly always a cache miss that takes 100 cycles, so 1/108 iterations per cycle
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Question 3 (8 points) 
 
Suppose that we compile a version of this code with WIDTH = 64 and decide to unroll 
the entire inner loop (unroll WIDTH-many times) and software-pipeline it optimally. 
Assuming no cache misses, infinite registers, and perfect branch prediction. In steady 
state, how many of the original inner loop iterations are completed every cycle? 
 
You do not need to write out the instructions. 
Be careful: loop unrolling happens in the source code-- the code will be recompiled to 
take advantage of the infinite available registers! It also will remove the following 3 
instructions that are no longer necessary: 
 
 addi a4, a4, 4       // increment ptr into `results` 
 addi a5, a5, 4       // increment ptr into `indices`  
 bne a4, t0, .inner   // inner loop 
  

Axel Feldmann
6 ALU ops per iteration, 1 control op per iteration, 5 memory ops per iteration. So, given 2 ALU slots, 1 load/store slots, and 1 control slot, the load store slot is the bottleneck. 

This means we’ll get 1/5 iterations per cycle.
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Question 4 (8 points) 
 
Instead of VLIW, we’ll try to execute this code on a vector processor instead. We take a 
pipelined in-order RISC-V processor and add the following ISA extensions: 
 
Vector Registers: v0, v1, v2, v3, v4, v5, v6, v7 (all hold VLEN-many 32-bit values) 
 
Note: vd, vrs1, vrs2 are vector registers. rd, rs1, rs2 are normal scalar registers. 
Instruction Semantics 
vlw vd, imm(rs1) vd[i] ← mem[imm + rs1 + 4 * i] 
vsw vrs2, imm(rs1) mem[imm + rs1 + 4 * i] ← vrs2[i] 
vgather vd, vrs1 vd[i] ← mem[vrs1[i]] 
vssli vd, vrs1, imm vd[i] ← vrs1[i] << imm 
vadd vd, vrs1, rs2 vd[i] ← vrs1[i] + rs2 
vaddi vd, vrs1, imm  vd[i] ← vrs1[i] + imm 
vandi vd, vrs1, imm vd[i] ← vrs1[i] & imm 

 
Assume that the architecture has VLEN many lanes, all compute operations take one 
cycle, and we have full bypassing. 
 
Suppose VLEN = 8 and VLEN divides WIDTH. We can now recompile our code to take 
advantage of the vector ISA: 
      ... 
.outer: 
 mv a5, sp            // indices is stack allocated 
 mv a4, a0            // a4 = `result` 
.inner: 
 vlw v1, 0(a5)        //  
 vslli v1, v1, 2      //  
 vadd v1, v1, t1      //  
 vgather v1, 0(v1)    //  
 vlw v2, 0(a4)        //  
 vandi v3, v1, 1      //  
 vsw v1, 0(a5)        //  
 vadd v2, v2, v3      //  
 vsw v2, 0(a4)        //  
 addi a4, a4, 32      // 
 addi a5, a5, 32      //  
 bne a4, t0, .inner   //  
 addi a7, a7, 1       //  
 bne a7, a6, .outer   //  
     ...  
Note: the memory subsystem only supports loading 1 cache line per cycle. So, if a 
vgather instruction loads values that span across multiple cache lines, it must start those 
loads on consecutive cycles. The memory system can support VLEN many in-flight 
memory operations (one memory operation is defined as a load or a store to a unique 
cache line). Assume the same memory hierarchy as the previous questions. 
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Question 4 continued 
 
Assuming no branch mispredictions, what IPC would you expect this new vectorized 
code to achieve in the following scenarios? Assume time spent executing outer-loop 
related instructions is negligible. 
 

- Scenario 1: SIZE = (1 << 7), WIDTH = 128 
 
 
 
 
 

- Scenario 2: SIZE = (1 << 30), WIDTH = 128 
 
 
 
 
  

Axel Feldmann
Every instruction except the vgather takes 1 cycle. The vgather is just cache hits and takes 8 cycles. So, 12 instructions / (11 + 8 cycles) = 12 / 19

Axel Feldmann
Same as previous part except vgather takes 107 cycles because all the accesses are cache misses on different lines, so 12 / 118
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Question 5 (8 points) 
 
Now, we will examine the same code running on a simple GPU. Suppose we have SIZE 
= (1 << 30). We spawn WIDTH-many threads (Nvidia terminology) each executing the 
computation for a single i (inner loop iteration): 
 
    ... 
// assume a6 contains a thread’s index 
// sp contains the base address of `indices` 
// a0 contains the base address of `results` 
     slli a7, a6, 2 
     add a5, sp, a6 
     add a4, a0, a6  
.outer: 
 lw a1, 0(a5)         // a1 = indices[i] 
 slli a1, a1, 2       // a1 = a1 * 4 
 add a1, a1, t1       // compute index into array 
 lw a1, 0(a1)         // a1 = array[indices[i]] 
 lw a2, 0(a4)         // a2 = results[i] 
 andi a3, a1, 1       // a3 = array[indices[i] & 1 
 sw a1, 0(a5)         // indices[i] = x 
 add a2, a2, a3       // a2 += array[indices[i]] & 1 
 sw a2, 0(a4)         // store out results[i] 
 addi a7, a7, 1       // increment `rounds` 
 bne a7, t2, .outer   // t2 holds the outer loop bound 
     ...  
 
However, since this is a GPU and not a multicore, the threads are grouped together in 
warps (Nvidia terminology). Each warp consists of 8 consecutive threads. So, for 
example threads with index 0, 1, … 7 all execute together as part of warp 0. Each warp 
executes instructions in lockstep using all 8 available lanes. 
 
The memory system can still only load or store one cache line per cycle! If the threads in 
a warp issue loads (or stores) to different cache lines, those loads (or stores) will be 
serialized and issue on consecutive cycles. During those cycles, the GPU is not ready to 
issue a new instruction. Example: if a warp lw needs to load 8 cache lines, that instruction 
will issue over 8 cycles. These 8 cycles do not count as system stalls—the GPU is doing 
useful work! There is no limit on the number of inflight memory operations. 
 
The GPU keeps issuing instructions from the same warp every cycle until that warp 
stalls. Upon detecting a stall, it switches to the next non-stalled warp in round-robin 
order. 
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Question 5 continued 
 
What is the minimum value of WIDTH for which this GPU will not experience any stalls 
in steady state?  
 
  

Axel Feldmann
We have 10 “uninteresting” instructions in the loop (every instruction except for the gather load to `array`). These each take 1 cycle of activity. The gather load takes 8 cycles of activity, as it needs to load 8 separate cache lines.

Assuming a single warp, this means that each warp does 18 cycles of activity then stalls for 100. We need enough warps to fill up the 100 cycle stall. This means we need ceil(100 / 18) = 6 more warps for a total of 7 warps = 56 threads = WIDTH = 56
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Part B: Security + Reliability (30 Points) 
 
Sidney (Sid for short) Channel is currently executing computations on sensitive private 
data on a shared uniprocessor system. 
 
Little does he know, but an evil mad scientist, Dr. Fission Chips, is trying to steal his 
data. Dr. Chips has the following two tools at his disposal: 

- He too can execute code on this system 
- He can point a neutron beam very precisely at some of the chip’s hardware 

structures. This neutron beam, when activated, will randomly flip bits in the target 
hardware structure. 

 
You should assume that the operating system is time-sharing the processor between Sid 
and Dr. Chips’ code. The operating system is using all standard memory protection 
mechanisms and has no bugs.   
 
Question 1 (5 points) 
 
Suppose Dr. Chips points his neutron beam at the processor’s TLB. Explain how flipping 
some TLB bits could potentially lead to security vulnerabilities. 
 
 
  
 
 
 
 
 
 
Question 2 (10 points) 
 
Assume that Dr. Chips is pointing his neutron beam at the TLB. Describe in detail what 
code Dr. Chips could run to take advantage of TLB bit flips to extract Sid’s data. How 
would this code potentially leak Sid’s data? 
 
  

Axel Feldmann
The TLB caches translations from VPNs to PPNs. Bits from one of Dr. Chips’ PPNs could flip to point to a PPN in Sid’s address space, giving Dr. Chips access to Sid’s data.

Axel Feldmann
char* page = malloc(PAGE_SIZE);
memset(page, 0, PAGE_SIZE);

while (true) {
   for (int i = 0; i < PAGE_SIZE; i++) {
       if (page[i] != 0) printf(“I see some data that might be private!”);
   }
}
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Question 3 (10 points) 
 
Now, Dr. Chips points his neutron beam at the virtually-indexed physically tagged 
(VIPT) L1 cache tag array. The cache is not flushed on context switches. Explain how 
flipping some bits in the cache could potentially lead to security vulnerabilities. For the 
purposes of this question, the cache tag array only stores physical tags and no additional 
metadata. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Question 4 (5 points) 
 
Which of these two attacks (neutron beam on cache or neutron beam on TLB) is more 
likely to leak Sid’s sensitive data? You do not need to calculate exact probabilities. 
Simply explain why one attack will leak data at a higher rate than the other.  

Axel Feldmann
Suppose that Sid has some data X in the cache with physical tag A. Some bits flip, and this tag now becomes A’. 

If A’ is a PPN that is mapped within Dr. Chip’s address space, then Dr. Chips can read X by loading the address in his address space that maps to PPN A’ with the same virtual page offset.

Axel Feldmann
The TLB. A very small number of bit-flips can grant relatively long-lived access to an entire page’s worth of data.

However, we accepted both answers given good assumptions and sufficient explanation.
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Part C: Accelerators (31 Points) 
 
In this part, you will answer questions about a simple accelerator designed to speed up 
the following naïve shading algorithm: 
 
const triangle_t triangles[T]; 
color_t img[W][H]; 
 
for (int x = 0; x < W; x++) { 
     for (int y = 0; y < H; y++) { 
          for (int t = 0; t < T; t++) { 
               img[x][y] += shade(triangles[t], x, y); 
          } 
     } 
} 
color_t is an opaque 4 byte structure representing the color of a pixel and triangle_t is an 
opaque 64 byte structure representing a triangle in the scene. 
 
Here is an overview of our accelerator’s architecture:  
 

 
 
To execute computation, the accelerator loads blocks of pixels and chunks of triangles 
from accelerator main memory. Once both the pixel block and the triangle chunk are 
fully present in the scratchpad, they are fed into the “compute pipeline” that computes the 
cumulative color contributions of the triangle chunk onto the pixel block. The compute 
pipeline can execute 2048 GT/s (1 GT/s = 230 calls to shade/second). 
The exact order in which it does this will be specified in future questions. Assume all 
operands start in accelerator main memory. 
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Question 1 (21 points) 
 
We are rendering T = 256 triangles onto a W = 4096 x H = 2048 image. Suppose B =  
64 and C = 32. 
 
You are presented with the following two computation schedules: 
Schedule A Schedule B 
for w in range(0, W, B): 
  for h in range(0, H, B): 
    pb = load(img[w:w+B, h:h+B]) 
    for t in range(0, T, C): 
      tc = load(triangles[t:t+C]) 
      pb += pipeline(pb, tc) 
    store(pb, img[w:w+B, h:h+B]) 

for t in range(0, T, C): 
  tc = load(triangles[t:t+C]) 
  for w in range(0, W, B): 
    for h in range(0, H, B): 
      pb = load(img[w:w+B, h:h+B]) 
      pb += pipeline(pb, tc) 
      store(pb, img[w:w+B, h:h+B]) 

Loads and stores move data between accelerator main memory and the scratchpad. 
Assume the scratchpad is large enough to hold one triangle chunk and one pixel block. 
 
Just for Q1, assume that the accelerator is bottlenecked on either memory bandwidth or 
compute throughput. 
 
(Q1 Part A: 4 points): compute the total data movement between accelerator main 
memory and the scratchpad for schedule A. How many seconds would this data 
movement take? 
 
 
 
 
 
 
 
 
 
(Q1 Part B: 4 points): compute the total data movement between accelerator main 
memory and the scratchpad for schedule B. How many seconds would this data 
movement take? 
 
 
 

Axel Feldmann
We load the entire image once and store the entire image once, so:

W * H * 4 bytes * 2 (load and then store) = 2^12 * 2^11 * 2^2 * 2^1 = 2^26

We load the entire triangle array (W / B) * (H / B) times. The triangle array is 256 * 64 bytes.
(W / B) * (H / B) = (2^12 / 2^6) * (2^11 / 2^6) = 2^11. Size of triangle array is 2^6 * 2^8 = 2^14.

Total data movement is (2^25 + 2^26 = 3 * 2^25) bytes. This takes (3 * 2^25) / (2^6 * 2^30) = 3 / 2^11 seconds

Axel Feldmann
We load the entire triangle array once. This is 2^14 bytes (from previous question). We load and store the entire image (T / C)  = 8 = 2^3 times.

From the previous question, we know loading and storing the image once is 2^26 bytes. Doing this 2^3 times will be 2^29 bytes.

Our total data movement is therefore 2^14 + 2^29 bytes. 

This will take roughly (2^29 / (2^6 * 2^30)) = 1 / 2^7 seconds (we can ignore the 2^14, it’s insignificant).
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(Q1 Part C: 4 points): if the accelerator was compute bound, how many seconds would 
it take for it to perform this computation? (schedule A and schedule B perform the same 
amount of computation) 
 
 
 
 
 
 
 
 
 
(Q1 Part D: 3 points): Is schedule A compute bound or memory bound? How many 
seconds would it take the accelerator to execute this computation using schedule A? 
 
 
 
 
 
 
 
 
 
(Q1 Part E: 3 points): Is schedule B compute bound or memory bound? How many 
seconds would it take the accelerator to execute this computation using schedule B? 
 
 
 
 
 
 
 
 
 
 
 
(Q1 Part F: 3 points): Suppose we pick schedule B. What is the utilization of our 
compute pipeline? Utilization = (GT/s achieved / maximum achievable GT/s) 
 
 
  

Axel Feldmann
We compute W * H * T triangles = 2^12 * 2^11 * 2^8 = 2^31.

Our available compute throughput is 2048 GT/s = 2^41 T/s. 

So, this will take 2^31 / 2^41 = 2^{-10} seconds.

Axel Feldmann
If this was memory bound, it’d take 3 * 2^{-11} seconds (from part A)
If this was compute bound, it’d take 2^{-10} seconds (from part C)

3 * 2^{-11} > 2^{-10} so this is memory bound and takes 3 * 2^{-11} seconds.

Axel Feldmann
If this was memory bound, it’d take 2^{-7} seconds (from part B)
If this was compute bound, it’d take 2^{-10} seconds (from part C)

2^{-7} > 2^{-10} so this is memory bound and takes 2^{-7} seconds.

Axel Feldmann
We execute 2^{31} triangles in 2^{-7} seconds. This means we do:

2^{31} / 2^{-7} = 2^38 triangles / second. Maximum achievable throughput is 2^41 triangles per second.

2^38 / 2^41 = 1/8
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The answer to Question 2 may depend on values that you computed in Question 1. To 
avoid double penalizing wrong answers to Question 1, please clearly mark which values 
in your computation come from Question 1. 
 
Question 2 (10 points) 
 
(Q2 Part A: 5 points): Suppose that we are executing schedule B from Q1. We still 
have W = 4096, H = 2048, T = 256, B = 64, C = 32. We allocate sufficient scratchpad 
space to store tc, but only have 16K of scratchpad space left (enough to store a single tile 
of pb). This means that each iteration of the inner loop is necessarily serialized. 
 
Each iteration must load, compute, then store back sequentially before beginning the next 
iteration. Roughly what fractions of both compute throughput and memory bandwidth are 
actually utilized? Please justify your answer. 
 
 
 
 
 
 
 
 
 
 
 
 
(Q2 Part B: 5 points):  To address this under-utilization, we can run several innermost-
loop iterations in parallel. However, doing so would require more scratchpad space. 
Roughly how much more scratchpad space would be required to fully utilize at least one 
of the two resources? Assume that we only load/store whole pixel blocks/triangle chunks 
(not fractional ones). 
 
 
 
 
 
 
 
 
 
 

Axel Feldmann
We know from Q1.B that the data transfer time is 2^{-7} seconds.

We know from Q1.C that the compute time is 2^{-10} seconds.

Our total time is 2^{-7} + 2^{-10}

This means that we use 2^{-7} / (2^{-7} + 2^{-10}) = 8/9 of memory bandwidth
and 2^{-10} / (2^{-7} + 2^{-10}) = 1/9 of compute throughput



Axel Feldmann
Getting from 8/9 to full memory bandwidth doesn’t require much more— we simply need to overlap one more tile to achieve full memory bandwidth utilization.

This requires B * B * 4 = 16384 more bytes of scratchpad space.
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Scratch Space 
 
 
 


