

Page 1 of 16

Computer System Architecture
6.5900 Quiz #3

December 11th, 2024

Name: ___________________________

This is a closed book, closed notes exam.

80 Minutes
 15 Pages (+1 Scratch)

Notes:
• Not all questions are of equal difficulty, so look over the entire exam and

budget your time carefully.
• Please carefully state any assumptions you make.
• Show your work to receive full credit.
• Please write your name on every page in the quiz.
• You must not discuss a quiz's contents with other students who have not

yet taken the quiz.
• Page 16 is a scratch page. Use it if you need more space to answer one of

the questions, or for rough work.

 Part A ________ 39 Points
 Part B ________ 30 Points
 Part C ________ 31 Points

TOTAL ________ 100 Points

Name ____________________________

Page 2 of 16

Part A: VLIW + Vector Processors (39 Points)

Consider the following piece of code:

// Assume: prefilled w/ uniform random numbers in [0, SIZE)
// Values of SIZE will be provided in later questions.
int32_t array[SIZE];

// Values of WIDTH will be provided in later questions
int32_t indices[WIDTH] = { 0, 1, … WIDTH – 1 };

void func(int* result) {
 for (int32_t round = 0; round < (1 << 20); round++) {
 for (int32_t i = 0; i < WIDTH; i++) {
 int32_t x = array[indices[i]];
 result[i] += (x & 1);
 indices[i] = x;
 }
 }
}
In RISC-V assembly, this compiles to:
 ...
.outer:
 mv a5, sp // indices is stack allocated
 mv a4, a0 // a4 = `result`
.inner:
 lw a1, 0(a5) // a1 = indices[i]
 slli a1, a1, 2 // a1 = a1 * 4
 add a1, a1, t1 // compute index into array
 lw a1, 0(a1) // a1 = array[indices[i]]
 lw a2, 0(a4) // a2 = results[i]
 andi a3, a1, 1 // a3 = array[indices[i] & 1
 sw a1, 0(a5) // indices[i] = x
 add a2, a2, a3 // a2 += array[indices[i]] & 1
 sw a2, 0(a4) // store out results[i]
 addi a4, a4, 4 // increment ptr into `results`
 addi a5, a5, 4 // increment ptr into `indices`
 bne a4, t0, .inner // inner loop
 addi a7, a7, 1 // increment `rounds`
 bne a7, a6, .outer // outer loop
 ...

Name ____________________________

Page 3 of 16

Question 1 (10 points)

We now define the following in-order, single-threaded VLIW processor. Every cycle, it
can issue a single instruction. A instruction contains several independent “operations”--
data (RAW, WAW, WAR) or control dependences between operations in the same
bundle is undefined behavior.

A bundle as 4 operation slots. Each slot can contain 1 ordinary RISC-V instruction.
Precisely, each instruction has the following slots:

- 1 load/store operation slot: can contain lw, sw
- 2 ALU operation slots: can contain slli, add, andi, addi
- 1 control operation slot: can contain bne

All ALU instructions take 1 cycle to execute. The processor has full bypassing, so later
instructions can use the results of earlier instructions on the next cycle. Memory
operations take 1 cycle on a cache hit and 100 cycles on a cache miss. The processor has
stalling logic to stall the entire pipeline on a cache miss. So, the results of memory
operations can be used in the next cycle.

Compile the assembly above into VLIW instructions for this architecture. Use the
table below. Do not modify the assembly from the scalar code! Note: not all rows
must be used.

Instruction
Number

Load/Store
Slot

ALU 1 Slot ALU 2 Slot Control Slot

1

2

3

4

5

6

7

8

9

10

11

12

13

Axel Feldmann
mv a5, sp

Axel Feldmann
mv a5, sp

Axel Feldmann
lw a1, 0(a5)

Axel Feldmann
slli a1, a1, 2

Axel Feldmann
lw a1, 0(a1)

Axel Feldmann
add a1, a1, t1

Axel Feldmann
lw a2, 0(a4)

Axel Feldmann
andi a3, a1, 1

Axel Feldmann
sw a1, 0(a5)

Axel Feldmann
add a2, a2, a3

Axel Feldmann
sw a2, 0(a4)

Axel Feldmann
addi a4, a4, 4

Axel Feldmann
addi a5, a5, 4

Axel Feldmann
bne a4, t0, .inner

Axel Feldmann
bne a7, a6, .outer

Axel Feldmann
addi a7, a7, 1

Name ____________________________

Page 4 of 16

Question 2 (5 points)

This VLIW processor has the following memory system:

- 32 KB 16-way set associative cache with 32 byte cache lines
- Cache hits take 1 cycle, cache misses take 100 cycles
- Assume that the results and indices arrays are both cache-line aligned and are

always cached, never evicted

Assuming no branch mispredictions (branches induce no stall cycles), how many loop
iterations per cycle would you expect your VLIW code to achieve in the following
scenarios? (your answer will be a fraction, it is less than 1!) You should assume that time
spent evaluating the outer loop is negligible.

- Scenario 1: SIZE = (1 << 7), WIDTH = 128

- Scenario 2: SIZE = (1 << 30), WIDTH = 128

Axel Feldmann
Everything is a cache hit. 9 instructions take 9 cycles, so 1/9 iterations per cycle

Axel Feldmann
Loading from array is nearly always a cache miss that takes 100 cycles, so 1/108 iterations per cycle

Name ____________________________

Page 5 of 16

Question 3 (8 points)

Suppose that we compile a version of this code with WIDTH = 64 and decide to unroll
the entire inner loop (unroll WIDTH-many times) and software-pipeline it optimally.
Assuming no cache misses, infinite registers, and perfect branch prediction. In steady
state, how many of the original inner loop iterations are completed every cycle?

You do not need to write out the instructions.
Be careful: loop unrolling happens in the source code-- the code will be recompiled to
take advantage of the infinite available registers! It also will remove the following 3
instructions that are no longer necessary:

 addi a4, a4, 4 // increment ptr into `results`
 addi a5, a5, 4 // increment ptr into `indices`
 bne a4, t0, .inner // inner loop

Axel Feldmann
6 ALU ops per iteration, 1 control op per iteration, 5 memory ops per iteration. So, given 2 ALU slots, 1 load/store slots, and 1 control slot, the load store slot is the bottleneck.

This means we’ll get 1/5 iterations per cycle.

Name ____________________________

Page 6 of 16

Question 4 (8 points)

Instead of VLIW, we’ll try to execute this code on a vector processor instead. We take a
pipelined in-order RISC-V processor and add the following ISA extensions:

Vector Registers: v0, v1, v2, v3, v4, v5, v6, v7 (all hold VLEN-many 32-bit values)

Note: vd, vrs1, vrs2 are vector registers. rd, rs1, rs2 are normal scalar registers.
Instruction Semantics
vlw vd, imm(rs1) vd[i] ← mem[imm + rs1 + 4 * i]
vsw vrs2, imm(rs1) mem[imm + rs1 + 4 * i] ← vrs2[i]
vgather vd, vrs1 vd[i] ← mem[vrs1[i]]
vssli vd, vrs1, imm vd[i] ← vrs1[i] << imm
vadd vd, vrs1, rs2 vd[i] ← vrs1[i] + rs2
vaddi vd, vrs1, imm vd[i] ← vrs1[i] + imm
vandi vd, vrs1, imm vd[i] ← vrs1[i] & imm

Assume that the architecture has VLEN many lanes, all compute operations take one
cycle, and we have full bypassing.

Suppose VLEN = 8 and VLEN divides WIDTH. We can now recompile our code to take
advantage of the vector ISA:
 ...
.outer:
 mv a5, sp // indices is stack allocated
 mv a4, a0 // a4 = `result`
.inner:
 vlw v1, 0(a5) //
 vslli v1, v1, 2 //
 vadd v1, v1, t1 //
 vgather v1, 0(v1) //
 vlw v2, 0(a4) //
 vandi v3, v1, 1 //
 vsw v1, 0(a5) //
 vadd v2, v2, v3 //
 vsw v2, 0(a4) //
 addi a4, a4, 32 //
 addi a5, a5, 32 //
 bne a4, t0, .inner //
 addi a7, a7, 1 //
 bne a7, a6, .outer //
 ...
Note: the memory subsystem only supports loading 1 cache line per cycle. So, if a
vgather instruction loads values that span across multiple cache lines, it must start those
loads on consecutive cycles. The memory system can support VLEN many in-flight
memory operations (one memory operation is defined as a load or a store to a unique
cache line). Assume the same memory hierarchy as the previous questions.

Name ____________________________

Page 7 of 16

Question 4 continued

Assuming no branch mispredictions, what IPC would you expect this new vectorized
code to achieve in the following scenarios? Assume time spent executing outer-loop
related instructions is negligible.

- Scenario 1: SIZE = (1 << 7), WIDTH = 128

- Scenario 2: SIZE = (1 << 30), WIDTH = 128

Axel Feldmann
Every instruction except the vgather takes 1 cycle. The vgather is just cache hits and takes 8 cycles. So, 12 instructions / (11 + 8 cycles) = 12 / 19

Axel Feldmann
Same as previous part except vgather takes 107 cycles because all the accesses are cache misses on different lines, so 12 / 118

Name ____________________________

Page 8 of 16

Question 5 (8 points)

Now, we will examine the same code running on a simple GPU. Suppose we have SIZE
= (1 << 30). We spawn WIDTH-many threads (Nvidia terminology) each executing the
computation for a single i (inner loop iteration):

 ...
// assume a6 contains a thread’s index
// sp contains the base address of `indices`
// a0 contains the base address of `results`
 slli a7, a6, 2
 add a5, sp, a6
 add a4, a0, a6
.outer:
 lw a1, 0(a5) // a1 = indices[i]
 slli a1, a1, 2 // a1 = a1 * 4
 add a1, a1, t1 // compute index into array
 lw a1, 0(a1) // a1 = array[indices[i]]
 lw a2, 0(a4) // a2 = results[i]
 andi a3, a1, 1 // a3 = array[indices[i] & 1
 sw a1, 0(a5) // indices[i] = x
 add a2, a2, a3 // a2 += array[indices[i]] & 1
 sw a2, 0(a4) // store out results[i]
 addi a7, a7, 1 // increment `rounds`
 bne a7, t2, .outer // t2 holds the outer loop bound
 ...

However, since this is a GPU and not a multicore, the threads are grouped together in
warps (Nvidia terminology). Each warp consists of 8 consecutive threads. So, for
example threads with index 0, 1, … 7 all execute together as part of warp 0. Each warp
executes instructions in lockstep using all 8 available lanes.

The memory system can still only load or store one cache line per cycle! If the threads in
a warp issue loads (or stores) to different cache lines, those loads (or stores) will be
serialized and issue on consecutive cycles. During those cycles, the GPU is not ready to
issue a new instruction. Example: if a warp lw needs to load 8 cache lines, that instruction
will issue over 8 cycles. These 8 cycles do not count as system stalls—the GPU is doing
useful work! There is no limit on the number of inflight memory operations.

The GPU keeps issuing instructions from the same warp every cycle until that warp
stalls. Upon detecting a stall, it switches to the next non-stalled warp in round-robin
order.

Name ____________________________

Page 9 of 16

Question 5 continued

What is the minimum value of WIDTH for which this GPU will not experience any stalls
in steady state?

Axel Feldmann
We have 10 “uninteresting” instructions in the loop (every instruction except for the gather load to `array`). These each take 1 cycle of activity. The gather load takes 8 cycles of activity, as it needs to load 8 separate cache lines.

Assuming a single warp, this means that each warp does 18 cycles of activity then stalls for 100. We need enough warps to fill up the 100 cycle stall. This means we need ceil(100 / 18) = 6 more warps for a total of 7 warps = 56 threads = WIDTH = 56

Name ____________________________

Page 10 of 16

Part B: Security + Reliability (30 Points)

Sidney (Sid for short) Channel is currently executing computations on sensitive private
data on a shared uniprocessor system.

Little does he know, but an evil mad scientist, Dr. Fission Chips, is trying to steal his
data. Dr. Chips has the following two tools at his disposal:

- He too can execute code on this system
- He can point a neutron beam very precisely at some of the chip’s hardware

structures. This neutron beam, when activated, will randomly flip bits in the target
hardware structure.

You should assume that the operating system is time-sharing the processor between Sid
and Dr. Chips’ code. The operating system is using all standard memory protection
mechanisms and has no bugs.

Question 1 (5 points)

Suppose Dr. Chips points his neutron beam at the processor’s TLB. Explain how flipping
some TLB bits could potentially lead to security vulnerabilities.

Question 2 (10 points)

Assume that Dr. Chips is pointing his neutron beam at the TLB. Describe in detail what
code Dr. Chips could run to take advantage of TLB bit flips to extract Sid’s data. How
would this code potentially leak Sid’s data?

Axel Feldmann
The TLB caches translations from VPNs to PPNs. Bits from one of Dr. Chips’ PPNs could flip to point to a PPN in Sid’s address space, giving Dr. Chips access to Sid’s data.

Axel Feldmann
char* page = malloc(PAGE_SIZE);
memset(page, 0, PAGE_SIZE);

while (true) {
 for (int i = 0; i < PAGE_SIZE; i++) {
 if (page[i] != 0) printf(“I see some data that might be private!”);
 }
}

Name ____________________________

Page 11 of 16

Question 3 (10 points)

Now, Dr. Chips points his neutron beam at the virtually-indexed physically tagged
(VIPT) L1 cache tag array. The cache is not flushed on context switches. Explain how
flipping some bits in the cache could potentially lead to security vulnerabilities. For the
purposes of this question, the cache tag array only stores physical tags and no additional
metadata.

Question 4 (5 points)

Which of these two attacks (neutron beam on cache or neutron beam on TLB) is more
likely to leak Sid’s sensitive data? You do not need to calculate exact probabilities.
Simply explain why one attack will leak data at a higher rate than the other.

Axel Feldmann
Suppose that Sid has some data X in the cache with physical tag A. Some bits flip, and this tag now becomes A’.

If A’ is a PPN that is mapped within Dr. Chip’s address space, then Dr. Chips can read X by loading the address in his address space that maps to PPN A’ with the same virtual page offset.

Axel Feldmann
The TLB. A very small number of bit-flips can grant relatively long-lived access to an entire page’s worth of data.

However, we accepted both answers given good assumptions and sufficient explanation.

Name ____________________________

Page 12 of 16

Part C: Accelerators (31 Points)

In this part, you will answer questions about a simple accelerator designed to speed up
the following naïve shading algorithm:

const triangle_t triangles[T];
color_t img[W][H];

for (int x = 0; x < W; x++) {
 for (int y = 0; y < H; y++) {
 for (int t = 0; t < T; t++) {
 img[x][y] += shade(triangles[t], x, y);
 }
 }
}
color_t is an opaque 4 byte structure representing the color of a pixel and triangle_t is an
opaque 64 byte structure representing a triangle in the scene.

Here is an overview of our accelerator’s architecture:

To execute computation, the accelerator loads blocks of pixels and chunks of triangles
from accelerator main memory. Once both the pixel block and the triangle chunk are
fully present in the scratchpad, they are fed into the “compute pipeline” that computes the
cumulative color contributions of the triangle chunk onto the pixel block. The compute
pipeline can execute 2048 GT/s (1 GT/s = 230 calls to shade/second).
The exact order in which it does this will be specified in future questions. Assume all
operands start in accelerator main memory.

Name ____________________________

Page 13 of 16

Question 1 (21 points)

We are rendering T = 256 triangles onto a W = 4096 x H = 2048 image. Suppose B =
64 and C = 32.

You are presented with the following two computation schedules:
Schedule A Schedule B
for w in range(0, W, B):
 for h in range(0, H, B):
 pb = load(img[w:w+B, h:h+B])
 for t in range(0, T, C):
 tc = load(triangles[t:t+C])
 pb += pipeline(pb, tc)
 store(pb, img[w:w+B, h:h+B])

for t in range(0, T, C):
 tc = load(triangles[t:t+C])
 for w in range(0, W, B):
 for h in range(0, H, B):
 pb = load(img[w:w+B, h:h+B])
 pb += pipeline(pb, tc)
 store(pb, img[w:w+B, h:h+B])

Loads and stores move data between accelerator main memory and the scratchpad.
Assume the scratchpad is large enough to hold one triangle chunk and one pixel block.

Just for Q1, assume that the accelerator is bottlenecked on either memory bandwidth or
compute throughput.

(Q1 Part A: 4 points): compute the total data movement between accelerator main
memory and the scratchpad for schedule A. How many seconds would this data
movement take?

(Q1 Part B: 4 points): compute the total data movement between accelerator main
memory and the scratchpad for schedule B. How many seconds would this data
movement take?

Axel Feldmann
We load the entire image once and store the entire image once, so:

W * H * 4 bytes * 2 (load and then store) = 2^12 * 2^11 * 2^2 * 2^1 = 2^26

We load the entire triangle array (W / B) * (H / B) times. The triangle array is 256 * 64 bytes.
(W / B) * (H / B) = (2^12 / 2^6) * (2^11 / 2^6) = 2^11. Size of triangle array is 2^6 * 2^8 = 2^14.

Total data movement is (2^25 + 2^26 = 3 * 2^25) bytes. This takes (3 * 2^25) / (2^6 * 2^30) = 3 / 2^11 seconds

Axel Feldmann
We load the entire triangle array once. This is 2^14 bytes (from previous question). We load and store the entire image (T / C) = 8 = 2^3 times.

From the previous question, we know loading and storing the image once is 2^26 bytes. Doing this 2^3 times will be 2^29 bytes.

Our total data movement is therefore 2^14 + 2^29 bytes.

This will take roughly (2^29 / (2^6 * 2^30)) = 1 / 2^7 seconds (we can ignore the 2^14, it’s insignificant).

Name ____________________________

Page 14 of 16

(Q1 Part C: 4 points): if the accelerator was compute bound, how many seconds would
it take for it to perform this computation? (schedule A and schedule B perform the same
amount of computation)

(Q1 Part D: 3 points): Is schedule A compute bound or memory bound? How many
seconds would it take the accelerator to execute this computation using schedule A?

(Q1 Part E: 3 points): Is schedule B compute bound or memory bound? How many
seconds would it take the accelerator to execute this computation using schedule B?

(Q1 Part F: 3 points): Suppose we pick schedule B. What is the utilization of our
compute pipeline? Utilization = (GT/s achieved / maximum achievable GT/s)

Axel Feldmann
We compute W * H * T triangles = 2^12 * 2^11 * 2^8 = 2^31.

Our available compute throughput is 2048 GT/s = 2^41 T/s.

So, this will take 2^31 / 2^41 = 2^{-10} seconds.

Axel Feldmann
If this was memory bound, it’d take 3 * 2^{-11} seconds (from part A)
If this was compute bound, it’d take 2^{-10} seconds (from part C)

3 * 2^{-11} > 2^{-10} so this is memory bound and takes 3 * 2^{-11} seconds.

Axel Feldmann
If this was memory bound, it’d take 2^{-7} seconds (from part B)
If this was compute bound, it’d take 2^{-10} seconds (from part C)

2^{-7} > 2^{-10} so this is memory bound and takes 2^{-7} seconds.

Axel Feldmann
We execute 2^{31} triangles in 2^{-7} seconds. This means we do:

2^{31} / 2^{-7} = 2^38 triangles / second. Maximum achievable throughput is 2^41 triangles per second.

2^38 / 2^41 = 1/8

Name ____________________________

Page 15 of 16

The answer to Question 2 may depend on values that you computed in Question 1. To
avoid double penalizing wrong answers to Question 1, please clearly mark which values
in your computation come from Question 1.

Question 2 (10 points)

(Q2 Part A: 5 points): Suppose that we are executing schedule B from Q1. We still
have W = 4096, H = 2048, T = 256, B = 64, C = 32. We allocate sufficient scratchpad
space to store tc, but only have 16K of scratchpad space left (enough to store a single tile
of pb). This means that each iteration of the inner loop is necessarily serialized.

Each iteration must load, compute, then store back sequentially before beginning the next
iteration. Roughly what fractions of both compute throughput and memory bandwidth are
actually utilized? Please justify your answer.

(Q2 Part B: 5 points): To address this under-utilization, we can run several innermost-
loop iterations in parallel. However, doing so would require more scratchpad space.
Roughly how much more scratchpad space would be required to fully utilize at least one
of the two resources? Assume that we only load/store whole pixel blocks/triangle chunks
(not fractional ones).

Axel Feldmann
We know from Q1.B that the data transfer time is 2^{-7} seconds.

We know from Q1.C that the compute time is 2^{-10} seconds.

Our total time is 2^{-7} + 2^{-10}

This means that we use 2^{-7} / (2^{-7} + 2^{-10}) = 8/9 of memory bandwidth
and 2^{-10} / (2^{-7} + 2^{-10}) = 1/9 of compute throughput

Axel Feldmann
Getting from 8/9 to full memory bandwidth doesn’t require much more— we simply need to overlap one more tile to achieve full memory bandwidth utilization.

This requires B * B * 4 = 16384 more bytes of scratchpad space.

Name ____________________________

Page 16 of 16

Scratch Space

