
 6.823 Fall 2023

1

Quiz 1 Handout

Figure 1 shows the pipeline of an out-of-order machine. Registers denote stage boundaries.
Blocks in parallel to each other represent parallel operations occurring within the same stage.

Note that the processor supports only RISC-V integer arithmetic, floating-point arithmetic, and
control-flow instructions. This means we have no loads or stores, and no instructions that operate
on both integer and floating-point registers.

The processor consists of the following stages:
1. Fetch: The instruction at PC is fetched from the instruction cache/memory.

• The PC is also fed into a branch target buffer (BTB), which stores mappings from
source PC to target PC. On a hit in the BTB, the next PC to be fetched is updated
as the target PC indicated in the BTB.

2. Decode: The fetched instruction is decoded.
• If the decoded instruction is a conditional branch, its direction is predicted by a

branch predictor. The branch predictor is described in the next page.
Note: Jumps (JAL/JALR) are always taken, so no prediction is needed.

• For branches and direct jumps (BEQ/BNE/BLT/BGE/JAL), the branch target is
calculated by a branch target calculator.

• Decode redirects the next PC according to the prediction and target, if required.
• The integer/floating-point reservation stations and the commit queue are checked

for available entries.
• The free list is checked for free integer/floating-point registers.

3. Rename & Allocate: The instruction is inserted into the corresponding reservation station
and the commit queue only if all the checks in the previous cycle (Decode) pass.
This design uses Physical Register Files for integer and floating-point registers. The
reservation stations and commit queue store only register ids, and do not store data.

4. Issue & Register Read: On each cycle, the oldest ready instruction in each reservation
station is issued, reading its operands from the physical register file. The instruction's
used bit is cleared in the reservation station, allowing a new instruction to be allocated.

5. Execute: ALUs and floating-point units may take one or more cycles to execute the
instruction.

6. Register Write: The output from the functional unit is written to the physical register file
and the register's present bit is set. Dependent instructions in the reservation stations have
the corresponding present bit set (p1 for the first operand, p2 for the second operand).

7. Commit: The oldest instruction in the commit queue that has finished execution commits.
The processor can only commit one instruction per cycle.

Note that not all sources, and not all control logic for next PC are shown in Figure 1 for
simplicity.

 6.823 Fall 2023

2

 Figure 1: Out-of-order pipeline.

gshare Branch Predictor:

The Branch Predictor used in this processor is called gshare, which uses exclusive OR (XOR) to
combine the global history and the PC. The gshare branch predictor takes the lower two bits
from the global history and the PC (excluding the last 2 for the PC), and calculates an index into
an array of the two-bit counters by exclusive OR-ing them, as shown in Figure 2.

Figure 2: gshare branch predictor

In the global history, 1 represents Taken and 0 represents Not-Taken. The 2-bit counters in this
design follow the state-diagram shown in Figure 3. In state 1X, we will guess Taken; in state
0X, we will guess Not-Taken.

Figure 3: State Diagram of 2-bit counters

ALU

ALU

FADD

Write
back

FMUL

Int. Reservation
Station

FP Reservation
Station

FDIV

Fetch Decode

BTB

+
0x4

PC
Branch
Pred.

Rename
& Alloc.

8-bit global history

PC

XOR

2-bit prediction counters

00
2-bits

2-bits

 6.823 Fall 2023

3

Processor State

Figure 4: Processor State

A snapshot of the processor state is shown in Figure 4. It consists of the following components:

• Next PC to fetch: This is the PC register in Figure 1.
• Fetched Instruction: Pipeline Register holding a raw binary instruction.
• Decoded Instruction: Pipeline Register holding a decoded instruction.
• Branch Target Buffer (BTB): Holds map of source PC to target PC. If a fetched

instruction PC hits in the BTB, the next PC to fetch is the corresponding target PC.
• Prediction Counter: 2-bit counters for branch prediction.
• Branch Global History: 8-bit global branch history.
• Integer/Floating-Point Physical Registers: The processor holds all integer/floating-

point data values in respective physical register files.
• Integer/Floating-Point Free List: Tracks which integer/floating-point physical registers

are available for use.
• Integer/Floating-Point Rename Table: A map from integer/floating-point architectural

to physical register names.
• Integer/Floating-Point Reservation Station: Contains the bookkeeping information for

managing out-of-order issue, such as the instruction type and the source operand physical
registers. The used bit is cleared when the instruction is issued, freeing the entry for a
new instruction.

Branch Predictor
CountersIndex

0100
1101
0010
1111

Global History

10001011

Fetched Inst.

I15: 0xd8

Decoded Inst.

I14: 0xd4

Branch Target Buffer
TargetPCEntry

0xc00x1c0
0x000xfc1

2
3

Next PC to Fetch

I16:

Integer
Rename Table

ValueReg

P13x1
x2

P2x3
x4

P11x5
P3x6

x7

Integer
Physical Registers

PresentValueReg

11002P1
P2

11004P3
12004P4
12844P5

P6
113P7

Integer Reservation Station
PR2p2PR1p1OpUsePCInum

........................

.....................I5

P31addi00x10I6

P6P41mul10x14I7

P11P31bne10x1cI9

P31P71sub00xccI13

Floating Point Reservation Station
PR2p2PR1p1OpUsePCInum

........................

FP121FP11fadd.d00x18I8

FP31FP10fdiv.d10xc0I10

FP51FP4fsub.d10xc4I11

FP51FP71fdiv.d00xc8I12

Floating Point Physical
Registers

PresentValueReg

12.3FP1
FP2

1-15.1FP3
FP4

127.5FP5
FP6

112.1FP7

Floating Point
Rename Table

ValueReg

FP4f0
FP5f1

f2
FP2f3

f4
FP6f5

f6

P9P8Int. Free List

FP11FP Free List

Next to
commit

Next
Available

Commit Queue
PRdLPRdRdExInum

...............

............I5
P1P7x31I6
P2P1x3I7
FP5FP9f11I8

I9
FP4FP8f0I10
FP6FP3f5I11
FP2FP7f31I12
P3P4x61I13

 6.823 Fall 2023

4

• Commit queue: Contains the bookkeeping information for managing in-order commit of
all instructions, such as the destination physical register and whether the instruction has
finished execution.

We provide a list of actions below. Study them carefully and relate them to the concepts covered
in the lectures. You will be required to associate events in the processor to one of these actions,
and, if required, one of the choices for the blank.

Label List:

A. Satisfy a dependence on ______ by stalling
B. Satisfy a dependence on ______ by bypassing a speculative value
C. Satisfy a dependence on ______ by bypassing a committed value
D. Satisfy a dependence on ______ by speculation using a static prediction
E. Satisfy a dependence on ______ by speculation using a dynamic prediction
F. Write a speculative value using lazy data management
G. Write a speculative value using greedy data management
H. Speculatively update a prediction on ______ using lazy value management
I. Speculatively update a prediction on ______ using greedy value management
J. Non-speculatively update a prediction on ______
K. Check the correctness of a speculation on ______ and find a correct speculation
L. Check the correctness of a speculation on ______ and find an incorrect speculation
M. Abort speculative action and cleanup lazily managed values
N. Abort speculative action and cleanup greedily managed values
O. Commit correctly speculated instruction, where there was no value management
P. Commit correctly speculated instruction, and mark lazily updated values as non-speculative
Q. Commit correctly speculated instruction, and free log associated with greedily updated values
R. Illegal or broken action

Blank choices:

i. Register value
ii. PC value
iii. Branch direction
iv. Memory address
v. Memory value
vi. Latency of operation
vii. Functional unit

