
6.823

Handout #8

 1

 6.823 Computer System Architecture
 Scoreboarding for In-Order Issues

http://csg.csail.mit.edu/6.823/

Detection and resolution of hazards in a complex pipeline is a challenging problem for computer

architects. Even in the relatively simple in-order pipeline shown in Figure H8-A, the problem is

not trivial. Because every functional unit takes a different number of cycles to complete an

execution, instructions write back to the register file out-of-order, and Write-After-Read (WAR)

or Write-After-Write (WAW) hazards may result. We should also handle Read-After-Write

(RAW) hazards appropriately as in the simple 5-stage MIPS pipeline. Equalizing all pipeline

depths and bypassing could solve the problem, but they often impose a performance penalty,

increase hardware cost, or both.

IF ID WB

ALU Mem

Fdiv

Issue

GPR’s
FPR’s

Fadd1,2,3

Fmul1,2

Figure H8-A: In-order MIPS Pipeline with Floating-Point Units

Scoreboarding is a hardware data structure to detect such hazards dynamically (originally

introduced in CDC 6600 in 1964). In this handout, we present a simplified form of it to illustrate

its operations in the MIPS pipeline shown above. A scoreboard data structure is given in Figure

H8-B.

Name Busy Op Dest Src1 Src2
Int
Mem
Add1
Add2
Add3
Mult1
Mult2
Div

Figure H8-B: Scoreboard Example

6.823

Handout #8

 2

Here we define two bit vectors extracted from this data structure.

Busy [FU#] A bit vector to indicate each functional unit’s availability.

(FU := Int | Mem | Add1 | Add2 | Add3 | Mult1 | Mult2 | Div)

WP [Reg#]

(Write Pending)

A bit vector to record the registers for which writes are pending. These

bits are set to true by the Issue stage, and set to false by the WB stage.

Before getting issued to a functional unit, an instruction in the Issue stage looks up the

scoreboard to make sure that the instruction is safe to issue. If any hazard is detected for the

instruction, dispatching is delayed until the condition is resolved (and the next instructions are

also blocked). The issue logic checks the instruction (opcode dest src1 src2) against the

scoreboard (Busy and WP) to detect each type of hazards as follows.

 Structural Hazard: This hazard can be detected by checking the Busy bit in the

functional unit (FUx) that the instruction is to be issued to. If Busy[FUx] is true, the

instruction dispatch is delayed until it is cleared.

 RAW Hazard: A RAW hazard exists if any entry in the Dest column in Figure H8-B

matches either of the source registers of the current instruction (i.e., WP[src1] or

WP[src] is true.).

 WAR Hazard: This hazard cannot arise here, because the pipeline issues instructions in

program order and operands are read on issue.

 WAW Hazard: There may be a WAW hazard if any of the Dest column in Figure H8-B

matches the destination register of the current instruction (i.e., WP[dest] is true).

