
6.823

Handout #9

 1

 6.823 Computer System Architecture
 Out-of-Order Execution with ROB

http://csg.csail.mit.edu/6.823/

In this handout, we introduce a simple out-of-order processor using a reorder buffer. In this

processor, instructions enter the reorder buffer (ROB) in-order, execute out-of-order, and commit

in-order. A summary of the operation is given below. Some entries in the reorder buffer,

register file, and rename table have been filled in as an example snapshot.

Figure H9-A

Fetch: Instruction is fetched from an instruction cache and queued in an instruction fetch buffer.

Decode: An instruction is decoded from the instruction fetch buffer, and rename table and

register file are read simultaneously. If the rename table has the valid bit set for an operand (i.e.

the bit is 1), then the ROB has to be checked for that operand. Otherwise the register file value

can be used. The instruction is assigned a slot in the ROB (the ROB index is this instruction’s

tag). If the instruction writes a register, its tag is written to the destination register entry in the

rename table.

Issue: The instruction is written to the ROB, with either a tag or a register value in each of its

source operand fields. A tag will be used for each source register operand that has not yet been

produced, and identifies the instruction in the ROB that will produce the needed result.

Register
File

Reorder
buffer

Load
Unit

FU FU FU
Store
Unit

< t, result >

Ins# use exec op p1 src1 p2 src2 pd dest data

Commit

Rename
Table

R1 ti
tj

0
R2

tag
valid bit

t1

t2

.

.
tn

0 X X add X 1 X 2 X R4 4

8 X ld X 256 R3

R1 1

R2 2

R3 3

:

Next to
commit

Next
available

: :

R3
R4

t2

t1

0

1

1

Register
File

Reorder
buffer

Load
Unit

FU FU FU
Store
Unit

< t, result >

Ins# use exec op p1 src1 p2 src2 pd dest dataIns# use exec op p1 src1 p2 src2 pd dest data

Commit

Rename
Table

R1 ti
tj

0
R2

tag
valid bit

t1

t2

.

.
tn

0 X X add X 1 X 2 X R4 4

8 X ld X 256 R3

R1 1

R2 2

R3 3

:

Next to
commit

Next
available

: :

R3
R4

t2

t1

0

1

1

6.823

Handout #9

 2

Execute: An instruction can begin executing when all of its operands are present.

Write-Back: When an instruction completes execution, the result, if any, will be written back to

the data field in the reorder buffer and the pd bit will be set. Additionally, any dependent

instructions in the reorder buffer will receive the value.

Commit: The instruction result, if any, will be written to the register file or memory in program

order. If the instruction writes a register and the tag in the rename table for this register matches

the tag of the result, the rename table’s valid bit will be cleared. Finally, the instruction’s entry

in the reorder buffer will be deallocated.

