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Problem M2.1: Execute Data Instructions (Spring 2014 Quiz 1, Part A) 
 

 
One easy way to create an infinite loop is to load the EXD instruction from memory: 
 
LD exd 
exd: EXD 
 

 
 
Data Mem                                  Instr Mem  
 
 
Addr Data 
A: 120 
 107 
 122 
  130 
 151 
 112 
 132 
 109 
 140 
 117 
 
s: 0 
i: 10 
 
107: 40 
109: 10 
112: 24 
117: 50  
120: 5 
122: 10 
130: 20 
132: 29 
140: 22 
151: 12 
 
one: 1 
 
ldz: LD 0 (0000 1000 0000 0000) 
lda: LD A (0000 1 + A) 
 
Addr  Data 
Loop: LD i 
 SUB one 
 BLT Done 
 STORE i 
 
 
 

 
 
 
 LD lda 
 ADD i 
 EXD 
 ADD ldz 
 EXD 
 ADD s 
 STORE s 
 
 
 
 
 
 
 
 
 
 CLEAR 
 BGE Loop 
Done: HLT

Problem M2.1.A  

Problem M2.1.B  
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We should stall our instruction fetch since we are not consuming instructions from the instruction memory. 
 
stall’  =  stall | Opcode(IRd) == EXD 
 
 
 
EXDmux =  Opcode(IRd) == EXD 
  

Problem M2.1.C  
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Problem M2.2: CISC, RISC, and Stack: Comparing ISAs 
 

Problem M2.2.A CISC 
 
How many bytes is the program?  19 
 
How many bytes of instructions need to be fetched if b = 10?  
 
(2+2) + 10*(13) + (6+2+2) = 144 
 
Assuming 32-bit data values, how many bytes of data memory need to be fetched? Stored? 
 
Fetched: the compare instruction accesses memory, and brings in a 4 byte word b+1 times: 4 * 11 = 44 
Stored: 0 
 

Problem M2.2.B RISC 
 
Many translations will be appropriate, here’s one.  We ignore MIPS32’s branch-delay slot in this solution 
since it hadn’t been discussed in lecture.  Remember that you need to construct a 32-bit address from 16-bit 
immediate values. 
 

x86 instruction label MIPS32 instruction sequence 
xor    %edx,%edx 
      

 xor r4, r4, r4 
 

xor    %ecx,%ecx 
          

 xor r3, r3, r3 
 

cmp    0x8047580,%ecx loop 
 

lui r6, 0x0804 
lw r1, 0x7580 (r6) 
slt r5, r3, r1 
 

jl     L1  
 

 bnez r5, L1 
 

jmp    done  j done 
 

add    %edx,%eax L1 add r4, r4, r2 
 

inc    %ecx 
 

 addi r3, r3, #1 
 

jmp    loop  j loop 
 

... done: ... 
 

How many bytes is the MIPS32 program using your direct translation? 
 
10*4 = 40 
 
How many bytes of MIPS32 instructions need to be fetched for b = 10 using your direct translation.   
 
There are 2 instructions in the prelude and 7 that are part of the loop (we don’t need to fetch the ‘j done’ until 
the 11th iteration). There are 5 instructions in the 11th iteration. All instructions are 4 bytes.  4(2+10*7+5) = 
308. 
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Note:  You can also place the label ‘loop’ in two other locations assuming r6 and r1 hold the same values 
for the remaining of the program after being loaded. One location is in front of the lw instruction, and we 
reduce the number of fetched byte to 268. The other is in front of the slt instruction, and we further decrease 
the number of fetched bytes to 228. 
 
How many bytes of data memory need to be fetched? Stored?  
 
Fetched: 11 * 4 = 44 (or 4 if you place the label ‘loop’ in front of the slt instruction) 
Stored: 0 
 
 

Problem M2.2.C Optimization 
 
There are two ideas that we have for optimization. 
 
1) We count down to zero instead of up for the number of iterations. By doing this, we can eliminate the slt 
instruction prior to the branch instruction. 
 
2) Hold b value in a register if you haven’t done it already. 
 
   xor r4, r4, r4 
   lui r6, 0x0804   
   lw r1, 0x9580(r6)  
   jmp dec    

loop:  add r4, r4, r2   
dec:  addiu r1, r1, #-1 

   bgez r1, loop 
done:       

 
This modification brings the dynamic code size down to 144 bytes, the static code size down to 28 and 
memory traffic down to 4 bytes. 
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Problem M2.3: Addressing Modes on MIPS ISA  
 
 

Problem M2.3.A Displacement addressing mode 
 
The answer is yes. 
 
LW R1, 16(R2)      è  ADDI R3, R2, #16 

LW R1, 0(R3) 
 
     (R3 is a temporary register.) 
 
 
 
 
 
 

Problem M2.3.B Register indirect addressing 
 
The answer is yes once again. 
 
LW R1, 16(R2)      è  

 
lw_template:   LW   R1, 0      ; it is placed in data 
region 

 ... 
LW_start: LW   R3, lw_template 
   ADDI R4, R2, #16 

   ADD  R3, R3, R4  ; R3 <- “LW R1, addr” 
   SW R3, _L1   ; write the LW instruction 
       _L1: NOP     ; to be replaced by “LW ..” 

 
(R3 and R4 are temporary registers.) 
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Problem M2.3.C Subroutine 
 
Yes, you can rewrite the code as follows. 
 
Subroutine: lw   R6, ret_inst ; r6 = “j 0” 

add  R6, R6, R31 ; R6 = “j return_addr” 
sw   R6, return   ; replacing nop with “j return_addr” 
 
xor  R4, R4, R4 ; result = 0 
xor  R3, R3, R3 ; i = 0 

loop:  slt  R5, R3, R1  
bnez R5, L1  ; if (i < b) goto L1 

return: nop   ; will be replaced by “j return_addr” 
L1:  add  R4, R4, R2 ; result += a 

addi R3, R3, #1 ; i++ 
j    loop 

ret_inst: j    0   ; jump instruction template 
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Problem M2.4: Write Effective Address Extensions (Spring 2014 Quiz 1, 
Part B) 
 
You’ve noticed that many programs execute code similar to the following during loops: 
 
LD  R1, 4(R2) 
ADD R2, R2, 4 
 
Or: 
 
ST  R1, 4(R2) 
ADD R2, R2, 4 
 
You want to optimize your architecture for this common case. You are going to do so by 
adding “write effective address” variants of the load and store instructions, LDWA and 
STWA. The semantics of these instructions are that they will perform the normal memory 
operation (LD or ST) and then write the effective address in the register that indexed into 
memory (not the register whose contents are read/written to memory). Specifically these 
instructions do the following: 
 
LDWA rs, rt, Imm: 
 rs ß Memory[(rt) + Imm] 
 rt ß (rt) + Imm 
 
STWA rs, rt, Imm: 
 Memory[(rt) + Imm] ß (rs) 
 rt ß (rt) + Imm 
 
These extensions allow us to rewrite the previous examples as: 
 
LDWA R1, R2, 4 
 
And: 
 
STWA R1, R2, 4 
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You start with implementing STWA. For the following sequence of instructions and the standard five-stage pipeline (shown above), 
indicate how each instruction will flow through the pipeline on the following page. Assume full bypassing and stall logic are 
implemented for your architecture. Use arrows to indicate forwarding and dashes for stalls, as illustrated. 
  

Problem M2.4.A  
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Instruction 0 1 2 3 4 5 6 7 8 9 10 11 12 

LD R1, 0(R2) F D E M W         

ADD R3, R1, 10  F D - E M W       

LD R4, 0(R3)   F - D E M W      

STWA, R4, R1, 4     F D - E M W    

STWA R4, R1, 4      F - D E M W   

ADD R2, R1, R3        F D E M W  

 
Instructions cannot enter a pipeline stage that other instructions occupy. If an instruction is stalled in fetch, then no subsequent 
instruction can enter fetch until that instruction has moved to decode. 
 
This solution assumes all forwarding is done during decode, as in lecture. Bypassing from memory to execute can avoid the second 
stall because R1 is available at that point. This solution is also acceptable if indicated (next page). 
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Instruction 0 1 2 3 4 5 6 7 8 9 10 11 12 

LD R1, 0(R2) F D E M W         

ADD R3, R1, 10  F D - E M W       

LD R4, 0(R3)   F - D E M W      

STWA, R4, R1, 4     F D E M W     

STWA R4, R1, 4      F D E M W    

ADD R2, R1, R3       F D E M W   
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You next want to implement LDWA, and quickly realize that LDWA runs into a structural hazard on the register file. You decide to fix 
this by adding an extra writeback stage (W2) to your pipelined design as shown above. In one or two sentences, explain what the 
hazard is and why the additional stage fixes it (assume correct stall logic). 
 
The register file has a single write port, but LDWA writes two registers. Buffering the values to be written in an additional pipeline 
phase gives us two chances to write the register file per LDWA, but may force the pipeline to stall in writeback if there are multiple 
LDWAs. 
 
 
 

Problem M2.4.B  
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Assume that the six-stage design above has full bypassing and correct stall logic. Fill in the pipeline for the instructions given below, 
using arrows and dashes as before. 
 
Instruction 0 1 2 3 4 5 6 7 8 9 10 11 12 

LD R1, 0(R2) F D E M W1 W2        

ADD R3, R1, 10  F D - E M W1 W2      

LDWA R5, R3, 0   F - D E M W1 W2     

ADD R1, R3, R4     F D E M W1 W2    

LDWA R5, R3, 0      F D E M - W1 W2  

ADD R1, R5, R0       F D - E M W1 W2 

Register being 
written to RF 

- - - - R1 
LD 

- R3 
ADD 

R5 
LDWA 

R3 
LDWA 

R1 
ADD 

R5 
LDWA 

R3 
LDWA 

R1 
ADD 

Structural hazard on register file causes stalls in writeback (even with extra stage) as LDWAs write their registers.  

Problem M2.4.C  
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Adding a second writeback stage is only one way to fix this structural hazard. An alternative design is to add a second write port to the 
register file. Quickly sketch the datapath for this design in the diagram above. You do not need to write the stall logic. (Additional 
signals are: we2, ws2, wd2.) 
 
IRw goes to we2 and ws2 via an independent path. Y is latched again in another register for writeback and written to wd2. Y can also 
be written directly to the register file, making stage four a combined Memory/ALU Writeback stage, but in this case we2 and ws2 
must come from IRe. 
  

Problem M2.4.D  
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In one or two sentences, explain the tradeoffs between adding an additional pipeline stage vs. adding a write port to the register file. 
What conditions might favor one or the other design? 
 
Increasing the ports in the register file increases its size quadratically. If the register file is the critical path in the pipeline, this will 
slow down the processor, and no matter what it increases area and power overheads. On the other hand, if applications commonly stall 
on the structural hazard due to many LDWAs, it may be worth it to add a write port to the register file. An additional stage can also 
complicate bypassing and stalling logic, although this is likely to be less expensive than expanding the register file. (The latency of the 
additional pipeline stage, ignoring stalls, is not a major concern.) 

Problem M2.4.E  


