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Problem M3.1: Cache Access-Time & Performance 
 
This problem requires the knowledge of Handout 4 (Cache Implementations) and Lecture 
3 (Caches).  Please, read these materials before answering the following questions. 
 
Ben is trying to determine the best cache configuration for a new processor. He knows how 
to build two kinds of caches: direct-mapped caches and 4-way set-associative caches. The 
goal is to find the better cache configuration with the given building blocks.  He wants to 
know how these two different configurations affect the clock speed and the cache miss-
rate, and choose the one that provides better performance in terms of average latency for a 
load.   
 

Problem M3.1.A Access Time: Direct-Mapped 
 
Now we want to compute the access time of a direct-mapped cache. We use the 
implementation shown in Figure H4-A in Handout #4. Assume a 128-KB cache with 8-
word (32-byte) cache lines. The address is 32 bits, and the two least significant bits of the 
address are ignored since a cache access is word-aligned. The data output is also 32 bits, 
and the MUX selects one word out of the eight words in a cache line. Using the delay 
equations given in Table M3.1-1, fill in the column for the direct-mapped (DM) cache in 
the table. In the equation for the data output driver, ‘associativity’ refers to the associativity 
of the cache (1 for direct-mapped caches, A for A-way set-associative caches).  
 
 

Component Delay equation (ps)  DM (ps) SA (ps) 
Decoder 200´(# of index bits) + 1000 Tag   

Data   
Memory array 200´log2 (# of rows) +  

200´log2 (# of bits in a row) + 1000 
Tag   
Data   

Comparator 200´(# of tag bits) + 1000    
N-to-1 MUX 500´log2 N + 1000    
Buffer driver 2000    
Data output driver 500´(associativity) + 1000    
Valid output 
driver 

1000    

 
Table M3.1-1:  Delay of each Cache Component 

 
What is the critical path of this direct-mapped cache for a cache read? What is the access 
time of the cache (the delay of the critical path)? To compute the access time, assume that 
a 2-input gate (AND, OR) delay is 500 ps. If the CPU clock is 150 MHz, how many CPU 
cycles does a cache access take?  
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Problem M3.1.B Access Time: Set-Associative 
 
We also want to investigate the access time of a set-associative cache using the 4-way set-
associative cache in Figure H4-B in Handout #4. Assume the total cache size is still 128-
KB (each way is 32-KB), a 4-input gate delay is 1000 ps, and all other parameters (such as 
the input address, cache line, etc.) are the same as part M3.1.A. Compute the delay of each 
component, and fill in the column for a 4-way set-associative cache in Table M3.1-1.  
 
What is the critical path of the 4-way set-associative cache? What is the access time of the 
cache (the delay of the critical path)? What is the main reason that the 4-way set-associative 
cache is slower than the direct-mapped cache? If the CPU clock is 150 MHz, how many 
CPU cycles does a cache access take? 
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Problem M3.1.C Miss-rate analysis 
 
Now Ben is studying the effect of set-associativity on the cache performance. Since he now 
knows the access time of each configuration, he wants to know the miss-rate of each one. 
For the miss-rate analysis, Ben is considering two small caches: a direct-mapped cache 
with 8 lines with 16 bytes/line, and a 4-way set-associative cache of the same size.  For the 
set-associative cache, Ben tries out two replacement policies – least recently used (LRU) 
and round robin (FIFO). 
 
Ben tests the cache by accessing the following sequence of hexadecimal byte addresses, 
starting with empty caches. For simplicity, assume that the addresses are only 12 bits.  
Complete the following tables for the direct-mapped cache and both types of 4-way set-
associative caches showing the progression of cache contents as accesses occur (in the 
tables, ‘inv’ = invalid, and the column of a particular cache line contains the {tag,index} 
contents of that line). You only need to fill in elements in the table when a value changes.  
 
 

D-map 
 
Address 

 
line in cache hit? 

L0 L1 L2 L3 L4 L5 L6 L7  
110 inv 11 inv inv inv inv inv inv no 
136    13     no 
202 20        no 
1A3          
102          
361          
204          
114          
1A4          
177          
301          
206          
135          

   
 D-map 
Total Misses  
Total Accesses  
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4-way 
 
Address 

LRU 
line in cache hit? 

Set 0 Set 1 
way0 way1 Way2 way3 way0 way1 way2 way3  

110 inv Inv Inv inv 11 inv inv inv no 
136     11 13   no 
202 20        no 
1A3          
102          
361          
204          
114          
1A4          
177          
301          
206          
135          

 
 4-way LRU 
Total Misses  
Total Accesses  

 
 

4-way 
 
Address 

FIFO 
line in cache hit? 

Set 0 Set 1 
way0 way1 way2 way3 way0 way1 way2 way3  

110 inv Inv Inv inv 11 inv inv inv no 
136      13   no 
202 20        no 
1A3          
102          
361          
204          
114          
1A4          
177          
301          
206          
135          

 
 4-way FIFO 
Total Misses  
Total Accesses  
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Problem M3.1.D Average Latency 
 
Assume that the results of the above analysis can represent the average miss-rates of the 
direct-mapped and the 4-way LRU 128-KB caches studied in M3.1.A and M3.1.B. What 
would be the average memory access latency in CPU cycles for each cache (assume that a 
cache miss takes 20 cycles)? Which one is better? For the different replacement policies 
for the set-associative cache, which one has a smaller cache miss rate for the address stream 
in M3.1.C? Explain why. Is that replacement policy always going to yield better miss rates? 
If not, give a counter example using an address stream. 
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Problem M3.2:  Victim Cache Evaluation 
 
This problem requires the knowledge of Handout #5 (Victim Cache) and Lecture 3.  Please, 
read these materials before answering the following questions. 
 

Problem M3.2.A Baseline Cache Design 
 
The diagram below shows a 32-Byte fully associative cache with four 8-Byte cache lines.  
Each line consists of two 4-Byte words and has an associated tag and two status bits (valid 
and dirty). The Input Address is 32-bits and the two least significant bits are assumed to be 
zero. The output of the cache is a 32-bit word. 
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Please complete Table M3.2-1 below with delays across each element of the cache. Using 
the data you compute in Table M3.2-1, calculate the critical path delay through this cache 
(from when the Input Address is set to when both Valid Output Driver and the appropriate 
Data Output Driver are outputting valid data).  
 

Component Delay equation (ps)  FA (ps) 
Comparator 200´(# of tag bits) + 1000  
N-to-1 MUX 500´log2 N + 1000  
Buffer driver 2000  
AND gate 1000  
OR gate 500  
Data output driver 500´(associativity) + 1000  
Valid output 
driver 

1000  

Table M3.2-1 
 
 
Critical Path Cache Delay:  _______________________ 
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Problem M3.2.B Victim Cache Behavior 
 
Now we will study the impact of a victim cache on a cache hit rate. Our main L1 cache is 
a 128 byte, direct mapped cache with 16 bytes per cache line. The cache is word (4-bytes) 
addressable. The victim cache in Figure H5-A (in Handout #5) is a 32 byte fully associative 
cache with 16 bytes per cache line, and is also word-addressable. The victim cache uses 
the first in first out (FIFO) replacement policy. 
 
Please complete Table M3.2-2 on the next page showing a trace of memory accesses. In 
the table, each entry contains the {tag,index} contents of that line, or “inv”, if no data is 
present. You should only fill in elements in the table when a value changes. For simplicity, 
the addresses are only 8 bits. 
 
The first 3 lines of the table have been filled in for you. 
 
For your convenience, the address breakdown for access to the main cache is depicted 
below. 
 

7 6  4 3 2 1 0 

TAG INDEX WORD SELECT BYTE SELECT 
 
 
 
 
 

Problem M3.2.C Average Memory Access Time 
 
 
Assume 15% of memory accesses are resolved in the victim cache. If retrieving data from 
the victim cache takes 5 cycles and retrieving data from main memory takes 55 cycles, by 
how many cycles does the victim cache improve the average memory access time? 
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Input 

Address 

Main Cache Victim Cache 
L0 L1 L2 L3 L4 L5 L6 L7 Hit? Way0 Way1 Hit? 
inv inv inv inv inv inv inv inv - inv inv - 

00 0        N   N 
80 8        N 0  N 
04 0        N 8  Y 
A0             
10             
C0             
18             
20             
8C             
28             
AC             
38             
C4             
3C             
48             
0C             
24             

Table M3.2-2 
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Problem M3.3: Loop Ordering 
 
This problem requires the knowledge of Lecture 3.  Please, read it before answering the 
following questions. 
 
This problem evaluates the cache performances for different loop orderings. You are asked 
to consider the following two loops, written in C, which calculate the sum of the entries in 
a 128 by 64 matrix of 32-bit integers: 
 

Loop A Loop B 
sum = 0; 
for (i = 0; i < 128; i++) 
  for (j = 0; j < 64; j++) 
    sum += A[i][j]; 

sum = 0; 
for (j = 0; j < 64; j++) 
  for (i = 0; i < 128; i++) 
    sum += A[i][j]; 

 
The matrix A is stored contiguously in memory in row-major order. Row major order 
means that elements in the same row of the matrix are adjacent in memory as shown in the 
following memory layout: 
 
A[i][j] resides in memory location [4*(64*i + j)] 
 
Memory Location: 
              
0 4   252 256  4*(64*127+63) 

A[0][0] A[0][1] ... A[0][63] A[1][0] ... A[127][63] 
 
For Problem M3.3.A to Problem M3.3.C, assume that the caches are initially empty.  Also, 
assume that only accesses to matrix A cause memory references and all other necessary 
variables are stored in registers. Instructions are in a separate instruction cache.   
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Problem M3.3.A  

 
Consider a 4KB direct-mapped data cache with 8-word (32-byte) cache lines.   
Calculate the number of cache misses that will occur when running Loop A. 
Calculate the number of cache misses that will occur when running Loop B. 
 

The number of cache misses for Loop A:_____________________________ 

The number of cache misses for Loop B:_____________________________ 
 

Problem M3.3.B  
 
Consider a direct-mapped data cache with 8-word (32-byte) cache lines. Calculate the minimum 
number of cache lines required for the data cache if Loop A is to run without any cache misses 
other than compulsory misses. Calculate the minimum number of cache lines required for the data 
cache if Loop B is to run without any cache misses other than compulsory misses. 
 

Data-cache size required for Loop A: ____________________________  cache line(s)  

Data-cache size required for Loop B: ____________________________  cache line(s) 
 

Problem M3.3.C  
 
Consider a 4KB fully-associative data cache with 8-word (32-byte) cache lines. This data cache 
uses a first-in/first-out (FIFO) replacement policy. 
Calculate the number of cache misses that will occur when running Loop A.   
Calculate the number of cache misses that will occur when running Loop B.   
 

The number of cache misses for Loop A:_____________________________ 

The number of cache misses for Loop B:_____________________________ 
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Problem M3.4: Cache Parameters 
 
For each of the following statements about making a change to a cache design, circle True or 
False and provide a one sentence explanation of your choice. Assume all cache parameters 
(capacity, associativity, line size) remain fixed except for the single change described in each 
question. Please provide a one sentence explanation of your answer. 
 

Problem M3.4.A  
 
Doubling the line size halves the number of tags in the cache 
 
True  /  False 
 

Problem M3.4.B  
 
Doubling the associativity doubles the number of tags in the cache. 
 
True  /   False 
 

Problem M3.4.C  
 
Doubling cache capacity of a direct-mapped cache usually reduces conflict misses. 
 
True  /   False 
 

Problem M3.4.D  
 
Doubling cache capacity of a direct-mapped cache usually reduces compulsory misses. 
 
True  /   False 
 

Problem M3.4.E  
 
Doubling the line size usually reduces compulsory misses. 
 
True  /   False 
 



 

Page 13 of 17 

Problem M3.5: Microtags 
 

Problem M3.5.A  
 
Explain in one or two sentences why direct-mapped caches have much lower hit latency (as 
measured in picoseconds) than set-associative caches of the same capacity. 
 

Problem M3.5.B  
 
A 32-bit byte-addressed machine has an 8KB, 4-way set-associative data cache with 32-byte lines. 
The following figure shows how the address is divided into tag, index and offset fields. Give the 
number of bits in each field. 
 
 

tag Index offset 
 
 

# of bits in the tag: ______________ 
 

# of bits in the index: ______________ 
 

# of bits in the offset: ______________ 
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Microtags (for questions M3.5.C – M3.5.H) 
 
Several commercial processors (including the UltraSPARC-III and the Pentium-4) reduce the hit 
latency of a set-associative cache by using only a subset of the tag bits (a “microtag”) to select the 
matching way before speculatively forwarding data to the CPU.  The remaining tag bits are 
checked in a subsequent clock cycle to determine if the access was actually a hit. The figure below 
illustrates the structure of a cache using this scheme.  
 
 
 

 
 

Problem M3.5.C  
 
The tag field is sub-divided into a loTag field used to select a way and a hiTag field used for 
subsequent hit/miss checks, as shown below. 
 

tag   
hiTag loTag index offset 

 
The cache design requires that all lines within a set have unique loTag fields. 
In one or two sentences, explain why this is necessary. 
 
 
 

HiTag LoTag data

HiTag LoTag

=

Index offset

HiTag LoTag data

=

...

To CPU

==

Hit?Hit?
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Problem M3.5.D  

 
If the loTag field is exactly two bits long, will the cache have greater, fewer, or an equal number 
of conflict misses as a direct-mapped cache of the same capacity? State any assumptions made 
about replacement policy. 
 

 
Problem M3.5.E  

 
If the loTag field is greater than two bits long, are there any additional constraints on replacement 
policy beyond those in a conventional 4-way set-associative cache? 
 
 

Problem M3.5.F  
 
Does this scheme reduce the time required to complete a write to the cache? Explain in one or two 
sentences. 
 

Problem M3.5.G  
 
In practice, microtags hold virtual address bits to remove address translation from the critical path, 
while the full tag check is performed on translated physical addresses. If the loTag bits can only 
hold untranslated bits of the virtual address, what is the largest number of loTag bits possible if 
the machine has a 16KB virtual memory page size? (Assume 8KB 4-way set-associative cache as 
in Question M3.5.B) 
 

Problem M3.5.H  
 
Describe how microtags can be made much larger, to also include virtual address bits subject to 
address translation. Your design should not require address translation before speculatively 
forwarding data to the CPU. Your explanation should describe the replacement policy and any 
additional state the machine must maintain. 
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Problem M3.6: Caches (Spring 2014 Quiz 1, Part C) 
 
Your processor has an 8-line level 1 data cache as illustrated below. Suppose that cache lines are 
32 bytes (256 bits) and memory addresses are 16 bits, with byte-addressable memory. The cache 
is indexed by low bits without hashing. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Problem M3.6.A  
 
We’re first going to fill in the above diagram with more detail. 
 
Divide the bits of the address according to how they are used to access the cache (tag, index, 
offset). 
 
What exactly is contained in the cache tags? (Include all bits necessary for correct operation of the 
cache as discussed in lecture.) 
 
How many bits in total are needed to implement the level 1 data cache? 
  

Tags Data 

Address (16 bits) 
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Problem M3.6.B  
 
Suppose the processor accesses the following data addresses starting with an empty cache: 
 

0x0028: 0000 0000 0010 1000 
0x102A: 0001 0000 0010 1010 
0x9435: 1001 0100 0011 0101 
0xEFF4: 1110 1111 1111 0100 
0xBEEF: 1011 1110 1110 1111 
0x4359: 0100 0011 0101 1001 
0x01DE: 0000 0001 1101 1110 
0x8075: 1000 0000 0111 0101 
0x9427: 1001 0100 0010 0111 

 
What would the level 1 data cache tags look like after this sequence? How many hits would there 
be in the level 1 data cache? (Don’t worry about filling in the Data column – we didn’t give you 
the data!) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Problem M3.6.C  

Suppose that the level 1 data cache has a hit rate of 40% on your application, an access time of a 
single cycle, and a miss penalty to memory of forty cycles. What is the average memory access 
time? 
 
You aren’t happy with your memory performance, so you decide to add a level two cache. Suppose 
the level two cache has a hit rate of 50%. What access time must the level two cache have for this 
to be a good design (ie, reduce AMAT)? 

  

Tags 


