
Last updated:
9/22/2021

Problem M4.1: Virtual Memory Bits

This problem requires the knowledge of Handout #6 (Virtual Memory Implementation) and
Lecture 4 and 5. Please, read these materials before answering the following questions.

In this problem we consider simple virtual memory enhancements.

Problem M4.1.A

Whenever a TLB entry is replaced we write the entire entry back to the page table. Ben thinks this
is a waste of memory bandwidth. He thinks only a few of the bits need to be written back. For each
of the bits explain why or why not they need to be written back to the page table.

With this in mind, we will see how we can minimize the number of bits we actually need in each
TLB entry throughout the rest of the problem.

Problem M4.1.B

Ben does not like the TLB design. He thinks the TLB Entry Valid bit should be dropped and the
kernel software should be changed to ensure that all TLB entries are always valid. Is this a good
idea? Explain the advantages and disadvantages of such a design.

Problem M4.1.C

Alyssa got wind of Ben’s idea and suggests a different scheme to eliminate one of the valid bits.
She thinks the page table entry valid and TLB Entry Valid bits can be combined into a single bit.

On a refill this combined valid bit will take the value that the page table entry valid bit had. A TLB
entry is invalidated by writing it back to the page table and setting the combined valid bit in the
TLB entry to invalid.

How does the kernel software need to change to make such a scheme work? How do the exceptions
that the TLB produces change?

Last updated:
9/22/2021

Problem M4.1.D

Now, Bud Jet jumps into the game. He wants to keep the TLB Entry Valid bit. However, there is
no way he is going to have two valid bits in each TLB entry (one for the TLB entry one for the
page table entry). Thus, he decides to drop the page table entry valid bit from the TLB entry.

How does the kernel software need to change to make this work well? How do the exceptions that
the TLB produces change?

Problem M4.1.E

Compare your answers to Problem M4.1.C and M4.1.D. What scheme will lead to better
performance?

Problem M4.1.F

How about the R bit? Can we remove them from the TLB entry without significantly impacting
performance? Explain briefly.

Problem M4.1.G

The processor has a kernel (supervisor) mode bit. Whenever kernel software executes the bit is
set. When user code executes the bit is not set. Parts of the user’s virtual address space are only
accessible to the kernel. The supervisor bit in the page table is used to protect this region—an
exception is raised if the user tries to access a page that has the supervisor bit set.

Bud Jet is on a roll and he decides to eliminate the supervisor bit from each TLB entry. Explain
how the kernel software needs to change so that we still have the protection mechanism and the
kernel can still access these pages through the virtual memory system.

Problem M4.1.H

Alyssa P. Hacker thinks Ben and Bud are being a little picky about these bits, but has devised a
scheme where the TLB entry does not need the M bit or the U bit. It works as follows. If a TLB
miss occurs due to a load, then the page table entry is read from memory and placed in the TLB.
However, in this case the W bit will always be set to 0. Provide the details of how the rest of the
scheme works (what happens during a store, when do the entries need to be written back to
memory, when are the U and M bits modified in the page table, etc.).

Last updated:
9/22/2021

Problem M4.2: Page Size and TLBs (2005 Fall Part D)

This problem requires the knowledge of Handout #6 (Virtual Memory Implementation) and
Lecture 5. Please, read these materials before answering the following questions.

Assume that we use a hierarchical page table described in Handout #6.

The processor has a data TLB with 64 entries, and each entry can map either a 4KB page or a 4MB
page. After a TLB miss, a hardware engine walks the page table to reload the TLB. The TLB uses
a first-in/first-out (FIFO) replacement policy.

We will evaluate the memory usage and execution of the following program which adds the
elements from two 1MB arrays and stores the results in a third 1MB array (note that, 1MB =
1,048,576 Bytes):

We assume the A, B, and C arrays are allocated in a contiguous 3MB region of physical memory.
We will consider two possible virtual memory mappings:
• 4KB: the arrays are mapped using 768 4KB pages (each array uses 256 pages).
• 4MB: the arrays are mapped using a single 4MB page.

For the following questions, assume that the above program is the only process in the system, and
ignore any instruction memory or operating system overheads. Assume that the arrays are aligned
in memory to minimize the number of page table entries needed.

byte A[1048576]; // 1MB array
byte B[1048576]; // 1MB array
byte C[1048576]; // 1MB array

for(int i=0; i<1048576; i++)
 C[i] = A[i] + B[i];

Last updated:
9/22/2021

Problem M4.2.A

This is the breakdown of a virtual address which maps to a 4KB page:

Show the corresponding breakdown of a virtual address which maps to a 4MB page. Include the
field names and bit ranges in your answer.

Problem M4.2.B Page Table Overhead

We define page table overhead (PTO) as:

PTO =
Physical memory that is allocated to page tables
Physical memory that is allocated to data pages

For the given program, what is the PTO for each of the two mappings?

PTO4KB =

PTO4MB =

L1 index
33 43

L2 index
22 32

L3 index
12 21

Page Offset
0 11

11 bits 11 bits 10 bits 12 bits

43 0

Last updated:
9/22/2021

Problem M4.2.C Page Fragmentation Overhead

We define page fragmentation overhead (PFO) as:

PFO =
Physical memory that is allocated to data pages but is never accessed

Physical memory that is allocated to data pages and is accessed

For the given program, what is the PFO for each of the two mappings?

PFO4KB =

PFO4MB =

Problem M4.2.D

Consider the execution of the given program, assuming that the data TLB is initially empty. For
each of the two mappings, how many TLB misses occur, and how many page table memory
references are required per miss to reload the TLB?

Data TLB misses

Page table memory
references (per miss)

4KB:

4MB:

Problem M4.2.E

Which of the following is the best estimate for how much longer the program takes to execute with
the 4KB page mapping compared to the 4MB page mapping?
Circle one choice and briefly explain your answer (about one sentence).

1.01´ 10´ 1,000´ 1,000,000´

Last updated:
9/22/2021

Problem M4.3: Page Size and TLBs

This problem requires the knowledge of Handout #6 (Virtual Memory Implementation) and
Lecture 5. Please, read these materials before answering the following questions.

The configuration of the hierarchical page table in this problem is similar to the one in Handout
#6, but we modify two parameters: 1) this problem evaluates a virtual memory system with two
page sizes, 4KB and 1MB (instead of 4 MB), and 2) all PTEs are 16 Bytes (instead of 8 Bytes).
The following figure summarizes the page table structure and indicates the sizes of the page tables
and data pages (not drawn to scale):

The processor has a data TLB with 64 entries, and each entry can map either a 4KB page or a 1MB
page. After a TLB miss, a hardware engine walks the page table to reload the TLB. The TLB uses
a first-in/first-out (FIFO) replacement policy.

We will evaluate the execution of the following program which adds the elements from two 1MB
arrays and stores the results in a third 1MB array (note that, 1MB = 1,048,576 Bytes, the starting
address of the arrays are given below):

Assume that the above program is the only process in the system, and ignore any instruction
memory or operating system overheads. The data TLB is initially empty.

L1 Table
(4096 PTEs, 64KB)

L2 Table
(4096 PTEs, 64KB)

L3 Table
(256 PTEs, 4KB)

Data Page
(4KB)

Data Page
(1MB)

Root ptr.
(processor

register)

byte A[1048576]; // 1MB array 0x00001000000
byte B[1048576]; // 1MB array 0x00001100000
byte C[1048576]; // 1MB array 0x00001200000

for(int i=0; i<1048576; i++)
 C[i] = A[i] + B[i];

Last updated:
9/22/2021

Problem M4.3.A

Consider the execution of the program. There is no cache and each memory lookup has 100 cycle
latency.

If all data pages are 4KB, compute the ratio of cycles for address translation to cycles for data
access.

If all data pages are 1MB, compute the ratio of cycles for address translation to cycles for data
access.

Problem M4.3.B

For this question, assume that in addition, we have a PTE cache with one cycle latency. A PTE
cache contains page table entries. If this PTE cache has unlimited capacity, compute the ratio of
cycles for address translation to cycles for data access for the 4KB data page case.

Problem M4.3.C

With the use of a PTE cache, is there any benefit to caching L3 PTE entries? Explain.

Problem M4.3.D

What is the minimum capacity (number of entries) needed in the PTE cache to get the same
performance as an unlimited PTE cache? (Assume that the PTE cache does not cache L3 PTE
entries and all data pages are 4KB)

Last updated:
9/22/2021

Problem M4.4: 64-bit Virtual Memory

This problem examines page tables in the context of processors with 64-bit addressing.

Problem M4.4.A Single level page tables

For a computer with 64-bit virtual addresses, how large is the page table if only a single-level page
table is used? Assume that each page is 4KB, that each page table entry is 8 bytes, and that the
processor is byte-addressable.

Problem M4.4.B Let’s be practical

Many current implementations of 64-bit ISAs implement only part of the large virtual address
space. One way to do this is to segment the virtual address space into three parts as shown below:
one used for stack, one used for code and heap data, and the third one unused.

A special circuit is used to detect whether the top eight bits of an address are all zeros or all ones
before the address is sent to the virtual memory system. If they are not all equal, an invalid virtual
memory address trap is raised. This scheme in effect removes the top seven bits from the virtual
memory address, but retains a memory layout that will be compatible with future designs that
implement a larger virtual address space.

The MIPS R10000 does something similar. Because a 64-bit address is unnecessarily large, only
the low 44 address bits are translated. This also reduces the cost of TLB and cache tag arrays. The
high two virtual address bits (bits 63:62) select between user, supervisor, and kernel address
spaces. The intermediate address bits (61:44) must either be all zeros or all ones, depending on the
address region.

How large is a single-level page table that would support MIPS R10000 addresses? Assume that
each page is 4KB, that each page table entry is 8 bytes, and that the processor is byte-addressable.

Problem M4.4.C Page table overhead

Reserved for Code and Heap

Reserved for Stack
0xFFFFFFFFFFFFFFFF

0xFF00000000000000

0x00FFFFFFFFFFFFFF

0x0000000000000000

Unused

Last updated:
9/22/2021

A three-level hierarchical page table can be used to reduce the page table size. Suppose we break
up the 44-bit virtual address (VA) as follows:

VA[43:33] VA[32:22] VA[21:12] VA[11:0]
1st level index 2nd level index 3rd level index Page offset

If page table overhead is defined as (in bytes):

 PHYSICAL MEMORY USED BY PAGE TABLES FOR A USER PROCESS

 PHYSICAL MEMORY USED BY THE USER CODE, HEAP, AND STACK

Remember that a complete page table page (1024 or 2048 PTEs) is allocated even if only one PTE
is used. Assume a large enough physical memory that no pages are ever swapped to disk. Use 64-
bit PTEs. What is the smallest possible page table overhead for the three-level hierarchical
scheme?

Assume that once a user page is allocated in memory, the whole page is considered to be useful.
What is the largest possible page table overhead for the three-level hierarchical scheme?

Problem M4.4.D PTE Overhead

The MIPS R10000 uses a 40 bit physical address. The physical translation section of the TLB
contains the physical page number (also known as PPN), one “valid,” one “dirty,” and three “cache
status” bits.

What is the minimum size of a PTE assuming all pages are 4KB?

MIPS/Linux stores each PTE in a 64 bit word. How many bits are wasted if it uses the minimum
size you have just calculated?

Last updated:
9/22/2021

Problem M4.4.E Page table implementation

The following comment is from the source code of MIPS/Linux and, despite its cryptic
terminology, describes a three-level page table.

/*
 * Each address space has 2 4K pages as its page directory, giving 1024
 * 8 byte pointers to pmd tables. Each pmd table is a pair of 4K pages,
 * giving 1024 8 byte pointers to page tables. Each (3rd level) page
 * table is a single 4K page, giving 512 8 byte ptes.
 * /

Assuming 4K pages, how long is each index?

Index Length (bits)
Top-level (“page directory”)
2nd-level
3rd-level

Problem M4.4.F Variable Page Sizes

A TLB may have a page mask field that allows an entry to map a page size of any power of four
between 4KB and 16MB. The page mask specifies which bits of the virtual address represent the
page offset (and should therefore not be included in translation). What are the maximum and
minimum reach of a 64-entry TLB using such a mask? The R10000 actually doubles this reach
with little overhead by having each TLB entry map two physical pages, but don’t worry about that
here.

Problem M4.4.G Virtual Memory and Caches

Ben Bitdiddle is designing a 4-way set associative cache that is virtually indexed and virtually
tagged. He realizes that such a cache suffers from a homonym aliasing problem. The homonym
problem happens when two processes use the same virtual address to access different physical
locations. Ben asks Alyssa P. Hacker for help with solving this problem. She suggests that Ben
should add a PID (Process ID) to the virtual tag. Does this solve the homonym problem?

Another problem with virtually indexed and virtually tagged caches is called synonym problem.
Synonym problem happens when distinct virtual addresses refer to the same physical location.
Does Alyssa’s idea solve this problem?

Ben thinks that a different way of solving synonym and homonym problems is to have a direct
mapped cache, rather than a set associative cache. Is he right?

Last updated:
9/22/2021

Problem M4.5: Virtual Memory and Caches (Spring 2019 Quiz 1, Part B)

Problem M4.5.A

Consider a direct-mapped cache with 64-byte blocks and 4 sets. The table below shows a
timeline of how the cache metadata (tags and valid bits) changes after a series of memory accesses.
The leftmost column indicates the address of the memory access, and the rest of the row should
indicate the metadata after the access is performed. If an access misses in the cache, the
corresponding data is fetched from memory and brought into the cache.

Fill in the table below by showing how cache metadata changes after each access. If an entry
remains unchanged after the memory access, you may leave that entry blank. As an example, we
have filled in the corresponding entries for the first memory access (0xA4C1).

State
Set 0 Set 1 Set 2 Set 3

Valid Tag Valid Tag Valid Tag Valid Tag
Initial
state 0 - 0 - 0 - 0 -

After
0xA4C1 1 0xA4

After
0x2673

After
0xB51A

After
0xA4FF

After
0x4232

Last updated:
9/22/2021

Problem M4.5.B

For the same memory access pattern, fill in the table below for a 2-way set-associative cache with
128-byte blocks and 2 sets. Assume that the cache uses a least recently used (LRU) replacement
policy (the table does not include LRU metadata). Again, we have filled in the appropriate entries
for the first memory access.

State

Set 0 Set 1

Way 0 Way 1 Way 0 Way 1

Valid Tag Valid Tag Valid Tag Valid Tag
Initial
state 0 - 0 - 0 - 0 -

After
0xA4C1 1 0xA4

After
0x2673

After
0xB51A

After
0xA4FF

After
0x4232

Last updated:
9/22/2021

Problem M4.5.C

Ben Bitdiddle recently bought a processor that has 16-bit virtual addresses. The following figure
shows the virtual address format:

What is the size of a page in this system?

Problem M4.5.D

Ben’s processor has an 8-entry direct-mapped TLB.

Ben writes the program below, which sums the entries of matrix. A has 4 rows and 256 columns,
holding 32-bit integers in row-major order (i.e., consecutive elements on the same row are in
contiguous memory locations). Assume that A starts at virtual address 0x0000, and sum is already
held by a register. Ignore instruction fetches.

int sum = 0;
for (int i = 0; i < 256; i++)
 for (int j = 0; j < 4; j++)
 sum += A[j][i];

(a) How many TLB misses will this program incur?

(b) How many misses would the program incur if the TLB were fully associative? Assume a least

recently used (LRU) replacement policy.

Last updated:
9/22/2021

Problem M4.5.E

Alyssa P. Hacker suggests that a larger page size would eliminate a majority of misses in the direct-
mapped TLB. What should the minimum page size be to have at most (i.e., ≤) 16 TLB misses in
Ben’s program? Compute the new number of TLB misses for this page size.

Problem M4.5.F

Alyssa takes a look at Ben’s program, and modifies it as follows:

int sum = 0;
for (int i = 0; i < 4; i++)
 for (int j = 0; j < 256; j++)
 sum += A[i][j];

How many TLB misses does this program incur on the 8-entry direct-mapped TLB?

Last updated:
9/22/2021

Problem M4.5.G

Ben modifies the processor to use 18-bit virtual addresses and a two-level hierarchical page table.
The new virtual address format is as follows:

Now, assume that matrix A has 4 rows and 4096 (212) columns. We want to run Ben’s program
with the new matrix A on Ben’s modified processor. Assume that all page tables have been
swapped out to disk, and don’t worry about the pages needed for code.

(a) How many total L1 and L2 page tables will be resident in memory after the loop in Ben’s

program runs? Note that Ben’s program only loops up to column 256, so it no longer traverses
the entire matrix A.

(b) Ben now swaps the L1 and L2 index bits as follows:

How many total L1 and L2 page tables will be resident in memory after Ben’s loop with the new
virtual address breakdown?

Last updated:
9/22/2021

Problem M4.6: Handling TLB Misses (2005 Fall Part B)

In the following questions, we ask you about the procedure of handling TLB misses. The following
figure shows the setup for this part and each component’s initial states.

Notes 1. All numbers are in hexadecimal.
 2. Virtual addresses are shown in parentheses, and physical addresses without parentheses.

For the rest of this part, we assume the following:

1) The system uses 20-bit virtual addresses and 20-bit physical addresses.
2) The page size is 16 bytes.
3) We use a linear (not hierarchical) page table with 4-byte page table entry (PTE). A PTE

can be broken down into the following fields. (Don’t worry about the status bits, PTE[15:0],
for the rest of Part B.)
31 16 15 14 13 12 11 10 9 0

Physical Page Number (PPN) V R W U M S 0000000000

4) The TLB contains 4 entries and is fully associative.

On the next page, we show a pseudo code for the TLB refill algorithm.

(01000)
User PTE Base

(UPTB, Virtual)

0C000
System PTE Base

(SPTB, Physical)

??

E00000D1

E00000D2

E00000D3

E00000D4

•
•

0F010(01000)

0F014(01004)

0F018(01008)

0F01C(0100C)

? (01010)

E0000F01

E0000F02

E0000F03

E0000F04

•
•

0C000

0C004

0C008

0C00C

User Page Table
(in virtual space)

System Page Table
(in physical space)

•
•
E0000107

E0000106

E0000105

E0000104

E000

E000

E000

E00000FD

00FC

00FB

00FA

E00000E1
•
•

E00000E2

E00000E3

E00000E4

0F020

0F024

0F028

0F02C

0F030

0F034

0F038

0F03C

0F040

0F044

0F048

0F04C

Physical memory

Address
PA (VA)

Address
PA

Address
PA

0F010100

PPNVPN

TLB

Last updated:
9/22/2021

// On a TLB miss, “MA” (Miss Address) contains the address of that
// miss. Note that MA is a virtual address.

// UTOP is the top of user virtual memory in the virtual address
// space. The user page table is mapped to this address and up.
#define UTOP 0x01000

// UPTB and SPTB stand for User PTE Base and System PTE Base,
// respectively. See the figure in the previous page.

if (MA < UTOP) {
 // This TLB miss was caused by a normal user-level memory access

 // Note that another TLB miss can occur here while loading a PTE.
 LW Rtemp, UPTB+4*(MA>>4); // load a PTE using a virtual address
}
else {
 // This TLB miss occurred while accessing system pages (e.g. page

// tables)

 // TLB miss cannot happen here because we use a physical address.
 LW_physical Rtemp, SPTB+4*((MA-UTOP)>>4); // load a PTE using a

// physical address
}

(Protection check on Rtemp); // Don’t worry about this step here
(Extract PPN from Rtemp and store it to the TLB with VPN);
(Restart the instruction that caused the TLB miss);

TLB refill algorithm

Problem M4.6.A

What will be the physical address corresponding to the virtual address 0x00030? Fill out the TLB
states below after an access to the address 0x00030 is completed.

Virtual address 0x00030 -> Physical address (0x __________)

VPN PPN

0x0100 0x0F01

TLB states

Last updated:
9/22/2021

Problem M4.6.B

What will be the physical address corresponding to the virtual address 0x00050? Fill out the TLB
states below after an access to the address 0x00050 is completed. (Start over from the initial system
states, not from your system states after solving the previous question.)

Virtual address 0x00050 -> Physical address (0x ___________)

VPN PPN

0x0100 0x0F01

TLB states

Problem M4.6.C

We integrate virtual memory support into our baseline 5-stage MIPS pipeline using the TLB miss
handler. We assume that accessing the TLB does not incur an extra cycle in memory access in case
of hits.

Without virtual memory support (i.e. we had only a single address space for the entire system), the
average cycles per instruction (CPI) was 2 to run Program X. If the TLB misses 10 times for
instructions and 20 times for data in every 1,000 instructions on average, and it takes 20 cycles to
handle a TLB miss, what will be the new CPI (approximately)?

Last updated:
9/22/2021

Problem M4.7: Hierarchical Page Table & TLB (Fall 2010 Part B)

Suppose there is a virtual memory system with 64KB page which has 2-level hierarchical page
table. The physical address of the base of the level 1 page table (0x01000) is stored in a special
register named Page Table Base Register. The system uses 20-bit virtual address and 20-bit
physical address. The following figure summarizes the page table structure and shows the
breakdown of a virtual address in this system. The size of both level 1 and level 2 page table entries
is 4 bytes and the memory is byte-addressed. Assume that all pages and all page tables are loaded
in the main memory. Each entry of the level 1 page table contains the physical address of the base
of each level 2 page tables, and each of the level 2 page table entries holds the PTE of the data
page (the following diagram is not drawn to scale). As described in the following diagram, L1
index and L2 index are used as an index to locate the corresponding 4-byte entry in Level 1 and
Level 2 page tables.

2-level hierarchical page table

A PTE in level 2 page tables can be broken into the following fields (Don’t worry about status bits
for the entire part).

Last updated:
9/22/2021

Problem M4.7.A

Assuming the TLB is initially at the state given below and the
initial memory state is to the right, what will be the final TLB
states after accessing the virtual address given below? Please
fill out the table with the final TLB states. You only need to
write VPN and PPN fields of the TLB. The TLB has 4 slots and
is fully associative and if there are empty lines they are taken
first for new entries. Also, translate the virtual address (VA) to
the physical address (PA). For your convenience, we
separated the page number from the rest with the colon “:”.

VPN PPN
0x8 0x3

Initial TLB states

Virtual Address:

 0xE:17B0 (1110:0001011110110000)

VPN PPN
0x8 0x3

Final TLB states

VA 0xE17B0 => PA ___________________

Last updated:
9/22/2021

Problem M4.7.B

What is the total size of memory required to store both the level 1 and 2 page tables?

Problem M4.7.C

Ben Bitdiddle wanted to reduce the amount of physical memory required to store the page table,
so he decided to only put the level 1 page table in the physical memory and use the virtual memory
to store level 2 page tables. Now, each entry of the level 1 page table contains the virtual address
of the base of each level 2 page tables, and each of the level 2 page table entries contains the PTE
of the data page (the following diagram is not drawn to scale). Other system specifications remain
the same. (The size of both level 1 and level 2 page table entries is 4 bytes.)

Ben’s design with 2-level hierarchical page table

Last updated:
9/22/2021

Assuming the TLB is initially at the state given below and the
initial memory state is to the right (different from M5.9.A),
what will be the final TLB states after accessing the virtual
address given below? Please fill out the table with the final
TLB states. You only need to write VPN and PPN fields of the
TLB. The TLB has 4 slots and it is fully associative and if there
are empty lines they are taken first for new entries. Also,
translate the virtual address to the physical address. Again, we
separated the page number from the rest with the colon “:”.

Initial TLB states

Virtual Address:

0xA:0708 (1010:0000011100001000)

VPN PPN
0x8 0x1

Final TLB states

VA 0xA0708 => PA _______________________

VPN PPN
0x8 0x1

Last updated:
9/22/2021

Problem M4.7.D

Alice P. Hacker examines Ben’s design and points out that his scheme can result in infinite loops.
Describe the scenario where the memory access falls into infinite loops.

Last updated:
9/22/2021

Problem M4.8: Caches and Virtual Memory (Spring 2015 Quiz 1, Part B)

Problem M4.8.A

Consider a reference stream that repetitively loops over four addresses, A, B, C, and D
(ABCDABCDABCD….). We will study how different replacement policies perform on this
reference stream, using a small, 2-entry, fully-associative cache.

1. Find out how the cache performs with LRU replacement. Fill the table below to show the cache

contents over time, and note whether each access is a hit or a miss. Then, compute the long-
term miss ratio (i.e., discounting cache warm-up).

Access 0 1 2 3 4 5 6 7 8 9 10 11
Address A B C D A B C D A B C D

Entry 1 - A A
Entry 2 - - B

Hit? N N N

 What is the long-term miss ratio under LRU? _______________

2. Find out how the cache performs under optimal replacement. This cache cannot bypass

accesses, i.e., on every miss, it must replace an existing block and insert the new block.
Fill the time diagram below, and find the long-term hit rate.

Access 0 1 2 3 4 5 6 7 8 9 10 11

Address A B C D A B C D A B C D

Entry 1 - A A
Entry 2 - - B

Hit? N N N

 What is the long-term miss ratio under optimal replacement? _______________

Last updated:
9/22/2021

In the example, is there a simple policy that, without knowing the future, performs as well as the
optimal one? If so, which one?

Problem M4.8.B

Consider a byte addressing system with 16-bit virtual and physical addresses. The system has a
cache with the following properties:

• 8 sets with 128 bytes per block
• 4-way set-associative organization
• Virtually-indexed, physically-tagged

1. Suppose we use 256-byte pages. Where in the cache can virtual address 0xABCD live?

Please use crosses (X) to mark its possible locations in the diagram below.
 (The binary representation of 0xABCD is 1010 1011 1100 1101.)

Index
Cache Contents

Way 0 Way 1 Way 2 Way 3
0
1
2
3
4
5
6
7

Last updated:
9/22/2021

2. As before, suppose we use 256-byte pages. Where in the cache can physical address 0xABCD
live? Please use crosses (X) to mark its possible locations.

Index
Cache Contents

Way 0 Way 1 Way 2 Way 3
0
1
2
3
4
5
6
7

3. Suppose we use 1024-byte pages instead. Where in the cache can physical address

0xABCD live? Please use crosses (X) to mark its possible locations.

Index
Cache Contents

Way 0 Way 1 Way 2 Way 3
0
1
2
3
4
5
6
7

Last updated:
9/22/2021

Problem M4.8.C

We’d like our memory system to support two page sizes: 256-byte small pages and 1024-byte
large pages. A common approach to support multiple page sizes is to use separate TLBs, one for
each page size. Instead, to reduce area overheads, we will use a single TLB to cache translations
of both small and large pages, shown in Figure B-1. The TLB has 8 sets and 2 ways. The L bit
denotes whether the cached PTE is for a large page.

V = valid bit L = large page bit (set to 1 when a large page is stored)
PPN = physical page number

 Way 0 Way 1
V L Tag PPN V L Tag PPN

0
1
2
3
4
5
6
7

Each TLB access consists of three steps. First, the TLB checks for a small-page match, using the
tag and index bits shown in Figure B-2. Second, if it does not find a small-page match, it checks
for a large-page match, using the tag and index bits in Figure B-3. Third, if the second lookup
misses as well, it results in a TLB miss and a page table walk.

VPN Offset
7 0 10 8

Figure B-2. Tag and index bits for small (256-byte) pages.

Figure B-1. TLB for multiple page sizes.

Figure B-3. Tag and index bits for large (1024-byte) pages.

3-bit index 5-bit tag

VPN Offset
9 0 10

3-bit index

5-bit tag

15 11

15 11

 Pad two zeros 0 0

Last updated:
9/22/2021

Assume virtual address 0xABBA translates to physical address 0x47BA.

1. If virtual address 0xABBA belongs to a small (256-byte) page, fill in the fields of the TLB
entry, and mark all possible TLB locations it can be in.

TLB entry Possible locations

L Tag PPN

2. If virtual address 0xABBA belongs to a large (1024-byte) page, fill in the fields of the TLB

entry, and mark all possible TLB locations it can be in.

TLB entry Possible locations

L Tag PPN

 Way 0 Way 1
0
1
2
3
4
5
6
7

 Way 0 Way 1
0
1
2
3
4
5
6
7

Last updated:
9/22/2021

3. What is the reach of this TLB? (TLB reach = maximum amount of memory accessible
without TLB misses)

4. This TLB has a utilization problem for large pages. Explain why it happens and how to solve

it.

Last updated:
9/22/2021

Problem M4.9: Caches and Virtual Memory (Spring 2016 Quiz 1, Part B)

Ben Bitdiddle purchases a new processor to run his 6.823 lab experiments. The processor manual
informs Ben that the machine is byte-addressed with 20-bit virtual addresses and 16-bit physical
addresses.

The processor manual only specifies that the machine uses a 3-level page table with the following
virtual-address breakdown.

Problem M4.9.A

What is the page size of Ben’s machine? _____________________________

Demarcate the physical address into the following fields: Physical Page Number (PPN), Page
Offset

_______ bits ______ bits

PPN Page
Offset

PA

Virtual	Address 4	bits 4	bits												4	bits											8	bits

L1	Table	
Base	Address

PTP

PTP

PTE

L1	Table

L2	Table
L3	Table

Physical	Address PPN Offset

L1	Index L2	Index L3	Index Page	Offset

Note: All page tables are
located in physical memory
in this design. All PTPs refer
to physical addresses

Last updated:
9/22/2021

Ben executes the following snippet of code on his new processor. Assume integers are 4-bytes
long, and the array elements are mapped to virtual addresses 0x0000 through 0x1ffc. Assume
array and sum have been suitably initialized.

1 int array[2048];
2 while (1) {
3 for (int i = 0; i < 4; i++)
4 sum += array[i * 256];
5 }

The processor manual states this machine has a TLB with 4 entries. Assume that variables i and
sum are stored in registers, and ignore address translation for instruction fetches; only accesses to
array require address translation.

Problem M4.9.B

In steady state, how many misses from the TLB will Ben observe per iteration of the while loop
(lines 3, 4) on average, if (state your reasoning):

a) the TLB is direct-mapped ____________

b) the TLB is fully-associative ____________
(assume LRU replacement policy)

Last updated:
9/22/2021

Problem M4.9.C

In steady state, how many total memory accesses will Ben observe per iteration of the while loop
(lines 3, 4) on average, if (state your reasoning):

a) the TLB is direct-mapped ____________

b) the TLB is fully-associative ____________
(assume LRU replacement policy)

Problem M4.9.D

Ben wonders if he can reduce the number of memory accesses required to perform the address
translations. His friend Alyssa P. Hacker suggests adding a partial-translation cache (PTC), in
addition to the TLB. The PTC stores a mapping of the higher-order bits of the virtual address to a
L3 page table entry. If a translation misses in the TLB, but hits in the PTC, the MMU issues an
access to the corresponding L3 page table directly, skipping the L1 and L2 page tables. On a TLB
miss + PTC miss, the page walk returns the PPN and also installs a translation from VPN to L3
Page Table id in the PTC, and this incurs no additional cost.

Last updated:
9/22/2021

Alyssa proposes adding a PTC with 1 entry to the processor. Does this addition benefit the code
snippet in Question 2? How many total memory accesses will Ben observe now, if:

a) the TLB is direct-mapped ____________

b) the TLB is fully-associative ____________
(assume LRU replacement policy)

TLB

PTP

PTP

PTE

L1	Table

L2	Table
L3	Table

TLB	miss

PTC	miss

Virtual	Address 4	bits 4	bits												4	bits											8	bits

L1	Index L2	Index L3	Index Page	Offset

L1	Table	
Base	Address

PTC
PTC	hit

Last updated:
9/22/2021

Problem M4.9.E

Alyssa’s processor contains a 64 byte L1 cache with eight 8-byte cache blocks, denoted A—H in
the figure below. For each configuration shown in the figure, which block(s) can virtual (byte)
address 0x34 be mapped to? Assume a page size of 16 bytes. Fill out the table at the bottom of
the page, indicating each of the possible blocks by its assigned letter (A—H).

 Virtually Indexed Physically Indexed

Direct-mapped
(a)

2-way set-
associative (b)

A

B

C

D

E

F

G

H

Index

0

1

2

3

4

5

6

7

A

B

C

D

E

F

G

H

0

1

2

3

 Index

Way 0 Way 1

(a) Direct-Mapped Cache (b) Two-Way Set-Associative Cache

8	bytes

8	bytes 8	bytes

Last updated:
9/22/2021

Problem M4.10: Nested paging (Spring 2017 Quiz 1, Part B)

This problem requires the knowledge of Handout #7 (Nested Paging) and Lecture 4 and 5. Please
read these materials before answering the following questions.

Ben Bitdiddle purchases a new processor to run his 6.823 labs. The processor manual indicates
that the machine is byte-addressed with 20-bit virtual addresses and 20-bit physical addresses. The
following figure summarizes the 2-level page table structure and shows the breakdown of a virtual
address in this system. The physical address of the base of the Level 1 page table (0x02000) is
stored in the L1 Table Base Address register. The L1 and L2 page tables are located in physical
memory. The size of both L1 and L2 page table entries is 4 bytes. Each entry of the L1 page table
contains the physical address of the base of each Level 2 page table (a PTP), and each of the L2
page table entries holds the PTE of the data page.

A PTE in L2 page tables can be broken into the following fields. (Don’t worry about status bits).

31 20 19 16 15 0

0 Physical Page Number (PPN) Status Bits

A PTP in the L1 page table appears as follows.

31 20 19 0

0 Physical address of a L2 page table

Virtual	Address

0x02000	(PA)

PTP

PTE

L1	Table

L2	Table

Physical	Address

L1	Index L2	Index Page	Offset

2 bits 2	bits									 16	bits

L1	Table	
Base	Address

PPN Offset

Last updated:
9/22/2021

Problem M4.10.A

Assuming the initial memory state is as shown to the right, what is
the physical page number (PPN) of virtual address (VA) 0xB29A0?
What is the physical address (PA)? Show and explain your work for
full credit. For your convenience, we separate the page number
from the offset with a colon “:”.

Virtual Address

0xB:29A0 = 0b 1011:0010100110100000

VPN 0xB => PPN __________________

VA 0xB29A0 => PA __________________

Address (PA)
0x0:2000 0x0:2048
0x0:2004 0x0:2010
0x0:2008 0x0:2038
0x0:200C 0x0:2028
0x0:2010 0x1:0084
0x0:2014 0x5:0DA8
0x0:2018 0x6:11A0
0x0:201C 0xB:9944
0x0:2020 0xC:7FFF
0x0:2024 0x4:B000
0x0:2028 0x7:30B1
0x0:202C 0xD:2E5C
0x0:2030 0x3:A000
0x0:2034 0x6:010C
0x0:2038 0xA:74C0
0x0:203C 0x8:A524
0x0:2040 0x9:FFEE
0x0:2044 0x2:93A4
0x0:2048 0xA:74D0
0x0:204C 0x3:FD40

Snapshot of physical memory

Last updated:
9/22/2021

Unable to run Pin in his own environment, Ben’s friend, Alyssa P. Hacker, refers him to the
Handout #7 (Nested Paging) to learn how to run his labs in a virtual machine (much to the TA’s
dismay!) However, Ben is frustrated by the worst-case performance. Let’s find out why.

Problem M4.10.B

Ben starts his foray into virtualization by thinking about gPA=>hPA translation.

a) Assuming Ben’s host physical memory has the same snapshot as in Question 1, what is the

host physical address (hPA) of guest physical address (gPA) 0xB29A4? Explain.

gPA 0xB29A4 => hPA _____________________

b) Assuming no TLB, how many accesses to host physical memory are required to access the data

associated with a gPA (i.e., perform the gPA=>hPA translation and fetch the data)? Explain.

Last updated:
9/22/2021

Problem M4.10.C

Given a guest virtual address (gVA), the first step of a nested page table
walk is to load the relevant guest L1 page table PTP. This provides the
base gPA of the guest L2 table. Ben is shocked at how much work is
required!

a) Assume host physical memory is initialized as in Question 1 and as

shown to the right, the Guest Table Base Address register holds
0xB29A0 (a gPA), and the Host Table Base Address register holds
0x02000 (a hPA). During a nested page table walk of guest virtual
address (gVA) 0x61EAC, what are the contents of the guest L1 page
table PTP entry? For your convenience, we separate the page
number from the offset with a colon “:”.

Guest Virtual Address (gVA)

0x6:1EAC = 0b 0110:0001111010101100

Guest L1 Table PTP = ____________________

b) Assume no TLB. Starting from some gVA, how many accesses to host physical memory are

required to determine the guest L1 PTP entry of a guest virtual address (gVA)? Explain.

Address (PA)
0x0:2000 0x0:2048
0x0:2004 0x0:2010
0x0:2008 0x0:2038
0x0:200C 0x0:2028
0x0:2010 0x1:0084

... ...
0x2:2998 0xD:2E5C
0x2:299C 0x3:A000
0x2:29A0 0x6:010C
0x2:29A4 0xA:74CC
0x2:29A8 0x7:30B1

... ...
0x5:2994 0x6:11A0
0x5:2998 0xB:F149
0x5:299C 0xC:7BFF
0x5:29A0 0x4:B020
0x5:29A4 0xF:A120

... ...
0xA:299C 0x8:A624
0xA:29A0 0x9:FEED
0xA:29A4 0x2:93A4
0xA:29A8 0xA:7440
0xA:29AC 0x3:FD40
Snapshot of host
physical memory

Last updated:
9/22/2021

Problem M4.10.D

For the 2-level nested page table in the Handout #7 (Nested Paging), assuming no TLB, how many
accesses to host physical memory are required to perform a guest memory access? (i.e. given a
gVA, find its corresponding hPA and fetch the data). Explain.

Problem M4.10.E

For an M-level hierarchical guest page table and an N-level hierarchical host page table, assuming
no TLB, how many accesses to host physical memory are required to perform a guest memory
access? (i.e. given a gVA, find its corresponding hPA and fetch the data). Explain.

