
Last updated:
9/22/2021

 1

Problem M4.1: Virtual Memory Bits

Problem M4.1.A

The answer depends on certain assumptions in the OS. Here we assume that the OS does
everything that is reasonable to keep the TLB and page table coherent. Thus, any change that OS
software makes is made to both the TLB and the page table.

However, the hardware can change the U bit (whenever a hit occurs this bit will be set) and the
M bit (whenever a page is modified this bit will be set). Thus, these are the only bits that need to
be written back. Note that the system will function correctly even if the U bit is not written back.
In this case the performance would just decrease.

It is also important to note, that if the entry is laid out properly in memory, all the hardware-
modified bits in the TLB can be written back to memory with a single memory write instruction.
Thus it makes no difference whether one or two bits have been modified in the TLB, because
writing back one bit or two bits still requires writing back a whole word.

Problem M4.1.B

An advantage of this scheme is that we do not need the TLB Entry Valid bit in the TLB
anymore. One bit savings is not very much.

A disadvantage of this scheme is that the kernel needs to ensure that all TLB entries always are
valid. During a context switch, all TLB entries would need to be restored (this is time-
consuming). And, in general, whenever a TLB entry is invalidated, it will have to be replaced
with another entry.

Problem M4.1.C

Changes to exceptions: “Page Table Entry Invalid” and “TLB Miss” exceptions are replaced
with exceptions “TLB Entry Invalid” and “TLB No Match”

The TLB Entry Invalid exception will be raised if the VPN matches the TLB tag but the
(combined) valid bit is false. When this exception is raised the kernel will need to consult the
page table entry to see if this is a TLB miss (valid bit in page table entry is true), or an access of
an invalid page table entry (valid bit in page table entry is false). Depending on what the cause of
the exception was, it will then have to perform the necessary operations to recover.

The TLB No Match exception will be raised if the VPN does not match any of the TLB tags. If
this exception is raised the kernel will do the same thing it did when a TLB Miss occurred in the
previous design.

Last updated:
9/22/2021

 2

Problem M4.1.D

When loading a page table entry into the TLB, the kernel will first check to see if the page table
entry is valid or not. If it is valid, then the entry can safely be loaded into the TLB. If the page
table entry is not valid, then the Page Table Entry Invalid exception handler needs to be called to
create a valid entry before loading it into the TLB. Thus we only keep valid page table entries in
the TLB. If a page table entry is to be invalidated, the TLB entry needs to be invalidated.

Changes to exceptions: Page Table Entry Invalid exception is not raised by the TLB anymore.

Problem M4.1.E

The solution for Problem M4.1.C ends up taking two exceptions, if the PTE has the combined
valid bit set to invalid. The first exception will be the TLB No Match exception, which will call a
handler. The handler will load the corresponding PTE into the TLB and restart the instruction.
The instruction will cause another exception right away, because the valid bit will be set to
invalid. The exception will be the TLB Entry Invalid exception.

The solution for Problem M4.1.D will only take one exception, because the handler for Page
Table Entry Invalid exception will get called by the TLB Miss handler. When the instruction that
caused the exception is restarted, it will execute correctly, because the handler will have created
a valid PTE and put it in the TLB.

Thus Bud Jet’s solution in M4.1.D will be faster.

Problem M4.1.F

Yes, the R bit can be removed in the same way we removed the V bit in 5.1.D. When loading a
page table entry into the TLB we check if the data page is resident or not. If it is resident, we can
write the entry into the TLB. If it is not resident, we go to the nonresident page handler, loading
the page into memory before loading the entry into the TLB. Thus, we only keep page table
entries of resident pages in the TLB. In order to preserve this invariant, the kernel will have to
invalidate the TLB entry corresponding to any page that gets swapped out. There’s no
performance penalty since the page was going to be loaded in from disk anyway to service the
access that triggered the fault.

Problem M4.1.G

The OS needs to check the permissions before loading the entry into the TLB. If permissions
were violated, then the Protection Fault handler is called. Thus, we only keep page table entries
of pages that the process has permissions to access.

Last updated:
9/22/2021

 3

Problem M4.1.H

Whenever a page table entry is loaded into the TLB the U bit in the page table PTE can be set.
Thus, we do not need the U bit in the TLB entry anymore.

Whenever a Write Fault happens (store and W bit is 0) the kernel will check the page table PTE
to see if the W bit is set there. If it is not set the old Write Fault handler will be called. If the W
bit is set, then the kernel will set the M bit in the PTE, set the W bit in the TLB entry to 1, and
restart the store instruction. Thus, the M bit is not needed in the TLB either, and hence, TLB
entries do not need to be written back to the page table anymore.

Last updated:
9/22/2021

 4

Problem M4.2: Page Size and TLBs

Problem M4.2.A

The L1 index and L2 index fields are the same, but the Page Offset field subsumes the L3 index
and increases to 22 bits.

Problem M4.2.B Page Table Overhead

PTO4KB =
16 KB + 16 KB + 8 KB

=
40 KB

= 1.3% 3 MB 3 MB

PTO4MB = 16 KB + 16 KB = 32 KB = 0.8%
4 MB 4 MB

For the 4KB page mapping, one L3 table is sufficient to map the 768 pages since each contains
1024 PTEs. Thus, the page table consists of one L1 table (16KB), one L2 table (16KB), and one
L3 table (8KB), for a total of 40 KB. The 768 4KB data pages consume exactly 3MB. The total
overhead is 1.3%.

The page table for the 4MB page mapping, requires only one L1 table (16KB) and one L2 table
(16KB), for a total of 32 KB. A single 4MB data pages is used, and the total overhead is 0.8%.

Problem M4.2.C Page Fragmentation Overhead

PFO4KB =
0

= 0% 3 MB

PFO4MB = 1 MB = 33%
3 MB

With the 4KB page mapping, all 3MB of the allocated data is accessed. With the 4MB page
mapping, only 3MB is accessed and 1MB is unused. The overhead is 33%.

L1 index
33 43

L2 index
22 32 21

Page Offset
0

11 bits 11 bits 22 bits

Last updated:
9/22/2021

 5

Problem M4.2.D

Data TLB misses
Page table memory

references (per miss)

4KB: 768 3

4MB: 1 2

The program sequentially accesses all the bytes in each page. With the 4KB page mapping, a
TLB miss occurs each time a new page of the input or output data is accessed for the first time.
Since the TLB has more than 3 entries (it has 64), there are no misses during the subsequent
accesses within each page. The total number of misses is 768. With the 4MB page mapping, all
of the input and output data is mapped using a single page, so only one TLB miss occurs.

For either page size, a TLB miss requires loading an L1 page table entry and then loading an L2
page table entry. The 4KB page mapping additionally requires loading an L3 page table entry.

Problem M4.2.E

1.01´ 10´ 1,000´ 1,000,000´

Although the 4KB page mapping incurs many more TLB misses, with either mapping the
program executes 2M loads, 1M adds, and 1M stores (where M = 220). With the 4MB mapping,
the single TLB miss is essentially zero overhead. With the 4KB mapping, there is one TLB miss
for every 4K loads or stores. Each TLB miss requires 3 page table memory references, so the
overhead is less than 1 page table memory reference for every 1000 data memory references.
Since the TLB misses likely cause additional overhead by disrupting the processor pipeline, a
1% slowdown is a reasonable but probably conservative estimate.

Last updated:
9/22/2021

 6

Problem M4.3: Page Size and TLBs

Problem M4.3.A

If all data pages are 4KB

Address translation cycles = 100 + 100 +100 (for L1, L2 and L3 PTE)

Data access cycles = 4K * 100
(there is no cache, this assumes that memory access is byte-wise)

If all data pages are 1MB

Address translation cycles = 100 + 100 (for L1, L2 PTE)

Data access cycles = 1M * 100
(there is no cache, this assumes that memory access is byte-wise)

Problem M4.3.B

Address translation cycles = (256*3 + 3 + 1) * 100
(Note that the arrays are contiguous and share some PTE entries. 256 L3 PTEs per array * 3
arrays, 1 L2 PTE per array * 3 arrays, 1 L1 PTE)

Data access cycles = 3M*100

Problem M4.3.C

No. For the sample program given, all L3 PTEs are used only once.

Problem M4.3.D

4. (1 for L1 and 3 for L2)

Last updated:
9/22/2021

 7

Problem M4.4: 64-bit Virtual Memory

This problem examines page tables in the context of processors with a 64-bit addressing.

Problem M4.4.A Single level page tables

12 bits are needed to represent the 4KB page. There are 64-12=52 bits in a VPN. Thus, there are
252 PTEs. Each is 8 bytes. 252 * 23 = 255, or 32 petabytes!

Problem M4.4.B Let’s be practical

22 segments * 2(44-12) virtual pages = 234 PTEs. 23 (bytes/PTE) * 234 PTEs = 237 bytes.

It is possible to interpret the question as there being 3 segments of 244 bytes. Thus we’d need:

3 segments * 2(44-12) virtual pages = 233 + 232 PTEs. 23*(233+ 232) = 236 + 235 bytes.

Problem M4.4.C Page table overhead

The smallest possible page table overhead occurs when all pages are resident in memory. In this
case, the overhead is

8(211 + 211*211 + 211*211*210) / 244 » 235 / 244 » 1 / 29

The largest possible page table overhead occurs when only one data page is resident in memory.
In this case, we need 1 L0 page table, 1 L1 page table, 1 L2 page table in order to get data page.
Thus the overhead is:

8(211 + 211 + 210) / 212 = 10

Problem M4.4.D PTE Overhead

PPN is 40-12=28 bits. 28+1+1+3=33 bits.

There are 31 wasted bits in a 64 bit page table entry. It turns out that some of the “wasted” space
is recovered by the OS to do bookkeeping, but not much.

Last updated:
9/22/2021

 8

Problem M4.4.E Page table implementation

The top level has 1024 = 210 entries. Next level also has 1024 = 210 entries. The 3rd level has 512
= 29 entries. So the table is as follows:

Index Length (bits)
Top-level (“page directory”) 10
2nd-level 10
3rd-level 9

Problem M4.4.F Variable Page Sizes

Minimum = 4KB * 64 = 256KB
Maximum = 16MB * 64 = 1GB

Problem M4.4.G Virtual Memory and Caches

Alyssa’s suggestion solves the homonym problem. If we add a PID as a part of the cache tag, we
can ensure that two same virtual addresses from different processes can be distinghuished in the
cache, because their PIDs will be different.

Putting a PID in the tag of a cache does not solve the synonym problem. This is because the
synonym problem already deals with different virtual addresses, which presumably would have
different tags in the cache. In fact, those two virtual addresses would usually belong to different
processes, which would have different PIDs.

Ben is wrong in thinking that changing the cache to be direct mapped helps in any way. The
homonym problem still happens, because same virtual addresses still receive the same tags. The
synonym problem still happens because two different virtual addresses still receive different
tags.

One way to solve both these problems is to make the cache physically tagged, as described in
Lecture 5.

Last updated:
9/22/2021

 9

Problem M4.5: Virtual Memory and Caches (Spring 2019 Quiz 1, Part B)

Problem M4.5.A

Consider a direct-mapped cache with 64-byte blocks and 4 sets. The table below shows a
timeline of how the cache metadata (tags and valid bits) changes after a series of memory
accesses. The leftmost column indicates the address of the memory access, and the rest of the
row should indicate the metadata after the access is performed. If an access misses in the cache,
the processor fetches the corresponding data from memory and brings it into the cache.

Fill in the table below by showing how cache metadata changes after each access. If an entry
remains unchanged after the memory access, you may leave that entry blank. As an example, we
have filled in the corresponding entries for the first memory access (0xA4C1).

State
Set 0 Set 1 Set 2 Set 3

Valid Tag Valid Tag Valid Tag Valid Tag
Initial
state 0 - 0 - 0 - 0 -

After
0xA4C1 1 0xA4

After
0x2673 1 0x26

After
0xB51A 1 0xB5

After
0xA4FF

After
0x4232 1 0x42

The 16-bit address is divided into 6 bits of block offset, 2 bits of index, and 8 bits of tag. So, we
use the top 2 bits of the second to last nibble to calculate the set the access belongs to.

Access to 0xA4FF is a cache hit, so it does not change any tag or valid bit.

Last updated:
9/22/2021

 10

Problem M4.5.B

For the same memory access pattern, fill in the table below for a 2-way set-associative cache
with 128-byte blocks and 2 sets. Assume that the cache uses a least recently used (LRU)
replacement policy (the table does not include LRU metadata). Again, we have filled in the
appropriate entries for the first memory access.

State

Set 0 Set 1

Way 0 Way 1 Way 0 Way 1

Valid Tag Valid Tag Valid Tag Valid Tag
Initial
state 0 - 0 - 0 - 0 -

After
0xA4C1 1 0xA4

After
0x2673 1 0x26

After
0xB51A 1 0xB5

After
0xA4FF

After
0x4232 1 0x42

LRU policy means that we kick out the older entry within Set 0, which is the entry containing the
tag 0x26.

Last updated:
9/22/2021

 11

Problem M4.5.C

Ben Bitdiddle recently bought a processor that has 16-bit virtual addresses. The following
figure shows the virtual address format:

What is the size of a page in this system?

2^8 = 256B page

Problem M4.5.D

Ben’s processor has an 8-entry direct-mapped TLB.

Ben writes the program below, which sums the entries of matrix. A has 4 rows and 256 columns,
holding 32-bit integers in row-major order (i.e., consecutive elements on the same row are in
contiguous memory locations). Assume that A starts at virtual address 0x0000, and sum is
already held by a register. Ignore instruction fetches.

int sum = 0;
for (int i = 0; i < 256; i++)
 for (int j = 0; j < 4; j++)
 sum += A[j][i];

(a) How many TLB misses will this program incur?

Since the TLB has 8 entries and is direct-mapped, we use bits 8-10 for indexing into the TLB.
Each row of A is 1KB or 4 pages wide, and we are accessing each page of a different row for
each iteration of the inner loop. Thus, each access is 4 pages apart, meaning that the index to the
TLB alternates between 0 and 4.
So access to the first row causes a miss on the third row, and vice versa (same for rows 2 and 4).
 => 256*4 = 1024 misses

(b) How many misses would the program incur if the TLB were fully associative? Assume a least

recently used (LRU) replacement policy.

Now, there is only a miss the first time you access a page of a given row. So 4 pages * 4 rows =
16 misses.

Last updated:
9/22/2021

 12

Problem M4.5.E

Alyssa P. Hacker suggests that a larger page size would eliminate a majority of misses in the
direct-mapped TLB. What should the minimum page size be to have at most (i.e., ≤) 16 TLB
misses in Ben’s program? Compute the new number of TLB misses for this page size.

Using 512B pages gives us bits 9-11 for the index into the TLB, which now resolves the previous
conflict misses.

Problem M4.5.F

Alyssa takes a look at Ben’s program, and modifies it as follows:

int sum = 0;
for (int i = 0; i < 4; i++)
 for (int j = 0; j < 256; j++)
 sum += A[i][j];

How many TLB misses does this program incur on the 8-entry direct-mapped TLB?

Now you are sequentially streaming through 4KB of data, so a miss only occurs when you
encounter a new page. So it’s 16 misses.

Last updated:
9/22/2021

 13

Problem M4.5.G

Ben modifies the processor to use 18-bit virtual addresses and a two-level hierarchical page
table. The new virtual address format is as follows:

Now, assume that matrix A has 4 rows and 4096 (212) columns. We want to run Ben’s program
with the new matrix A on Ben’s modified processor. Assume that all page tables have been
swapped out to disk, and don’t worry about the pages needed for code.

(a) How many total L1 and L2 page tables will be resident in memory after the loop in Ben’s

program runs? Note that Ben’s program only loops up to column 256, so it no longer traverses
the entire matrix A.

Each row of A is now 16KB (4K entries * 4B), and each page is 1KB. The inner loop of Ben’s
program now iterates over entries 16 pages apart, which means that the L1 index will change for
every access, while the L2 index remains the same. This gives us 1 L1 page table + 4 L2 page
tables = 5 page tables.

(b) Ben now swaps the L1 and L2 index bits as follows:

How many total L1 and L2 page tables will be resident in memory after Ben’s loop with the new
virtual address breakdown?

Now, the L1 index stays the same and the L2 index changes. Since we are always using the same
L1 entry to find the L2 page table, we only bring in 1 L2 page table to memory. Thus, a total of 2
page tables are resident in memory.

Last updated:
9/22/2021

 14

Problem M4.6: Handling TLB Misses

Problem M4.6.A

Virtual address 0x00030 -> Physical address (0x00D40)

VPN PPN

0x0100 0x0F01

0x0003 0x00D4

TLB states

Problem M4.6.B

Virtual address 0x00050 -> Physical address (0x00E20)

VPN PPN

0x0100 0x0F01

0x0101 0x0F02

0x0005 0x00E2

TLB states

Problem M4.6.C

New CPI = 2 + (0.01+0.02)*20 = 2.6

Last updated:
9/22/2021

 15

Problem M4.7: Hierarchical Page Table & TLB (Fall 2010 Part B)

Suppose there is a virtual memory system with 64KB page which has 2-level hierarchical page
table. The physical address of the base of the level 1 page table (0x01000) is stored in a special
register named Page Table Base Register. The system uses 20-bit virtual address and 20-bit
physical address. The following figure summarizes the page table structure and shows the
breakdown of a virtual address in this system. The size of both level 1 and level 2 page table
entries is 4 bytes and the memory is byte-addressed. Assume that all pages and all page tables
are loaded in the main memory. Each entry of the level 1 page table contains the physical
address of the base of each level 2 page tables, and each of the level 2 page table entries holds
the PTE of the data page (the following diagram is not drawn to scale). As described in the
following diagram, L1 index and L2 index are used as an index to locate the corresponding 4-
byte entry in Level 1 and Level 2 page tables.

2-level hierarchical page table

A PTE in level 2 page tables can be broken into the following fields (Don’t worry about status
bits for the entire part).

Last updated:
9/22/2021

 16

Problem M4.7.A

Assuming the TLB is initially at the state given below and the
initial memory state is to the right, what will be the final TLB
states after accessing the virtual address given below? Please
fill out the table with the final TLB states. You only need to
write VPN and PPN fields of the TLB. The TLB has 4 slots
and is fully associative and if there are empty lines they are
taken first for new entries. Also, translate the virtual address
(VA) to the physical address (PA). For your convenience, we
separated the page number from the rest with the colon “:”.

.
VPN PPN
0x8 0x3

Initial TLB states

Virtual Address:

 0xE:17B0 (1110:0001011110110000)

VPN PPN
0x8 0x3
0xE 0x6

Final TLB states

VA 0xE17B0 => PA _________0x617B0__________

Last updated:
9/22/2021

 17

Problem M4.7.B

What is the total size of memory required to store both the level 1 and 2 page tables?

4 * 4 (level 1) + 4 * 4* 4 (level 2) = 80 bytes

Problem M4.7.C

Ben Bitdiddle wanted to reduce the amount of physical memory required to store the page table,
so he decided to only put the level 1 page table in the physical memory and use the virtual
memory to store level 2 page tables. Now, each entry of the level 1 page table contains the
virtual address of the base of each level 2 page tables, and each of the level 2 page table entries
contains the PTE of the data page (the following diagram is not drawn to scale). Other system
specifications remain the same. (The size of both level 1 and level 2 page table entries is 4
bytes.)

Ben’s design with 2-level hierarchical page table

Last updated:
9/22/2021

 18

Assuming the TLB is initially at the state given below and the initial
memory state is to the right (different from M5.8.A), what will be
the final TLB states after accessing the virtual address given below?
Please fill out the table with the final TLB states. You only need to
write VPN and PPN fields of the TLB. The TLB has 4 slots and it is
fully associative and if there are empty lines they are taken first for
new entries. Also, translate the virtual address to the physical
address. Again, we separated the page number from the rest with
the colon “:”.
.

Initial TLB states

Virtual Address:

0xA:0708 (1010:0000011100001000)

VPN PPN
0x8 0x1
0x2 0x1
0xA 0xF

Final TLB states

VA 0xA0708 => PA ____________0xF0708___________

Problem M4.7.D

Alice P. Hacker examines Ben’s design and points out that his scheme can result in infinite loops.
Describe the scenario where the memory access falls into infinite loops.

1. When the TLB is empty
2. When the VPN of the virtual address and the VPN of the level 1 page table entry are the

same

VPN PPN
0x8 0x1

Last updated:
9/22/2021

 19

Problem M4.8: Caches and Virtual Memory (Spring 2015 Quiz 1, Part B)

Problem M4.8.A

1.

Access 0 1 2 3 4 5 6 7 8 9 10 11
Address A B C D A B C D A B C D

Entry 1 - A A C C A A C C A A C
Entry 2 - - B B D D B B D D B B

Hit? N N N N N N N N N N N N

 What is the long-term miss ratio under LRU? 100%

2.

Access 0 1 2 3 4 5 6 7 8 9 10 11
Address A B C D A B C D A B C D

Entry 1 - A A A A A B C C C C C
Entry 2 - - B C D D D D D A B B

Hit? N N N N Y N N Y N N Y N

 What is the long-term miss ratio under optimal replacement? 66% (2/3)

3. Yes, MRU (Most Recently Used) achieves the same miss ratio since a data that has been
most recently hit in the cache will be accessed the latest.

Last updated:
9/22/2021

 20

Problem M4.8.B

1. First divide the 16 address bits into the tag, index, and block offset bits. Since there are
128=2^7 bytes per block, we have 7 block offset bits. 8 sets similarly gives us 3 index
bits. Thus, bits 7-9 will be our index bits, which is 1112 .

Index
Cache Contents

Way 0 Way 1 Way 2 Way 3
0
1
2
3
4
5
6
7 X X X X

2. Now, given the physical address, we must figure out which bits of the virtual address we
can know for sure. Since we have 256-byte pages, we have 8 bits of page offset. Since the
page offset is the same between virtual and physical addresses, we know that the last 8
bits of our virtual address will be 0xCD, while not knowing anything about the upper 8
bits. Thus, this gives us index bits xx12, where x denotes bits we do not know. Thus, all
odd rows of the cache are potential places where the data could reside.

Index
Cache Contents

Way 0 Way 1 Way 2 Way 3
0
1 X X X X
2
3 X X X X
4
5 X X X X
6
7 X X X X

Last updated:
9/22/2021

 21

3. Now, the index bits are contained entirely within the offset bits, and thus bits 7-9 of the
virtual address are the same as those of the physical address (i.e. 1112).

Index
Cache Contents

Way 0 Way 1 Way 2 Way 3
0
1
2
3
4
5
6
7 X X X X

Problem M4.8.C

1.

TLB entry Possible locations

L Tag PPN
0 10101 0x47

0xABBA = 1010 1011 1011 1010
0x47BA = 0100 0111 1011 1010

VPN = 1010 1011
PPN = 0100 0111
Page offset = 1011 1010

Index to TLB = 011 (from VPN bit 8-10)
Tag = 10101 (from VPN bit 11-15)

 Way 0 Way 1
0
1
2
3 X X
4
5
6
7

Last updated:
9/22/2021

 22

2.

TLB entry Possible locations

L Tag PPN
1 10101 0100 01

0xABBA = 1010 1011 1011 1010
0x47BA = 0100 0111 1011 1010

VPN = 1010 10
PPN = 0100 01
Page offset = 11 1011 1010

Index to TLB = 000 (from VPN bit 10 + 00)
Tag = 10101 (from VPN bit 11-15)

3. 2*2*1K page + 6*2*256 page = 7K

4. Problem: Padding zeros limits large pages to locate only in entry 0 and 4.
Do not pad index bits with 00 for large pages but use the first 3 bits from the VPN of
large pages.
Fixed reach: 8*2*1K page = 16K

 Way 0 Way 1
0 X X
1
2
3
4
5
6
7

Last updated:
9/22/2021

 23

Problem M4.9: Caches and Virtual Memory (Spring 2016 Quiz 1, Part B)

Problem M4.9.A

What is the page size of Ben’s machine? __________256 bytes__________

Demarcate the physical address into the following fields: Physical Page Number (PPN), Page
Offset

Problem M4.9.B

In steady state, how many misses from the TLB will Ben observe per iteration of the while loop
(lines 3, 4) on average, if (state your reasoning):

a) the TLB is direct-mapped _____4_______

The array elements accessed have VPNs 0x0, 0x4, 0x8, 0xC. In a direct-mapped
TLB, these map to the same index and hence the same entry in the TLB. Every access
to each array element, replaces the translation already in the TLB. Hence every access
results in a TLB miss in steady state.

b) the TLB is fully-associative _____0_______

(assume LRU replacement policy)

Here translations to all 4 array elements can reside in the TLB simultaneously. Hence
in steady state, there are no misses in the TLB.

_______ bits ______ bits

PPN Page
Offset

PA 8 8

Last updated:
9/22/2021

 24

Problem M4.9.C

In steady state, how many total memory accesses will Ben observe per iteration of the while
loop (lines 3, 4) on average, if (state your reasoning):

a) the TLB is direct-mapped ____16______

Each of the 4 misses has to do a page walk: 3 memory accesses
Plus 1 memory access for the actual data

b) the TLB is fully-associative ______4______
(assume LRU replacement policy)

TLB accesses hit. So the only memory access is to fetch the data value.

Problem M4.9.D

Alyssa proposes adding a PTC with 1 entry to the processor. Does this addition benefit the code
snippet in Question 2? How many total memory accesses will Ben observe now, if:

a) the TLB is direct-mapped ____8_______

The array elements have the same L1 and L2 index, but differ only in their L3 index.
The PTC caches the translation from [L1 | L2] à L3. Only the very first array access
does the entire page walk. The subsequent accesses (which includes all accesses in
steady state) miss in the TLB, but hit in the PTC. They skip the full page walk,
instead accessing only the L3 table and fetching the data value.

2 + 2 + 2+ 2 = 8

[[2 à L3 table access (1) + fetch data value (1)]]

b) the TLB is fully-associative _____4______
(assume LRU replacement policy)

TLB accesses hit. So the only memory access is to fetch the data value.

Last updated:
9/22/2021

 25

Problem M4.9.E

 Virtually Indexed Physically Indexed

Direct-mapped
(a)

G A, C, E, G

2-way set-
associative (b)

C, G A, C, E, G

Last updated:
9/22/2021

 26

Problem M4.10: Nested paging (Spring 2017 Quiz 1, Part B)

Problem M4.10.A

Assuming the initial memory state is as shown to the right, what is the physical page number
(PPN) of virtual address (VA) 0xB29A0? What is the physical address (PA)? Show and explain
your work for full credit. For your convenience, we separate the page number from the offset
with a colon “:”.

Virtual Address

0xB:29A0 = 0b 1011:0010100110100000

The L1 base PA is 0x02000 (shown in the figure).
The L1 index of the given VA is 2 (0b10).
Since PTP entries are 32 bits (4 bytes), the L1 PTP appears at
0x02000 + 2x4 = 0x02008.
Reading that PA, the base PA of the L2 table is 0x02038.
The L2 index of the given VA is 3 (0b11).
Therefore the L2 PTE appears at 0x02038 + 3x4 = 0x02044.
Reading that PA, the L2 PTE is 0x293A4.
We ignore the 16 status bits and extract page number 2.

VPN 0xB => PPN _____0x2_________

The page offset from the VA doesn’t change, so append the VA offset after PPN 2 to construct the
physical address.

VA 0xB29A0 => PA ____0x229A0_________

Last updated:
9/22/2021

 27

Problem M4.10.B

Ben starts his foray into virtualization by thinking about gPA=>hPA translation.

a) Assuming Ben’s host physical memory has the same snapshot as in Question 1, what is the

host physical address (hPA) of guest physical address (gPA) 0xB29A4? Explain.

As stated in the Nested Paging handout, a gPA appears to the host system as a host virtual
address. Therefore, gPA 0xB29A4 is an address 4 bytes higher than the (host) virtual address
of Question 1, and its (host) PPN remains the same: 2. We append page offset 0x29A4 to that
PPN.

gPA 0xB29A4 => hPA ____0x229A4__________

b) Assuming no TLB, how many accesses to host physical memory are required to access the data

associated with a gPA (i.e., perform the gPA=>hPA translation and fetch the data)? Explain.

Three. No different than accessing the data associated with a host virtual address.

One indexed access into the host L1 table
One indexed access into the host L2 table, (i.e. two for gPA=>hPA translation)
One to fetch the data at the identified host physical address.

Last updated:
9/22/2021

 28

Problem M4.10.C

Given a guest virtual address (gVA), the first step of a nested page table
walk is to load the relevant guest L1 page table PTP. This provides the
base gPA of the guest L2 table. Ben is shocked at how much work is
required!

a) Assume host physical memory is initialized as in Question 1 and as

shown to the right, the Guest Table Base Address register holds
0xB29A0 (a gPA), and the Host Table Base Address register holds
0x02000 (a hPA). During a nested page table walk of guest virtual
address (gVA) 0x61EAC, what are the contents of the guest L1 page
table PTP entry? For your convenience, we separate the page
number from the offset with a colon “:”.

Guest Virtual Address (gVA)

0x6:1EAC = 0b 0110:0001111010101100

The guest L1 base gPA is 0xB29A0.
The L1 index of the given gVA is 1 (0b01).
PTP entries are 4 bytes, so the guest L1 PTP appears at
gPA 0xB29A0 + 4 = 0xB29A4.
From Question 2, this corresponds to hPA 0x229A4.
Reading that hPA, we find the contents of the Guest L1 Table PTP

Guest L1 Table PTP = ___0xA74CC_________

b) Assume no TLB. Starting from some gVA, how many accesses to host physical memory are

required to determine the guest L1 PTP entry of a guest virtual address (gVA)? Explain.

Three.

We can determine the gPA of the guest L1 PTP entry with zero memory accesses:
add the gVA L1 index offset to the Guest Table Base Address (which appears in a register).

Given this gPA of the L1 PTP entry, we must load its data. From Q2b, 3 accesses to host
physical memory are required to fetch the data of a gPA.

Address (PA)
0x0:2000 0x0:2048
0x0:2004 0x0:2010
0x0:2008 0x0:2038
0x0:200C 0x0:2028
0x0:2010 0x1:0084

... ...
0x2:2998 0xD:2E5C
0x2:299C 0x3:A000
0x2:29A0 0x6:010C
0x2:29A4 0xA:74CC
0x2:29A8 0x7:30B1

... ...
0x5:2994 0x6:11A0
0x5:2998 0xB:F149
0x5:299C 0xC:7BFF
0x5:29A0 0x4:B020
0x5:29A4 0xF:A120

... ...
0xA:299C 0x8:A624
0xA:29A0 0x9:FEED
0xA:29A4 0x2:93A4
0xA:29A8 0xA:7440
0xA:29AC 0x3:FD40
Snapshot of host
physical memory

Last updated:
9/22/2021

 29

Problem M4.10.D

For the 2-level nested page table in the Nested Paging handout, assuming no TLB, how many
accesses to host physical memory are required to perform a guest memory access? (i.e. given a
gVA, find its corresponding hPA and fetch the data). Explain.

Nine.

Load the guest L1 PTP (from a gPA), whose data is the gPA of the guest L2 table’s base.
Load the guest L2 PTE (from a gPA), whose data is the gPA of the data to be fetched.
Load the data (from a gPA).

Each load of these three gPAs requires 3 accesses to fetch the data.

Problem M4.10.E

For an M-level hierarchical guest page table and an N-level hierarchical host page table,
assuming no TLB, how many accesses to host physical memory are required to perform a guest
memory access? (i.e. given a gVA, find its corresponding hPA and fetch the data). Explain.

(M+1) (N+1)

Generalizing Q2b, any gPA=>hPA translation requires walking the N levels of the host page table
(which consists exclusively of hPAs, and therefore accesses to host physical memory). Given the
data’s hPA, one more access is required to fetch the data: (N+1) accesses to fetch the data of a
gPA.

The gVA=>gPA translation requires walking the M levels of the guest page table. The guest page
table consists of gPAs. Each level of the walk requires accessing a gPA and fetching its data (to
find the gPA address of the next level’s base table), so the gVA=>gPA translation requires
M(N+1) accesses to host physical memory.

Given the final gPA of the gVA, one more gPA access is required to fetch the data, which requires
N+1 accesses.

M(N+1) + N+1

