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Computer System Architecture  
6.5900 Quiz #1 

October 13th, 2023 
 
 
 

 
Name: ___________________________        

 
This is a closed book, closed notes exam. 

80 Minutes 
 17 Pages (+2 Scratch) 

 
Notes: 
• Not all questions are of equal difficulty, so look over the entire exam and 

budget your time carefully. 
• Please carefully state any assumptions you make. 
• Show your work to receive full credit. 
• Please write your name on every page in the quiz. 
• You must not discuss a quiz's contents with other students who have not 

yet taken the quiz. 
• Pages 18 and 19 are scratch pages. Use them if you need more space to 

answer one of the questions, or for rough work. 
 
 
  

     
   Part A  ________     40 Points 
   Part B  ________     25 Points 
   Part C  ________     35 Points 

    
TOTAL          ________  100 Points 
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Part A: Caches and Virtual Memory (40 Points) 
 
Question 1 (5 points) 
 
Consider a 2-way set-associative cache with 128-byte blocks and 2 sets. The table below 
shows a timeline of how the cache metadata (valid bit (V), dirty bit (D), and tags) changes 
after a series of memory accesses. The leftmost column indicates the address of the memory 
access and whether they are reads (R) or writes (W), and the rest of the row should indicate 
the metadata after the access is performed.  
 
Fill in the table below by showing how cache metadata changes after each access. If an 
entry remains unchanged after the memory access, you may leave that entry blank. Assume 
that the cache uses a least recently used (LRU) replacement policy (the table does not 
include LRU metadata). As an example, we have filled in the corresponding entries for the 
first memory access (0xA4C1). 
 

State 

Set 0 Set 1 

Way 0 Way 1 Way 0 Way 1 

V D Tag V D Tag V D Tag V D Tag 
Initial 
state 0 - - 0 - - 0 - - 0 - - 

After R 
0xA4C1       1 0 0xA4    

After W 
0x2673 1 1 0x26          

After W 
0xB51A    1 1 0xB5       

After R 
0xA4C0       1 0 0xA4    

Note that the last access is a hit on Set 1, Way 0. 
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Question 2 (3 points)  
 
Ben Bitdiddle recently bought a processor that has 16-bit virtual addresses. The following 
figure shows the virtual address format: 

 
 
What is the size of a page in this system, in bytes? 
 
128B 
 
 
Question 3 (10 points) 
 
Ben’s processor has an 8-entry direct-mapped TLB. The TLB is indexed by the lowest 
order bits of the virtual page number. 
 
Ben writes the program below, which operates on a matrix A. A has 4 rows and 256 
columns. Each element of A is a 32-bit integer, and elements are laid out in row-major 
order (i.e., consecutive elements of the same row are in contiguous memory locations).  
The program sums the entries of a top-right submatrix B of matrix A. Assume that A starts 
at virtual address 0x0000, and sum is stored in a register. Ignore instruction fetches. 
 
  int sum = 0;  
  for (int i = 0; i < H; i++) 
    for (int j = 0; j < W; j++) 

 sum += A[i][j]; 
 
 
 
 
 
 
(a) (2 points) How many TLB misses will this program incur for H = 4, W = 256 (i.e., 

when B = A)? 
  
A consists of 32 contiguous 128B pages. We all elements in A only once in the order they 
are laid out in memory. So there will be 32 misses. 
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(b) (2 points) How many pages does a row of A occupy? 
  
8 Pages 
 
 
 
 
 
 
 
 
 
 
(c) (3 points) What is the minimum TLB hit rate (i.e., TLB hits divided by number of 

accesses) that this program can have? What values of H and W cause this minimum? 
Specify all values of H and W that cause this. 

 
W = 1 achieves the minimum hit rate of 0 for all possible H. Any W > 1 introduces 
additional accesses to a page already cached by the TLB. 
 
 
 
 
 
 
 
 
 
(d) (3 points) What is the maximum TLB hit rate this program can achieve? What values 

of H and W achieve this maximum? Specify all values of H and W that achieve this. 
 
Remember that a page contains 32 elements of matrix A. Max hit rate is having 1 miss to 
bring the page to the TLB, followed by 31 hits to it i.e., 31/32.  
 
To achieve this, we need W = 32*N where 0 < N <= 8, and H can be any value. 
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Question 4 (6 points) 
 
Alyssa P. Hacker suggests that a larger page size would eliminate most of misses in the 
direct-mapped TLB for Ben’s program. 
 
(a) (3 points) For what values of H and W will the TLB hit rate not improve with pages 

that are double the size? Specify all values of H and W that achieve this. 
 
Now each page contains 64 elements, and a row of A consists of 4 pages. 
 
For W <= 32 and any H, we will have the same number of hits as with smaller pages 
since having a larger page doesn't reduce compulsory misses.  
 
 
 
 
 
 
 
 
 
 
 
 
(b) (3 points) What is the minimum page size that will cause Ben’s program to incur at 

least one TLB hit for all values of H and W such that H*W > 1? Assume page sizes 
must be a power of 2. 

 
An easy way to solve this is thinking about the scenario where we had the minimum (0) 
hit rate for Question 4(b). There, accessing only one element per column resulted in no 
reuse because elements in different columns belonged to different pages. 
 
Thus, the minimum page size to ensure that we have at least one TLB hit is a size greater 
than 1024B. Since we assume that page sizes grow in powers of two, that is 2048B. 
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Question 5 (6 points) 
 
Alyssa modifies Ben’s program as follows, swapping the order of the two nested loops: 
 

int sum = 0; 
for (int j = 0; j < W; j++) 
  for (int i = 0; i < H; i++) 
    sum += A[i][j]; 

 
(a) (3 points) Does Alyssa’s program have a better TLB hit rate than Ben’s? 
 
 
No. Alyssa's access pattern will, for the given column, always access four different pages 
that map to the same entry in the direct-mapped TLB (i.e., conflict misses). 
 
 
 
 
 
 
 
 
 
 
 
 
(b) (3 points) Assume W=8. For which values of H will doubling the page size improve 

the TLB hit rate of Alyssa’s program? 
 
H >=2. By doubling the page size TLB entries conflict between the first and third row, 
and between the second and fourth row. 
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Question 6 (10 points) 
 
Ben’s processor uses a two-level hierarchical page table. The virtual address format is as 
follows: 
 

 
 
Assume that all page tables have been swapped out to disk, and do not worry about the 
pages needed for code. 
 
The L2 index is three bits wide. Thus, one L2 page table contains 8 page table entries. 
 
(a) (2 points) How many L2 page tables does accessing a row of A cover? 

 
1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) (2 points) How many unique page table entries are accessed when scanning the entire 
matrix A? Include both L1 and L2 page table entries. 

 
Recall that A consists of 32 contiguous pages, so that's 32 L2 entries or 4 L2 page tables. 
To index those tables we need 4 L1 entries, for a total of 36. 
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(c) (3 points) What is the minimum submatrix size (= H*W) that will cause at least four 

L2 page table pages to be resident in memory after the program runs? Specify all values 
of H and W that achieve this. 

 
We need to access elements such that we access four pages with different L1 bits, which 
means that we access page 0, 8, 16, and 24. The minimum submatrix that achieves this is  
size 4, where H = 4 and W = 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(d) (3 points) What is the maximum submatrix size that will cause exactly one L1 page 

table to be resident in memory after the program runs? Specify all values of H and W 
that achieve this. 

 
H = 4 and W = 256 
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Part B: Out-of-Order Processor (25 points) 
 
Question 1 (20 points) 
 
This question uses the out-of-order machine described in the Quiz 1 Handout.  We describe 
events that affect the initial state shown in the handout. Label each event with one of the 
actions listed in the handout. If you pick a label with a blank (_____), you also have to fill 
in the blank using the choices (i—vii) listed below. If you pick “R. Illegal action”, state 
why it is an illegal action. If in doubt, state your assumptions. 
 
Example: I10 finishes execution and writes its result to physical register FP4. 
Answer: (G): Write a speculative value using greedy data management. 
(You can simply write “G”.) 
 
(a) Assume physical register P11 becomes available and holds a value of 1. Instruction 

I9 executes and finds that the branch is taken. 
 
(K, iii): Check the correctness of a speculation on branch direction and find a correct 
speculation 
 
 

(b) Assume all instructions up to I5 commit. I6 commits, clears the valid bit of integer 
physical register P7, and adds P7 to the free list. 
 
(Q): Commit correctly speculated instruction, and free log associated with greedily 
updated values 
 
 

(c) Assume P6 is written by I5 and I5 finishes execution. I7 is issued, reading physical 
registers P4 and P6. 
 
(B, i): Satisfy a dependence on register value by bypassing a speculative value 
 
 
 

(d) Assume F10 becomes available, I10 is issued, and generates an exception due to 
division by zero. The processor flushes the contents of both reservation stations and 
starts fetching from the earliest uncommitted instruction. No other action is taken.  
 
(R): Illegal or broken action 
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(e) Assume I14 writes to x5. I14 is allocated in the integer reservation station and the 
commit queue, grabs a new physical register P8 from the free list, and updates the 
integer rename table entry of x5 to P8. 
 
(G): Write a speculative value using greedy data management 
 
 
 
 

(f) Assume FP10 becomes available, and that the FDIV unit is unpipelined. I10 cannot 
be issued because the FDIV unit is currently occupied by I12. 
 
(A, vii): Satisfy a dependence on functional unit by stalling 
 
 

(g) Assume instruction I14 is a conditional branch. The branch predictor is consulted in 
the decode stage, which predicts taken. The processor starts fetching the next 
instruction from the target address of the branch.  
 
(E, iii): Satisfy a dependence on branch direction by speculation using a dynamic 
prediction 
 
 

(h) Assume all instructions up to I9 commit. The snapshot of the rename table associated 
with branch I9 is freed. 
 
(Q): Commit correctly speculated instruction, and free log associated with greedily 
updated values 
(R): because  it is ambiguous whether I9 committed. 
 
 

(i) Assume instruction I14 is an addi x3, x3, 1 instruction, and is allocated in the 
integer reservation station and the commit queue. The instruction reads physical 
register P2 when it is issued. 
 
(B, i): Satisfy a dependence on register value by bypassing a speculative value. 
(C, i): Also OK, because we don’t specify the state of I7 when I14 is issued. 
 
 

(j) Instruction I15 has no entry in the BTB, so the next instruction is fetched from address 
0xd8. 
 
(D, ii): Satisfy a dependence on PC value by speculation using a static prediction 
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Question 2 (5 points) 
 
We profile a program that has 50% integer and 50% floating point instructions. We find 
that integer and floating-point instructions have the average latencies listed below, when 
given infinite reservation station and commit queue sizes: 
 
 Integer Floating-Point 
Decode to Issue 3 cycles 6 cycles 
Decode to Commit 8 cycles 20 cycles 
FU latency 2 cycles 12 cycles 

  
If the processor commits 0.5 instruction per cycle on average for the program, how many 
entries are occupied on average in the reservation stations and the commit queue? 
 
We use little's law for each of the structures: occupancy (N) = throughput (T) * latency 
(L)  
 
First, T_int = T_fp = 0.25 instructions/cycle. 
 
For integer reservation station, latency is 3 cycles, so total occupancy is 0.75 
For fp reservation station, latency is 6 cycles, so total occupancy is 1.5 
 
For commit queue we need to think of occupancy per operation type, then aggregate 
them. 
 
latency of integer instructions is 8 cycles, so occupancy is 8 * 0.25 = 2. 
latency of fp instructions is 20 cycles, so occupancy is 20 * 0.25 = 5. 
 
So total commit queue occupancy is 2 + 5 = 7. 
 
 
 
 
 
 
 
 
 
 
 
 

Integer Reservation Station: ______0.75_______ 
Floating-Point Reservation Station: ______1.5_______ 

Commit Queue: ______7_______ 
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Part C: Branch Prediction and Predication for Complex 
Pipelines (35 points) 
 
Ben Bitdiddle is designing a branch predictor for a pipelined in-order processor with the 
following stages. 
 

 
The processor has the following characteristics: 

• Issues at most one instruction per cycle. 
• Branch addresses are known at the end of the B stage. 
• Branch conditions (taken / not taken) are known at the end of the E stage. 

 
In this pipeline, control flow instructions work as follows: 

• The A stage fetches the instruction at PC+4 by default. 
• In the B stage (Branch Address Calculation/Begin Decode), conditional branch 

instructions (e.g., BLE/BNE) look up the predictor. If a branch is predicted to be 
taken, later instructions are flushed and the PC is redirected to the calculated branch 
target address. 

• JAL instructions simply perform the jump to the target address in the B stage, 
flushing all later instructions in the pipeline. Do not worry about how JALR is 
implemented. 

 
 
 
 
 
  

Branch 
Predictor

A
F1
F2
B
D
J
R
E

Address (PC) generation

Instruction Fetch Stage 1

Instruction Fetch Stage 2
Branch Address Calculation / Begin Decode

Complete Decode

Steer Instructions to Functional Units

Register File Read

Execute... Remainder of execution pipeline
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Question 1 (5 points) 
 
Fill out the following table. List all possible predictions the branch predictor can make for 
conditional branches (one per row). Then, fill the corresponding columns with the number 
of instructions flushed for each of the branch outcomes. Assume that branches go through 
the pipeline without any stalls or queueing delays. 
 
 

 
 
 
  

 # Instructions Flushed 
Prediction Taken Not Taken 

 
Taken 

 
Not Taken 

 
 
 
 
 
 
 
 
 

 
3 
 
7 

 
7 
 
0 
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For the following questions, consider the following C code and its RISC-V assembly 
equivalent. Note that there are no branches other than the ones listed explicitly in the 
assembly code: 
 
C code: 
 
int X[1000000]; 
int a, b; 
... 
for (int i = 1000000; i > 0; i--) { 
    a = X[i]; 
    ... 
    // Some work independent of a or b 
    ... 
    if (a >= 0) { 
        b += b + b; 
    } else { 
        b += b * b; 
    } 
} 
 
RISC-V assembly: 
 
# x1, x2, and x3 contain values of &X, a, and b respectively. 
_loop:  LW      x2, 0(x1) 
        ADDI    x1, x1, -1 
        ... 
        # Some work independent of a or b 
        ... 
B1:     BLT     x2, x0, _else 
        ADD     x3, x3, x3 
        JAL     x0, B2 
_else:  MUL     x3, x3, x3 
B2:     BNE     x1, x0, _loop 
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Question 2 (4 points) 
 
Assume that branch B1 is always Not Taken, and the predictor predicts all branches as 
Taken. On average, how many instructions will be flushed by the processor per iteration of 
the loop? 
 
We go through 2 conditional branches, for which the first one we mispredict as taken. In 
addition, the unconditional JAL is taken, so that's another 3 instructions flushed. So the 
total # flushed is 7 + 3 + 3 = 13 cycles. 
 
 
Question 3 (4 points) 
 
Ben's branch predictor consists of a single branch history table (BHT) that is indexed with 
the bottom 10 bits of the PC. Each entry in the table is a 1-bit counter that predicts taken if 
1, and not taken if 0. The actual branch outcome updates the table at the end of the execute 
stage (1 if Taken, 0 if Not Taken). 
 
Assume that the contents of array X are uniformly random between [-101, 100]. Will 
Ben's predictor have a high or low prediction accuracy for the two branches B1 and B2? 
Explain your answer. 
 
B2 is pretty obvious (always taken). B1 will only be predicted ~50% correct because the 
branch direction is entirely random. 
 
 
 

Branch B1:     High    /    Low 
Branch B2:     High    /    Low 

 
Question 4 (4 points) 
 
Is there a design that can achieve significantly higher accuracy than the BHT for both 
branches given the assumption about X from Question 3? If so, describe the design briefly, 
stating how prediction works and how the prediction structures are updated after branch 
resolution. If not, briefly explain why it's not possible. 
 
It's not possible to be meaningfully better. B2 is already predicted perfectly by the simple 
BHT, and we cannot achieve anything higher than 50% for the completely random 
branch B1. 
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Ben now wants to add support for predication (see the predication handout for details). To 
do so, he adds a predicate register file (PRF). Instructions that set the predicate write to the 
PRF in the writeback stage. Predicated instructions also read the PRF in the writeback 
stage. If the predicate register is set, the predicated instruction writes back its result to the 
register file. Otherwise, the instruction doesn’t write back its result to the register file 
(effectively becoming a NOP). 
 
Question 5 (8 points) 
 
Rewrite the previous RISC-V assembly code to use predication instead of the B1 branch. 
You may change only the code within the red box. You should use the minimum number 
of instructions possible in your solution. 
 
            SETPGE  x2, x0, p0 
      (p0)  ADD     x3, x3, x3 
      (!p0) MUL     x3, x3, x3 
B2:         BNE     x1, x0, _loop 
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Assume that Ben’s processor uses the branch predictor design from Question 3 for the 
following questions. 
 
Question 6 (4 points) 
 
Assume that branch B1 is not taken. How many instructions will be flushed by the 
processor per iteration of the loop for your predicated code? 
 
Now there's a single conditional branch which is always taken (and predicted taken) so 3 
instructions will be flushed per iteration. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Question 7 (6 points) 
 
Assume that the contents of array X are uniformly random between [-101, 100], like in 
Question 3. Do you think replacing the B1 branch with predication will improve overall 
performance? Justify your reasoning. For full points, explain how many cycles on average 
using predication would save over keeping the branch (or vice versa). 
 
Yes, it will improve performance, but we will need to calculate exactly how much. We 
only need to examine B1 branch since the cost for B2 branch will be the same. 
 
In the original code, there are 4 possibilities for B1, all of which have different total # of 
instructions flushed: 
 
taken & predicted taken: 3 instructions 
taken & predicted not taken: 7 instructions 
not taken & predicted taken: 10 instructions (+3 due to JAL) 
not taken & predicted not taken: 3 instructions (+3 due to JAL) 
 
these are all equally likely, so total average # instructions flushed is 23/4.  
 
In contrast, predication makes the processor execute 1 more instruction in case of branch 
taken, so there is a 0.5 cycle overhead. So total benefit is 23/4 - 0.5 = 21/4 cycles. 
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Scratch Space 
 
Use these extra pages if you run out of space or for your own personal notes. We will not 
grade this unless you tell us explicitly in the earlier pages. 
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Scratch Space 
 
 
 


