
Last updated:
10/30/2021

Problem M10.1: Multithreading

Problem 10.1.A

Since there is no penalty for conditional branches, instructions take one cycle to execute unless
there is a dependency problem. The following table summarizes the execution time for each
instruction. From the table, the loop takes 104 cycles to execute.

Instruction Start Cycle End Cycle
LW R3, 0(R1) 1 100
LW R4, 4(R1) 2 101
SEQ R3, R3, R2 101 101
BNEZ R3, End 102 102
ADD R1, R0, R4 103 103
BNEZ R1, Loop 104 104

Problem M10.1.B

If we have N threads and the first load executes in cycle 1, SEQ, which depends on the load,
executes in cycle 2N + 1. To fully utilize the processor, we need to hide the 100-cycle memory
latency, 2N + 1 101. The minimum number of thread needed is 50.

Problem M10.1.C

 Throughput Latency

Better ✔

Same

Worse ✔

Problem M10.1.D

In steady state, each thread can execute 6 instructions (SEQ, BNEZ, ADD, BNEZ, LW, LW).
Therefore, to hide 99 cycles between the second LW and SEQ, a processor needs ⌈99/6⌉+1 = 18
threads.

Last updated:
10/30/2021

Problem M10.2: Multithreaded architectures

Problem M10.2.A
4, since the largest latency for any instruction is 4.

Problem M10.2.B
2/12 = 0.17 flops/cycle, on average we complete a loop every 12 cycles

Problem M10.2.C
Yes, we can hide the latency of the floating point instructions by moving the add instructions in
between floating point and store instructions – we’d only need 3 threads. Moving the third load up
to follow the second load would further reduce thread requirement to only 2.

Last updated:
10/30/2021

Problem M10.3: Multithreading

Problem M10.3.A

Fixed Switching: _________6________ Thread(s)

If we have N threads and L.D. executes in cycle 1, FADD, which depends on the load executes in
cycle 2N + 1. To fully utilize the processor, we need to hide 12-cycle memory latency, 2N + 1
13. The minimum number of thread needed is 6.

Data-dependent Switching: ________4_________ Thread(s)

In steady state, each thread can execute 4 instructions (FADD, BNE, LD, ADDI). Therefore, to
hide 11 cycles between ADDI and FADD, a processor needs 11/4 + 1 = 4 threads.

Problem M10.3.B

Fixed Switching: ________2_________ Thread(s)

Each FADD depends on the previous iteration's FADD. If we have N threads and the first FADD
executes in cycle 1, the second FADD executes in cycle 4N + 1. To fully utilize the processor, we
need to hide 5-cycle latency, 4N + 1 6. The minimum number of thread needed is 2.

Data-dependent Switching: ________2_________ Thread(s)

In steady state, each thread can execute 4 instructions (FADD, BNE, LD, ADDI). Therefore, to
hide 2 cycles between ADDI and FADD, a processor needs 2/4 + 1 = 2 threads.

Last updated:
10/30/2021

Problem M10.3.C

Consider a Simultaneous Multithreading (SMT) machine with limited hardware resources.
Circle the following hardware constraints that can limit the total number of threads that the
machine can support. For the item(s) that you circle, briefly describe the minimum requirement
to support N threads.

(A) Number of Functional Units Since not all the treads are executed in each cycle, the number

of functional unit is not a constraint that limits the total
number of threads that the machine can support.

(B) Number of Physical Registers We need at least [N (number of architecture registers) + 1]
physical registers.

(C) Data Cache Size This is for performance reasons.
(D) Data Cache Associatively This is for performance reasons.

Last updated:
10/30/2021

Problem M10.4: Multithreading (Spring 2015 Quiz 2, Part D)

Consider the following instruction sequence.

Assume that memory operations take 4 cycles (i.e., if instruction I1 starts execution at cycle N,
then instructions that depend on the result of I1 can only start execution at or after cycle N+4);
multiply instructions take 6 cycles; and all other operations take 1 cycle. Assume the multiplier
and memory are pipelined (i.e., they can start a new request every cycle). Also assume perfect
branch prediction.

Problem M10.4.A

Suppose the processor performs fine-grained multithreading with fixed round-robin switching: the
processor switches to the next thread every cycle, and if the instruction of the next thread is not
ready, it inserts a bubble into the pipeline. What is the minimum number of threads required to
fully utilize the processor every cycle while running this code?

6 threads to cover the latency between mul and sw
4

 addi r3, r0, 256
loop: lw f1, r1, #0
 lw f2, r2, #0
 mul f3, f1, f2
 sw f3, r2, #0
 addi r1, r1, #4
 addi r2, r2, #4
 addi r3, r3, #-1
 bnez r3, loop

Last updated:
10/30/2021

Problem M10.4.B

Suppose the processor performs coarse-grained multithreading, i.e. the processor only switches to
another thread when there is a L2 cache miss. Will the following three metrics increase or decrease,
compared to fixed round-robin switching? Use a couple of sentences to answer the following
questions.

1) Compared to fixed round-robin switching, will the number of threads needed for the highest
achievable utilization increase or decrease? Why?

It will decrease because the processor will switch less frequently and stall for instructions with
long latency (e.g. mul).

2) Compared to fixed round-robin switching, will the highest achievable pipeline utilization
increase or decrease? Why?

It will decrease because the processor will stall for instructions with long latency (e.g. mul) and
insert bubbles into pipeline.

3) Compared to fixed round-robin switching, will cache hit rate increase or decrease? Why?

It will increase since there will be less threads competing the cache capacity.

