
Last updated:
10/30/2021

Problem M11.1: Synchronization Primitives

One of the common instruction sequences used for synchronizing several processors are the
LOAD RESERVE/STORE CONDITIONAL pair (from now on referred to as LdR/StC pair).
The LdR instruction reads a value from the specified address and sets a local reservation for the
address. The StC attempts to write to the specified address provided the local reservation for the
address is still held. If the reservation has been cleared the StC fails and informs the CPU.

Problem M11.1.A

Describe under what events the local reservation for an address is cleared.

Problem M11.1.B

Is it possible to implement LdR/StC pair in such a way that the memory bus is not affected, i.e.,
unaware of the addition of these new instructions? Explain

Problem M11.1.C

Give two reasons why the LdR/StC pair of instructions is preferable over atomic read-test-
modify instructions such as the TEST&SET instruction.

Problem M11.1.D

LdR/StC pair of instructions were conceived in the context of snoopy busses. Do these
instructions make sense in our directory-based system in Handout #13? Do they still offer an
advantage over atomic read-test-modify instructions in a directory-based system? Please explain.

Last updated:
10/30/2021

Problem M11.2: Implementing Directories

Ben Bitdiddle is implementing a directory-based cache coherence invalidate protocol for a 64-
processor system. He first builds a smaller prototype with only 4 processors to test out the
cache coherence protocol described in Handout #13. To implement the list of sharers, S, kept
by home, he maintains a bit vector per cache block to keep track of all the sharers. The bit
vector has one bit corresponding to each processor in the system. The bit is set to one if the
processor is caching a shared copy of the block, and zero if the processor does not have a copy of
the block. For example, if Processors 0 and 3 are caching a shared copy of some data, the
corresponding bit vector would be 1001.

Problem M11.2.A

The bit vector worked well for the 4-processor prototype, but when building the actual 64-
processor system, Ben discovered that he did not have enough hardware resources. Assume
each cache block is 32 bytes. What is the overhead of maintaining the sharing bit vector for a
4-processor system, as a fraction of data storage bits? What is the overhead for a 64-
processor system, as a fraction of data storage bits?

Overhead for a 4-processor system: ________________________

Overhead for a 64-processor system: _______________________

Last updated:
10/30/2021

Problem M11.2.B

Since Ben does not have the resources to keep track of all potential sharers in the 64-processor
system, he decides to limit S to keep track of only 1 processor using its 6-bit ID as shown in
Figure M11.2-A (single-sharer scheme). When there is a load [C2P_Req(a) S] request for
a shared cache block, Ben invalidates the existing sharer to make room for the new sharer (home
sends a invalidate request [P2C_Req(a) I] to the existing sharer, the existing sharer sends
an invalidate response [C2P_Rep(a) I] to home, home replaces the exiting sharer's ID with
the new sharer's ID and sends the load response [P2C_Rep(a) I S] to the new sharer).

6
Sharer ID

Figure M11.2-A

Consider a 64-processor system. To determine the efficiency of the bit-vector scheme and
single-sharer scheme, fill in the number of invalidate-requests that are generated by the
protocols for each step in the following two sequences of events. Assume cache block B is
uncached initially for both sequences.

Sequence 1 bit-vector scheme

of invalidate-requests
single-sharer scheme

of invalidate-requests
Processor #0 reads B 0 0
Processor #1 reads B
Processor #0 reads B

Sequence 2 bit-vector scheme

of invalidate-requests
single-sharer scheme

of invalidate-requests
Processor #0 reads B 0 0
Processor #1 reads B
Processor #2 writes B

Last updated:
10/30/2021

Page 4 of 31

Problem M11.2.C

Ben thinks that he can improve his original scheme by adding an extra “global bit” to S as
shown in Figure M11.2-B (global-bit scheme). The global bit is set when there is more than 1
processor sharing the data, and zero otherwise.

1 6
0 Sharer ID

 global

 Figure M11.2-B

When the global bit is set, home stops keeping track of a specific sharer and assumes that all
processors are potential sharers.

1 6
1 XXXXXX

 global
 Figure M11.2-C

Consider a 64-processor system. To determine the efficiency of the global-bit scheme, fill in the
number of invalidate-requests that are generated for each step in the following two sequences
of events. Assume cache block B is uncached initially for both sequences.

Sequence 1 global-bit scheme
of invalidate-requests

Processor #0 reads B 0
Processor #1 reads B
Processor #0 reads B

Sequence 2 global-bit scheme
of invalidate-requests

Processor #0 reads B 0
Processor #1 reads B
Processor #2 writes B

Last updated:
10/30/2021

Problem M11.3: Tracing the Directory-based Protocol

For the problem we will be using the following sequences of instructions. These are small
programs, each executed on a different processor, each with its own cache and register set. In the
following R is a register and X is a memory location. Each instruction has been named (e.g., B3)
to make it easy to write answers.

Assume data in location X is initially 0.

Processor A Processor B Processor C
A1: ST X, 1 B1: R := LD X C1: ST X, 6
A2: R := LD X B2: R := ADD R, 1 C2: R := LD X
A3: R := ADD R, R B3: ST X, R C3: R := ADD R, R
A4: ST X, R B4: R:= LD X C4: ST X, R
 B5: R := ADD R, R
 B6: ST X, R

These questions relate to the directory-based protocol in Handout #13 (as well as Lecture 15).
Unless specified otherwise, assume all caches are initially empty and no voluntary responses are
sent (i.e. responses are sent only on receiving a request).

Problem M11.3.A

Suppose we execute Program A, followed by Program B, followed by Program C and all caches
are initially empty. Write down the sequence of messages that will be generated. We have
omitted ADD instructions because they cannot generate any messages. EO indicates the global
execution order.

Processor A Processor B Processor C

Ins EO Messages Ins EO Messages Ins EO Messages

A1 1 <M,A,Req,x,M>
<A,M,Rep,x,I,M,0> B1 4 C1 8

A2 2 B3 5 C2 9

A4 3 B4 6 C4 10

 B6 7

How many messages are generated? ___________________

Last updated:
10/30/2021

Problem M11.3.B

Is there an execution sequence that will generate even fewer messages? Fill in the EO columns
to indicate the global execution order. Also, fill in the messages.

Processor A Processor B Processor C

Ins EO Messages Ins EO Messages Ins EO Messages

A1 B1 C1

A2 B3 C2

A4 B4 C4

 B6

How many messages are generated? ___________________

Problem M11.3.C

Can the number of messages in Problem M11.3.B be decreased by using voluntary responses?
Explain.

Last updated:
10/30/2021

Problem M11.3.D

What is the execution sequence that generates the most messages without any voluntary
responses? Fill in the global execution order (EO) and the messages generated. Partial credit
will be given for identifying a bad, but not necessarily the worst sequence.

Processor A Processor B Processor C

Ins EO Messages Ins EO Messages Ins EO Messages

A1 B1 C1

A2 B3 C2

A4 B4 C4

 B6

How many messages are generated? ___________________

Last updated:
10/30/2021

Problem M11.4: Snoopy Cache Coherent Shared Memory

In this problem, we investigate the operation of the snoopy cache coherence protocol in Handout
#14.

The following questions are to help you check your understanding of the coherence protocol.

• Explain the differences between CR, CI, and CRI in terms of their purpose, usage, and the

actions that must be taken by memory and by the different caches involved.
• Explain why WR is not snooped on the bus.
• Explain the I/O coherence problem that CWI helps avoid.

Problem M11.4.A Where in the Memory System is the Current Value

In Table M11.4-1, M11.4-2, and M11.4-3, column 1 indicates the initial state of a certain address
X in a cache. Column 2 indicates whether address X is currently cached in any other cache. (The
“cached” information is known to the cache controller only immediately following a bus
transaction. Thus, the action taken by the cache controller must be independent of this signal, but
state transition could depend on this knowledge.) Column 3 enumerates all the available
operations on address X, either issued by the CPU (read, write), snooped on the bus (CR, CRI,
CI. etc), or initiated by the cache itself (replacement). Some state-operation combinations are
impossible; you should mark them as such. (See the first table for examples). In columns 6, 7,
and 8 (corresponding to this cache, other caches and memory, respectively), check all possible
locations where up-to-date copies of this data block could exist after the operation in
column 3 has taken place and ignore column 4 and 5 for now. Table M11.4-1 has been
completed for you. Make sure the answers in this table make sense to you.

Problem M11.4.B MBus Cache Block State Transition Table

In this problem, we ask you to fill out the state transitions in Column 4 and 5. In column 5,
fill in the resulting state after the operation in column 3 has taken place. In column 4, list the
necessary MBus transactions that are issued by the cache as part of the transition. Remember, the
protocol should be optimized such that data is supplied using CCI whenever possible, and only
the cache that owns a line should issue CCI.

Last updated:
10/30/2021

Problem M11.4.C Adding atomic memory operations to MBus

We have discussed the importance of atomic memory operations for processor synchronization.
In this problem you will be looking at adding support for an atomic fetch-and-increment to the
MBus protocol.

Imagine a dual processor machine with CPUs A and B. Explain the difficulty of CPU A
performing fetch-and-increment(x) when the most recent copy of x is cleanExclusive in CPU B’s
cache. You may wish to illustrate the problem with a short sequence of events at processor A
and B.

Fill in the rest of the table below as before, indicating state, next state, where the block in
question may reside, and the CPU A and MBus transactions that would need to occur atomically
to implement a fetch-and-increment on processor A.

State other
cached

ops actions by this
cache

next
state

this
cache

other
caches

mem

Invalid yes read
 write

Last updated:
10/30/2021

Page 10 of 31

initial state other
cached

ops actions by this
cache

final
state

this
cache

other
caches

mem

Invalid no none none I Ö
 CPU read CR CE Ö Ö
 CPU write CRI OE Ö
 replace none Impossible
 CR none I Ö Ö
 CRI none I Ö
 CI none Impossible
 WR none Impossible
 CWI none I Ö

Invalid yes none I Ö Ö
 CPU read CS Ö Ö Ö
 CPU write OE Ö
 replace same Impossible
 CR as I Ö Ö
 CRI above I Ö
 CI I Ö
 WR I Ö Ö
 CWI I Ö

initial state other

cached
ops actions by this

cache
final
state

this
cache

other
caches

mem

cleanExclusive no none none CE
 CPU read
 CPU write
 replace
 CR CS
 CRI
 CI
 WR
 CWI

Table M11.4-1

Last updated:
10/30/2021

Page 11 of 31

initial state other
cached

ops actions by this
cache

final
state

this
cache

other
caches

mem

ownedExclusive no none none OE
 CPU read
 CPU write
 replace
 CR OS
 CRI
 CI
 WR
 CWI

initial state other

cached
ops actions by this

cache
final
state

this
cache

other
caches

mem

cleanShared no none none CS
 CPU read
 CPU write
 replace
 CR
 CRI
 CI
 WR
 CWI

cleanShared yes none
 CPU read
 CPU write
 replace same
 CR as
 CRI above
 CI
 WR
 CWI

Table M11.4-2

Last updated:
10/30/2021

Page 12 of 31

initial state other
cached

ops actions by this
cache

final
state

this
cache

other
caches

mem

ownedShared no none none OS
 CPU read
 CPU write
 replace
 CR
 CRI
 CI
 WR
 CWI

ownedShared yes none
 CPU read
 CPU write
 replace same
 CR as
 CRI above
 CI
 WR
 CWI

Table M11.4-3

Last updated:
10/30/2021

Page 13 of 31

Problem M11.5: Snoopy Cache Coherent Shared Memory

This problem improves the snoopy cache coherence protocol presented in Handout #14. As a
review of that protocol:

When multiple shared copies of a modified data block exist, one of the caches owns the current copy of the data
block instead of the memory (the owner has the data block in the OS state). When another cache tries to
retrieve the data block from memory, the owner uses cache to cache intervention (CCI) to supply the data
block. CCI provides a faster response relative to memory and reduces the memory bandwidth demands.
However, when multiple shared copies of a clean data block exist, there is no owner and CCI is not used when
another cache tries to retrieve the data block from memory.

To enable the use of CCI when multiple shared copies of a clean data block exist, we introduce a
new cache data block state: Clean owned shared (COS). This state can only be entered from
the clean exclusive (CE) state. The state transition from CE to COS is summarized as follows:

initial state other
cached

ops actions by this
cache

final
state

cleanExclusive (CE) no CR CCI COS

There is no change in cache bus transactions but a slight modification of cache data block states.
Here is a summary of the possible cache data block states (differences from problem set
highlighted in bold):

• Invalid (I): Block is not present in the cache.
• Clean exclusive (CE): The cached data is consistent with memory, and no other cache has it.

This cache is responsible for supplying this data instead of memory when other caches
request copies of this data.

• Owned exclusive (OE): The cached data is different from memory, and no other cache has it.
This cache is responsible for supplying this data instead of memory when other caches
request copies of this data.

• Clean shared (CS): The data has not been modified by the corresponding CPU since cached.
Multiple CS copies and at most one OS copy of the same data could exist.

• Owned shared (OS): The data is different from memory. Other CS copies of the same data
could exist. This cache is responsible for supplying this data instead of memory when other
caches request copies of this data. (Note, this state can only be entered from the OE state.)

• Clean owned shared (COS): The cached data is consistent with memory. Other CS
copies of the same data could exist. This cache is responsible for supplying this data
instead of memory when other caches request copies of this data. (Note, this state can
only be entered from the CE state.)

Last updated:
10/30/2021

Page 14 of 31

Problem M11.5.A

Fill out the state transition table for the new COS state:

initial state other
cached

ops actions by this
cache

final
state

COS yes none none COS
 CPU read
 CPU write
 replace
 CR
 CRI
 CI
 WR
 CWI

Problem M11.5.B

The COS protocol is not ideal. Complete the following table to show an example sequence of
events in which multiple shared copies of a clean data block (block B) exist, but CCI is not used
when another cache (cache 4) tries to retrieve the data block from memory.

cache transaction
source
for data

state for data block B
cache 1 cache 2 cache 3 cache 4

0. initial state — I I I I
1. cache 1 reads data block B memory CE I I I
2. cache 2 reads data block B CCI COS CS I I
3. cache 3 reads data block B CCI COS CS CS I
4.
5.

Problem M11.5.C

As an alternative protocol, we could eliminate the CE state entirely, and transition directly from I
to COS when the CPU does a read and the data block is not in any other cache. This modified
protocol would provide the same CCI benefits as the original COS protocol, but its performance
would be worse. Explain the advantage of having the CE state. You should not need more
than one sentence.

Last updated:
10/30/2021

Page 15 of 31

Problem M11.6: Snoopy Caches

This part explores multi-level caches in the context of the bus-based snoopy protocol discussed
in Lecture 14 (2017). Real systems usually have at least two levels of cache, smaller, faster L1
cache near the CPU, and the larger but slower L2. The two caches are usually inclusive, that is,
any address in L1 is required to be present in L2. L2 is able to answer every snooper inquiry
immediately but usually operates at 1/2 to 1/4th the speed of CPU-L1 interface. For performance
reasons it is important that snooper steals as little bandwidth as possible from L1, and does not
increase the latency of L2 responses.

Problem M11.6.A

Consider a situation when the L2 cache has a cache line marked Sh, and an ExReq comes on the
bus for this cache line. The snooper asks both L1 and L2 caches to invalidate their copies but
responds OK to the request, even before the invalidations are complete. Suppose the CPU ends
up reading this value in L1 before it is truly discarded. What must the cache and snooper system
do to ensure that sequential consistency is not violated here?

Hint: Consider how much processing can be performed safely on the following sequences after
an invalidation request for x has been received

Ld x; Ld y; Ld x

Ld x; St y; Ld x

Problem M11.6.B

Consider a situation when L2 has a cache line marked Ex and a ShReq comes on the bus for this
cache line. What should the snooper do in this case, and why?

Problem M11.6.C

When an ExReq message is seen by the snooper and there is a Wb message in the C2M queue
waiting to be sent, the snooper replies retry. If the cache line is about to be modified by another
processor, why is it important to first write back the already modified cache line? Does your
answer change if cache lines are restricted to be one word? Explain.

Last updated:
10/30/2021

Page 16 of 31

Problem M11.7: Directory-based Protocol

Problem M11.7.A

The following questions deal with the directory-based protocol discussed in class. Assume XY
routing, and message passing is FIFO. (XY routing algorithm first routes packets horizontally,
towards their X coordinates, and then vertically towards their Y coordinates.) Protocol messages
with the same source and destination sites are always received in the same order as that in which
they were sent. For this question, assume that the cache coherence protocol is free from
deadlock, livelock and starvation.

Assume the node 6 serves as the home directory, where the states for memory blocks are stored.
Assume all caches are initially empty and no responses are sent voluntarily (i.e. every response is
caused by a request)

 Processor 1 Processor 4 Processor 5
I1.1: ST X, 10 I4.1: LD R1, X I5.1: ST X, 20

Suppose the global execution order is as follows:

I4.1 => I5.1 => I1.1

Assume that the next instruction will start its execution only when the previous instruction has
completed. For each instruction, list all protocol messages that are sent over the link 5 -> 6 (the
purple link in the above figure).

I4.1: ShReq (I4.1),

I5.1: ExReq/InvRep (I5.1),

I1.1: FlushRep (I1.1)

Last updated:
10/30/2021

Page 17 of 31

Problem M11.7.B

For the directory protocol, we assume the message passing to be FIFO, meaning protocol
messages with the same source and destination are always received in the same order as that in
which they were sent. Now suppose messages can be delivered out-of-order for the same source
and destination pairs. Describe one scenario that the cache coherence protocol will break due to
this out-of-order delivery.

1. Core A: ShReq => home -> A: ShRep (not yet reached)
2. Core B: ExReq => home -> A: InvReq

If InvReq arrives earlier than ShRep, the InvReq will be ignored, and the core A will not send
any InvRep to home. Deadlock.

Problem M11.7.C

Under the 6823 directory-based protocol, a cache will receive a writeback request from the
directory <M2C_Req, a, S> for address “a” when it is in state M and another cache wants a
shared copy. Is it possible for a cache in the S state to receive <M2C_Req, a, S> ? Describe how
this scenario can occur using the messages passed between the cache and the memory, and the
state transitions.

Cache A in C-exclusive, does voluntary WbRep and goes to C-shared. Now Cache B in C-
nothing does a ShReq, Mem which hasn’t received WbRep yet, sends WbReq when Cache A is
in C-shared

Last updated:
10/30/2021

Page 18 of 31

Problem M11.8: Synchronicity (Spring 2014 Quiz 4, Part B)

You are writing a queue to be used in a multi-producer/single-consumer application. (Producer
threads write messages that are read by one consumer.) We assume here a queue with infinite
space. The basic code is shown below.

TST rs, Imm(rt) is the test-and-set instruction, which atomically loads the value at
Imm(rt) into rs, and if the value is zero, updates the memory location at Imm(rt) to 1. This
atomic instruction is useful for implementing locks: a value of 1 at the memory location indicates
that someone holds the lock, and a value of 0 means the lock is free.

Producer pushes a message onto queue: (memory operations in bold)

void push(int** tail_ptr, int* tail_write_lock, int message) {

while (lock_try(tail_write_lock) == false);
**tail_ptr = message;
*tail_ptr++;
lock_release(tail_write_lock);

}

R1 – contains address of data to enqueue
R2 – contains the address of the tail pointer of queue
R3 – address of tail pointer write lock
P1 SpinLock:TST R4, 0(R3) # try to acquire tail write lock
P2 BNEZ R4, R4, SpinLock
P3 LD R4, 0(R2) # get tail pointer
P4 ST R1, 0(R4) # write message to tail
P5 ADD R4, R4, 4 # update tail pointer
P6 ST R4, 0(R2)
P7 ST R0, 0(R3) # release lock

Consumer pops a message off queue: (memory operations in bold)

int pop(int** head_ptr, int** tail_ptr) {

while (*head_ptr == *tail_ptr);
int message = **head_ptr;
*head_ptr++;
return message;

}

R1 – will receive address contained in message
R2 – contains the address of the head pointer of queue
R3 – contains the address of the tail pointer of the queue
C1 Retry: LD R4, 0(R2) # get head pointer
C2 LD R5, 0(R3) # get tail pointer
C3 SUB R5, R4, R5 # is there a message?
C4 BNEZ R5, Pop
C5 JMP Retry
C6 Pop: LD R1, 0(R4) # read message from queue
C7 ADD R4, R4, 4 # update head pointer
C8 ST R4, 0(R2)

Last updated:
10/30/2021

Page 19 of 31

Problem M11.8.A

You are trying to port this code to an architecture that does not have the TST instruction (but,
happily, the rest of the ISA is unchanged). Instead the new architecture has load-reserve/store-
conditional instructions. Implement TST rs, 0(rt) using load-reserve/store-conditional:

LR rs, Imm(rt):
 rs ß Memory[(rt) + Imm]
 Track address (rt) + Imm

SC rs, Imm(rt):
 If (rt) + Imm modified:
 rs ß 0 # Fail
 Else:
 Memory[(rt) + Imm] = (rs) # Succeed
 rs ß 1

Last updated:
10/30/2021

Page 20 of 31

Problem M11.8.B

This new architecture is also not sequentially consistent. Give an example of memory orderings
between the producer and consumer that would result in incorrect behavior. Explain your answer
fully or you will not receive credit.

Your answer should look something like:
P1, P3, P4, C1, C2, P6, P7, C1, C2, C6, C8
(Except that this is a sequentially consistent ordering, so it is not a correct answer.)

Last updated:
10/30/2021

Page 21 of 31

Problem M11.8.C

Show where memory fences should be added to the producer and consumer code to ensure
correctness with a weak consistency model. Explain your answer fully.

P1 SpinLock:TST R4, 0(R3) # try to acquire tail write lock

P2 BNEZ R4, R4, SpinLock

P3 LD R4, 0(R2) # get tail pointer

P4 ST R1, 0(R4) # write message to tail

P5 ADD R4, R4, 4 # update tail pointer

P6 ST R4, 0(R2)

P7 ST R0, 0(R3) # release lock

C1 Retry: LD R4, 0(R2) # get head pointer

C2 LD R5, 0(R3) # get tail pointer

C3 SUB R5, R4, R5 # is there a message?

C4 BNEZ R5, Pop

C5 JMP Retry

C6 Pop: LD R1, 0(R4) # read message from queue

C7 ADD R4, R4, 4 # update head pointer

C8 ST R4, 0(R2)

Last updated:
10/30/2021

Page 22 of 31

Problem M11.8.D

Let’s next consider performance with a single producer thread and consumer thread. The
following happens repeatedly:

1. The producer executes all instructions to push a message on the queue.
2. The consumer executes all instructions to pop a message off the queue.

Assume data, head, and tail pointers all lie in different, non-conflicting cache blocks.

First, after a few messages have been sent through the queue, will the consumer ever miss
reading the head pointer? Will the producer ever miss reading the tail write lock, or fail to
acquire the tail write lock? Explain in one or two sentences.

Problem M11.8.E

We’ll now focus on the tail pointer only. Assuming a MSI invalidate coherence protocol, show
the state of the tail pointer in the producer and consumer cache after each operation in the
sequence below. Show any data or permissions transfers, e.g. “MemoryàC” or “C invalidates
P”.

Operation Producer tail

pointer state
Consumer tail
pointer state

Transfers

 I I
P1 TST try lock
P3 LD tail_ptr
P4 ST message
P6 ST new_tail
P7 ST release lock
C1 LD head_ptr
C2 LD tail_ptr
C6 LD message
C7 ST new_head
P1 TST try lock
P3 LD tail_ptr
P4 ST message
P6 ST new_tail
P7 ST release lock
C1 LD head_ptr
C2 LD tail_ptr
C6 LD message
C7 ST new_head
How many state transitions occur per message in the steady state?

Last updated:
10/30/2021

Page 23 of 31

Problem M11.8.F

Stay focused on the tail pointer only. Assume an update coherence protocol where the state of
each line is either valid (V) or invalid (I). Show the state of the tail pointer in the producer and
consumer cache after each operation in the sequence below in the steady state. Show any data or
permissions transfers, e.g. “MemoryàC” or “C invalidates P”.

Operation Producer tail

pointer state
Consumer tail
pointer state

Transfers

 I I
P1 TST try lock
P3 LD tail_ptr
P4 ST message
P6 ST new_tail
P7 ST release lock
C1 LD head_ptr
C2 LD tail_ptr
C6 LD message
C7 ST new_head
P1 TST try lock
P3 LD tail_ptr
P4 ST message
P6 ST new_tail
P7 ST release lock
C1 LD head_ptr
C2 LD tail_ptr
C6 LD message
C7 ST new_head

How many state transitions occur per message in the steady state?

Last updated:
10/30/2021

Page 24 of 31

Problem M11.8.G

Your new architecture supports “remote access” for cached lines. This lets you assign a “home
cache” for lines so that all memory operations will be sent over the network to operate remotely
on the line without allocating it in the requesting cache.

For example, if line 0x100 is homed to processor A, and processor B writes 0x100, then
processor A’s cache will be updated and processor B’s will be unchanged.

Assume the tail pointer is mapped to the producer’s cache, and the cache uses an MSI invalidate
protocol (similar to Question 5). Once again, show the state of the tail pointer for the sequence of
operations in the steady state and data/permission transfers:

Operation Producer tail

pointer state
Consumer tail
pointer state

Transfers

 I I
P1 TST try lock
P3 LD tail_ptr
P4 ST message
P6 ST new_tail
P7 ST release lock
C1 LD head_ptr
C2 LD tail_ptr
C6 LD message
C7 ST new_head
P1 TST try lock
P3 LD tail_ptr
P4 ST message
P6 ST new_tail
P7 ST release lock
C1 LD head_ptr
C2 LD tail_ptr
C6 LD message
C7 ST new_head

How many state transitions occur per message in the steady state?

Last updated:
10/30/2021

Page 25 of 31

Problem M11.9: Cache Coherence (Spring 2015 Quiz 3, Part B)

Ben Bitdiddle is designing a snoopy-based, write-invalidate MSI protocol for write-back caches.
Under the standard MSI protocol, when a cache observes a Bus Read Exclusive message
(BusRdX), it has to invalidate its own copy of the cache block. Ben instead proposes an
optimization, called delayed invalidation, to potentially reduce the number of read misses. The
optimization works as follows:

Delayed invalidation: When a cache observes a Bus Read Exclusive message (BusRdX) and it
has a copy of the block in the Shared (S) state, the cache delays the invalidation of the block until
before a cache miss happens. In other words, the cache will treat any subsequent requests from
its own processor as if the BusRdX had not happened, until one of those requests causes a miss.
At that point, all pending invalidations are performed before processing the miss.

Problem M11.9.A

Suppose processors P1 and P2 are have private, snoopy caches. Both caches are initially empty.
Consider the following sequence of accesses:

Assume blocks A and B do not conflict in the cache. Compare Ben’s delayed invalidation
optimization with the standard MSI protocol by filling the states (on the next page) for each
cache block after each operation is done and calculate the number of misses in both cases.

I0 P2: read A
I1 P1: write A
I2 P2: read A
I3 P1: write A
I4 P2: read A
I5 P2: read B
I6 P2: read A

Last updated:
10/30/2021

Page 26 of 31

Assume we use the standard MSI protocol. Fill in the following table.

Standard MSI Protocol
 Processor P1’s Cache Processor P2’s Cache

Initial State A: I B: I A: I B: I
After P2 reads A A: I B: I A: S B: I
After P1 writes A A: B: A: B:
After P2 reads A A: B: A: B:
After P1 writes A A: B: A: B:
After P2 reads A A: B: A: B:
After P2 reads B A: B: A: B:
After P2 reads A A: B: A: B:

How many misses occur in the two caches?

Assume we adopt Ben’s delayed invalidation optimization. Fill in the following table. If there is
a delayed invalidation, write it in the invalidation queue (the “Inv Queue” column). For example,
“Inv L” means there is a delayed invalidation on block L.

MSI Protocol with Delayed Invalidation
 Processor P1’s Cache Processor P2’s Cache
 MSI state Inv Queue MSI state Inv Queue
Initial State A: I B: I A: I B: I
After P2 reads A A: I B: I A: S B: I
After P1 writes A A: B: A: B:
After P2 reads A A: B: A: B:
After P1 writes A A: B: A: B:
After P2 reads A A: B: A: B:
After P2 reads B A: B: A: B:
After P2 reads A A: B: A: B:

How many misses occur in the two caches?

Last updated:
10/30/2021

Page 27 of 31

Problem M11.9.B

Does Ben’s delayed invalidation optimization violate cache coherence rules? Please explain your
answer in one or two sentences.

Problem M11.9.C

Suppose the original system guarantees sequential consistency. Does adding the delayed
invalidation optimization break sequential consistency? Please explain your answer in one or two
sentences. If your answer is yes, please provide a sequence of load/store operations that violates
sequential consistency.

Last updated:
10/30/2021

Page 28 of 31

Problem M11.9.D

Ben only applies delayed invalidation on cache blocks that are in the S state. When a cache
observes a Bus Read Exclusive message (BusRdX) and the associated cache block is in the
Modified (M) state, it sends out the data in response to a BusRdX message and changes the
cache state to Invalid (I).

Is it possible to delay invalidation when the cache block is in the Modified (M) state? If it is not,
please explain why. If it is possible, please describe how to make delayed invalidations work
when the block is in the M state. In other words, please describe the actions the cache needs to
take when the cache observes a BusRdX message, how to handle subsequent read and write
accesses if the invalidation is delayed, and when the invalidation needs to be processed.

Last updated:
10/30/2021

Page 29 of 31

Problem M11.10: Cache Coherence (Spring 2015 Quiz 3, Part C)

Please use Handout #15 to answer the questions in this part.

Problem M11.10.A

Ben designs an architecture that does not have the atomic compare-and-swap (CAS) instruction
but has load-reserve (LR) and store-conditional (SC) instructions.

Help Ben implement a Boolean compare-and-swap instruction BCAS old, new,
Imm(base) using load-reserve and store-conditional instructions:

BCAS is a simplified CAS instruction that only deals with values 0 and 1. You can use
temporary registers (tmp1, tmp2, tmp3…) and any algorithmic, logical, memory, and
branch instructions in the MIPS instruction set.

LR rs, Imm(rt):
 <flag, addr> ß <1, rt + Imm>
 rs ß Memory[rt + Imm]

SC rs, Imm(rt):
 If <flag, addr> == <1, rt + Imm>:
 Memory[rt + Imm] ß rs
 rs ß 1 # Succeed
 Else:
 rs ß 0 # Fail

Last updated:
10/30/2021

Page 30 of 31

Problem M11.10.B

Suppose the hardware where the shared-memory queue from Handout #15 is executed has a
weak consistency model that relaxes all the orderings of reads and writes. Give an example of
memory orderings between the producer and consumer that would result in incorrect behavior.
Please fully explain your answer to get full credit.

Your memory ordering example should look something like:
P1, C2, P2, C4, P4, C5, C7, C9, C10

Last updated:
10/30/2021

Page 31 of 31

Problem M11.10.C

Please add the minimum number of memory fences (FENCEWR, FENCERW, FENCEWW, or
FENCERR) to the producer and consumer codes to ensure correctness with a weak consistency
model. Please explain your answer fully.

Code for producer to enqueue a message:

Code for consumer to dequeue a message:

P1: LD R3, 0(R2) # get tail pointer

P2: ST R1, 0(R3) # write message to tail

P3: ADD R3, R3, 4 # update tail pointer

P4: ST R3, 0(R2)

C1: SpinLock: MOV R6, R0 # set R6 to 0

C2: CAS R6, R5, 0(R4) # try to acquire lock

C3: BNEZ R6, SpinLock

C4: LD R7, 0(R2) # get head pointer

C5: Retry: LD R8, 0(R3) # get tail pointer

C6: BEQ R7, R8, Retry # is there a message?

C7: LD R1, 0(R7) # read message from queue

C8: ADD R7, R7, 4 # update head pointer

C9: ST R7, 0(R2)

C10: ST R0, 0(R4) # release lock

