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Problem M11.1: Synchronization Primitives  
 
One of the common instruction sequences used for synchronizing several processors are the 
LOAD RESERVE/STORE CONDITIONAL pair (from now on referred to as LdR/StC pair). 
The LdR instruction reads a value from the specified address and sets a local reservation for the 
address. The StC attempts to write to the specified address provided the local reservation for the 
address is still held. If the reservation has been cleared the StC fails and informs the CPU.  
 
 
Problem M11.1.A  

 
Describe under what events the local reservation for an address is cleared. 
 
 
 
 
Problem M11.1.B  

 
Is it possible to implement LdR/StC pair in such a way that the memory bus is not affected, i.e., 
unaware of the addition of these new instructions?  Explain 
 
 
 
 
Problem M11.1.C  

 
Give two reasons why the LdR/StC pair of instructions is preferable over atomic read-test-
modify instructions such as the TEST&SET instruction.  
 
 
 
 
 
Problem M11.1.D  

 
LdR/StC pair of instructions were conceived in the context of snoopy busses. Do these 
instructions make sense in our directory-based system in Handout #13? Do they still offer an 
advantage over atomic read-test-modify instructions in a directory-based system? Please explain. 
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Problem M11.2: Implementing Directories  
 
Ben Bitdiddle is implementing a directory-based cache coherence invalidate protocol for a 64-
processor system.  He first builds a smaller prototype with only 4 processors to test out the 
cache coherence protocol described in Handout #13.  To implement the list of sharers, S, kept 
by home, he maintains a bit vector per cache block to keep track of all the sharers.  The bit 
vector has one bit corresponding to each processor in the system.  The bit is set to one if the 
processor is caching a shared copy of the block, and zero if the processor does not have a copy of 
the block.  For example, if Processors 0 and 3 are caching a shared copy of some data, the 
corresponding bit vector would be 1001. 
 
 
Problem M11.2.A  

 
The bit vector worked well for the 4-processor prototype, but when building the actual 64-
processor system, Ben discovered that he did not have enough hardware resources.  Assume 
each cache block is 32 bytes.  What is the overhead of maintaining the sharing bit vector for a 
4-processor system, as a fraction of data storage bits?  What is the overhead for a 64-
processor system, as a fraction of data storage bits? 
 
 
 
Overhead for a 4-processor system: ________________________ 
  
Overhead for a 64-processor system: _______________________ 
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Problem M11.2.B  
 
Since Ben does not have the resources to keep track of all potential sharers in the 64-processor 
system, he decides to limit S to keep track of only 1 processor using its 6-bit ID as shown in 
Figure M11.2-A (single-sharer scheme).  When there is a load [C2P_Req(a) S] request for 
a shared cache block, Ben invalidates the existing sharer to make room for the new sharer (home 
sends a invalidate request [P2C_Req(a) I] to the existing sharer, the existing sharer sends 
an invalidate response [C2P_Rep(a) I] to home, home replaces the exiting sharer's ID with 
the new sharer's ID and sends the load response [P2C_Rep(a) I S] to the new sharer). 
 
                                         

6 
Sharer ID 

 
Figure M11.2-A 

 
Consider a 64-processor system.  To determine the efficiency of the bit-vector scheme and 
single-sharer scheme, fill in the number of invalidate-requests that are generated by the 
protocols for each step in the following two sequences of events.  Assume cache block B is 
uncached initially for both sequences. 
 
 
Sequence 1 bit-vector scheme 

# of invalidate-requests 
single-sharer scheme 

# of invalidate-requests 
Processor #0 reads B 0 0 
Processor #1 reads B   
Processor #0 reads B   
 
 
 
Sequence 2 bit-vector scheme 

# of invalidate-requests 
single-sharer scheme 

# of invalidate-requests 
Processor #0 reads B 0 0 
Processor #1 reads B   
Processor #2 writes B   
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Problem M11.2.C  

 
Ben thinks that he can improve his original scheme by adding an extra “global bit” to S as 
shown in Figure M11.2-B (global-bit scheme).  The global bit is set when there is more than 1 
processor sharing the data, and zero otherwise.   
 
                                               

1 6 
0 Sharer ID  

    
     global    

        Figure M11.2-B 
 
When the global bit is set, home stops keeping track of a specific sharer and assumes that all 
processors are potential sharers.   
 
 

1 6 
1 XXXXXX 

     
              global 
         Figure M11.2-C 
 
 
Consider a 64-processor system. To determine the efficiency of the global-bit scheme, fill in the 
number of invalidate-requests that are generated for each step in the following two sequences 
of events.  Assume cache block B is uncached initially for both sequences. 
 
 

Sequence 1 global-bit scheme 
# of invalidate-requests 

Processor #0 reads B 0 
Processor #1 reads B  
Processor #0 reads B  

 
 

Sequence 2 global-bit scheme 
# of invalidate-requests 

Processor #0 reads B 0 
Processor #1 reads B  
Processor #2 writes B  
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Problem M11.3: Tracing the Directory-based Protocol 
 
For the problem we will be using the following sequences of instructions. These are small 
programs, each executed on a different processor, each with its own cache and register set. In the 
following R is a register and X is a memory location. Each instruction has been named (e.g., B3) 
to make it easy to write answers. 
 
Assume data in location X is initially 0. 
 

Processor A Processor B Processor C 
A1: ST X, 1 B1: R := LD X C1: ST X, 6 
A2: R := LD X B2: R := ADD R, 1 C2: R := LD X 
A3: R := ADD R, R B3: ST X, R C3: R := ADD R, R 
A4: ST X, R B4: R:= LD X C4: ST X, R 
 B5: R := ADD R, R  
 B6: ST X, R  

 
These questions relate to the directory-based protocol in Handout #13 (as well as Lecture 15). 
Unless specified otherwise, assume all caches are initially empty and no voluntary responses are 
sent (i.e. responses are sent only on receiving a request).  
 
Problem M11.3.A  

 
Suppose we execute Program A, followed by Program B, followed by Program C and all caches 
are initially empty. Write down the sequence of messages that will be generated. We have 
omitted ADD instructions because they cannot generate any messages.  EO indicates the global 
execution order.   
 
Processor A Processor B Processor C 

Ins EO Messages Ins EO Messages Ins EO Messages 

A1 1 <M,A,Req,x,M> 
<A,M,Rep,x,I,M,0> B1 4  C1 8  

A2 2  B3 5  C2 9  

A4 3  B4 6  C4 10  

   B6 7     

 
How many messages are generated?   ___________________ 
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Problem M11.3.B  
 
Is there an execution sequence that will generate even fewer messages?  Fill in the EO columns 
to indicate the global execution order.  Also, fill in the messages. 
 
Processor A Processor B Processor C 

Ins EO Messages Ins EO Messages Ins EO Messages 

A1   B1   C1   

A2   B3   C2   

A4   B4   C4   

   B6      

 
 
How many messages are generated?   ___________________ 
 
 
 
Problem M11.3.C  

 
Can the number of messages in Problem M11.3.B be decreased by using voluntary responses?  
Explain. 
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Problem M11.3.D  
 
What is the execution sequence that generates the most messages without any voluntary 
responses?  Fill in the global execution order (EO) and the messages generated. Partial credit 
will be given for identifying a bad, but not necessarily the worst sequence. 
 
Processor A Processor B Processor C 

Ins EO Messages Ins EO Messages Ins EO Messages 

A1   B1   C1   

A2   B3   C2   

A4   B4   C4   

   B6      

 
 
How many messages are generated?   ___________________ 
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Problem M11.4: Snoopy Cache Coherent Shared Memory  
 
In this problem, we investigate the operation of the snoopy cache coherence protocol in Handout 
#14.   
 
The following questions are to help you check your understanding of the coherence protocol.  
 
• Explain the differences between CR, CI, and CRI in terms of their purpose, usage, and the 

actions that must be taken by memory and by the different caches involved. 
• Explain why WR is not snooped on the bus. 
• Explain the I/O coherence problem that CWI helps avoid. 
 
 
Problem M11.4.A Where in the Memory System is the Current Value 

 
In Table M11.4-1, M11.4-2, and M11.4-3, column 1 indicates the initial state of a certain address 
X in a cache. Column 2 indicates whether address X is currently cached in any other cache. (The 
“cached” information is known to the cache controller only immediately following a bus 
transaction. Thus, the action taken by the cache controller must be independent of this signal, but 
state transition could depend on this knowledge.) Column 3 enumerates all the available 
operations on address X, either issued by the CPU (read, write), snooped on the bus (CR, CRI, 
CI. etc), or initiated by the cache itself (replacement). Some state-operation combinations are 
impossible; you should mark them as such. (See the first table for examples). In columns 6, 7, 
and 8 (corresponding to this cache, other caches and memory, respectively), check all possible 
locations where up-to-date copies of this data block could exist after the operation in 
column 3 has taken place and ignore column 4 and 5 for now.  Table M11.4-1 has been 
completed for you. Make sure the answers in this table make sense to you. 
 
 
 
Problem M11.4.B MBus Cache Block State Transition Table 

 
In this problem, we ask you to fill out the state transitions in Column 4 and 5. In column 5, 
fill in the resulting state after the operation in column 3 has taken place. In column 4, list the 
necessary MBus transactions that are issued by the cache as part of the transition. Remember, the 
protocol should be optimized such that data is supplied using CCI whenever possible, and only 
the cache that owns a line should issue CCI. 
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Problem M11.4.C Adding atomic memory operations to MBus 
 
We have discussed the importance of atomic memory operations for processor synchronization.  
In this problem you will be looking at adding support for an atomic fetch-and-increment to the 
MBus protocol. 
 
Imagine a dual processor machine with CPUs A and B.  Explain the difficulty of CPU A 
performing fetch-and-increment(x) when the most recent copy of x is cleanExclusive in CPU B’s 
cache.  You may wish to illustrate the problem with a short sequence of events at processor A 
and B. 
 
Fill in the rest of the table below as before, indicating state, next state, where the block in 
question may reside, and the CPU A and MBus transactions that would need to occur atomically 
to implement a fetch-and-increment on processor A. 
 

State other 
cached 

ops actions by this 
cache 

next 
state 

this 
cache 

other 
caches 

mem 

Invalid yes read      
  write      
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initial state other 
cached 

ops actions by this 
cache 

final 
state 

this 
cache 

other 
caches 

mem 

Invalid no none none I   Ö 
  CPU read CR CE Ö  Ö 
  CPU write CRI OE Ö   
  replace none Impossible 
  CR none I  Ö Ö 
  CRI none I  Ö  
  CI none Impossible 
  WR none Impossible 
  CWI none I   Ö 

Invalid yes none  I  Ö Ö 
  CPU read  CS Ö Ö Ö 
  CPU write  OE Ö   
  replace same Impossible 
  CR as I  Ö Ö 
  CRI above I  Ö  
  CI  I  Ö  
  WR  I  Ö Ö 
  CWI  I   Ö 

 
initial state other 

cached 
ops actions by this 

cache 
final 
state 

this 
cache 

other 
caches 

mem 

cleanExclusive no none none CE    
  CPU read      
  CPU write      
  replace      
  CR  CS    
  CRI      
  CI      
  WR      
  CWI      

Table M11.4-1 
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initial state other 
cached 

ops actions by this 
cache 

final 
state 

this 
cache 

other 
caches 

mem 

ownedExclusive no none none OE    
  CPU read      
  CPU write      
  replace      
  CR  OS    
  CRI      
  CI      
  WR      
  CWI      

 
initial state other 

cached 
ops actions by this 

cache 
final 
state 

this 
cache 

other 
caches 

mem 

cleanShared no none none CS    
  CPU read      
  CPU write      
  replace      
  CR      
  CRI      
  CI      
  WR      
  CWI      

cleanShared yes none      
  CPU read      
  CPU write      
  replace same     
  CR as     
  CRI above     
  CI      
  WR      
  CWI      

Table M11.4-2 
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initial state other 
cached 

ops actions by this 
cache 

final 
state 

this 
cache 

other 
caches 

mem 

ownedShared no none none OS    
  CPU read      
  CPU write      
  replace      
  CR      
  CRI      
  CI      
  WR      
  CWI      

ownedShared yes none      
  CPU read      
  CPU write      
  replace same     
  CR as     
  CRI above     
  CI      
  WR      
  CWI      

Table M11.4-3 
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Problem M11.5: Snoopy Cache Coherent Shared Memory  
 
This problem improves the snoopy cache coherence protocol presented in Handout #14.  As a 
review of that protocol:  
 

When multiple shared copies of a modified data block exist, one of the caches owns the current copy of the data 
block instead of the memory (the owner has the data block in the OS state).  When another cache tries to 
retrieve the data block from memory, the owner uses cache to cache intervention (CCI) to supply the data 
block.  CCI provides a faster response relative to memory and reduces the memory bandwidth demands.  
However, when multiple shared copies of a clean data block exist, there is no owner and CCI is not used when 
another cache tries to retrieve the data block from memory.   

 
To enable the use of CCI when multiple shared copies of a clean data block exist, we introduce a 
new cache data block state: Clean owned shared (COS).  This state can only be entered from 
the clean exclusive (CE) state.  The state transition from CE to COS is summarized as follows: 

initial state other 
cached 

ops actions by this 
cache 

final 
state 

cleanExclusive (CE) no CR CCI COS 
 
There is no change in cache bus transactions but a slight modification of cache data block states. 
Here is a summary of the possible cache data block states (differences from problem set 
highlighted in bold): 
 
• Invalid (I): Block is not present in the cache. 
• Clean exclusive (CE): The cached data is consistent with memory, and no other cache has it.  

This cache is responsible for supplying this data instead of memory when other caches 
request copies of this data.  

• Owned exclusive (OE): The cached data is different from memory, and no other cache has it. 
This cache is responsible for supplying this data instead of memory when other caches 
request copies of this data. 

• Clean shared (CS): The data has not been modified by the corresponding CPU since cached. 
Multiple CS copies and at most one OS copy of the same data could exist. 

• Owned shared (OS): The data is different from memory. Other CS copies of the same data 
could exist. This cache is responsible for supplying this data instead of memory when other 
caches request copies of this data. (Note, this state can only be entered from the OE state.)  

• Clean owned shared (COS): The cached data is consistent with memory. Other CS 
copies of the same data could exist. This cache is responsible for supplying this data 
instead of memory when other caches request copies of this data. (Note, this state can 
only be entered from the CE state.)  
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Problem M11.5.A  
 
Fill out the state transition table for the new COS state: 
 

initial state other 
cached 

ops actions by this 
cache 

final 
state 

COS yes none none COS 
  CPU read   
  CPU write   
  replace   
  CR   
  CRI   
  CI   
  WR   
  CWI   

 
Problem M11.5.B  

 
The COS protocol is not ideal.  Complete the following table to show an example sequence of 
events in which multiple shared copies of a clean data block (block B) exist, but CCI is not used 
when another cache (cache 4) tries to retrieve the data block from memory. 
 

cache transaction 
source 
for data 

state for data block B 
cache 1 cache 2 cache 3 cache 4 

0. initial state — I I I I 
1. cache 1 reads data block B memory CE I I I 
2. cache 2 reads data block B CCI  COS CS I I 
3. cache 3 reads data block B CCI COS CS CS I 
4.       
5.      

 
 
Problem M11.5.C  

 
As an alternative protocol, we could eliminate the CE state entirely, and transition directly from I 
to COS when the CPU does a read and the data block is not in any other cache.  This modified 
protocol would provide the same CCI benefits as the original COS protocol, but its performance 
would be worse.  Explain the advantage of having the CE state.  You should not need more 
than one sentence. 
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Problem M11.6: Snoopy Caches  
 
This part explores multi-level caches in the context of the bus-based snoopy protocol discussed 
in Lecture 14 (2017).  Real systems usually have at least two levels of cache, smaller, faster L1 
cache near the CPU, and the larger but slower L2. The two caches are usually inclusive, that is, 
any address in L1 is required to be present in L2.  L2 is able to answer every snooper inquiry 
immediately but usually operates at 1/2 to 1/4th the speed of CPU-L1 interface. For performance 
reasons it is important that snooper steals as little bandwidth as possible from L1, and does not 
increase the latency of L2 responses.  
 
 
Problem M11.6.A  

 
Consider a situation when the L2 cache has a cache line marked Sh, and an ExReq comes on the 
bus for this cache line. The snooper asks both L1 and L2 caches to invalidate their copies but 
responds OK to the request, even before the invalidations are complete.  Suppose the CPU ends 
up reading this value in L1 before it is truly discarded. What must the cache and snooper system 
do to ensure that sequential consistency is not violated here?  
 
Hint: Consider how much processing can be performed safely on the following sequences after 
an invalidation request for x has been received 
 
Ld x; Ld y; Ld x  
 
 
Ld x; St y; Ld x  
 
 
 
Problem M11.6.B  

 
Consider a situation when L2 has a cache line marked Ex and a ShReq comes on the bus for this 
cache line. What should the snooper do in this case, and why? 
 
 
 
Problem M11.6.C  

 
When an ExReq message is seen by the snooper and there is a Wb message in the C2M queue 
waiting to be sent, the snooper replies retry. If the cache line is about to be modified by another 
processor, why is it important to first write back the already modified cache line? Does your 
answer change if cache lines are restricted to be one word? Explain. 
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Problem M11.7: Directory-based Protocol 
 

Problem M11.7.A            
 

The following questions deal with the directory-based protocol discussed in class. Assume XY 
routing, and message passing is FIFO. (XY routing algorithm first routes packets horizontally, 
towards their X coordinates, and then vertically towards their Y coordinates.) Protocol messages 
with the same source and destination sites are always received in the same order as that in which 
they were sent. For this question, assume that the cache coherence protocol is free from 
deadlock, livelock and starvation. 

 
 
Assume the node 6 serves as the home directory, where the states for memory blocks are stored. 
Assume all caches are initially empty and no responses are sent voluntarily (i.e. every response is 
caused by a request) 
 
        Processor 1     Processor 4       Processor 5 
I1.1:  ST X, 10                   I4.1:  LD R1, X             I5.1:   ST X, 20 
 
Suppose the global execution order is as follows: 
 

I4.1   =>   I5.1   =>   I1.1 
 
Assume that the next instruction will start its execution only when the previous instruction has 
completed. For each instruction, list all protocol messages that are sent over the link 5 -> 6 (the 
purple link in the above figure).  
 
I4.1: ShReq (I4.1), 
 
I5.1: ExReq/InvRep (I5.1), 
 
I1.1: FlushRep (I1.1) 
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Problem M11.7.B            
 
For the directory protocol, we assume the message passing to be FIFO, meaning protocol 
messages with the same source and destination are always received in the same order as that in 
which they were sent. Now suppose messages can be delivered out-of-order for the same source 
and destination pairs. Describe one scenario that the cache coherence protocol will break due to 
this out-of-order delivery. 
 

1. Core A: ShReq => home -> A: ShRep (not yet reached) 
2. Core B: ExReq => home -> A: InvReq 

If InvReq arrives earlier than ShRep, the InvReq will be ignored, and the core A will not send 
any InvRep to home. Deadlock. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Problem M11.7.C            
 
Under the 6823 directory-based protocol, a cache will receive a writeback request from the 
directory <M2C_Req, a, S> for address “a” when it is in state M and another cache wants a 
shared copy. Is it possible for a cache in the S state to receive <M2C_Req, a, S> ? Describe how 
this scenario can occur using the messages passed between the cache and the memory, and the 
state transitions. 
 
 
Cache A in C-exclusive, does voluntary WbRep and goes to C-shared. Now Cache B in C-
nothing does a ShReq, Mem which hasn’t received WbRep yet, sends WbReq when Cache A is 
in C-shared 
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Problem M11.8: Synchronicity (Spring 2014 Quiz 4, Part B) 
 
You are writing a queue to be used in a multi-producer/single-consumer application. (Producer 
threads write messages that are read by one consumer.) We assume here a queue with infinite 
space. The basic code is shown below. 
 
TST rs, Imm(rt) is the test-and-set instruction, which atomically loads the value at 
Imm(rt) into rs, and if the value is zero, updates the memory location at Imm(rt) to 1. This 
atomic instruction is useful for implementing locks: a value of 1 at the memory location indicates 
that someone holds the lock, and a value of 0 means the lock is free. 
 
Producer pushes a message onto queue: (memory operations in bold) 
 
void push(int** tail_ptr, int* tail_write_lock, int message) { 

while (lock_try(tail_write_lock) == false); 
**tail_ptr = message; 
*tail_ptr++; 
lock_release(tail_write_lock); 

} 
 
# R1 – contains address of data to enqueue 
# R2 – contains the address of the tail pointer of queue 
# R3 – address of tail pointer write lock 
P1 SpinLock:TST R4, 0(R3)  # try to acquire tail write lock 
P2  BNEZ R4, R4, SpinLock 
P3  LD R4, 0(R2)  # get tail pointer 
P4  ST R1, 0(R4)  # write message to tail 
P5  ADD R4, R4, 4  # update tail pointer 
P6  ST R4, 0(R2) 
P7  ST R0, 0(R3)   # release lock 
 
Consumer pops a message off queue: (memory operations in bold) 
 
int pop(int** head_ptr, int** tail_ptr) { 

while (*head_ptr == *tail_ptr); 
int message = **head_ptr; 
*head_ptr++; 
return message; 

} 
 
# R1 – will receive address contained in message 
# R2 – contains the address of the head pointer of queue 
# R3 – contains the address of the tail pointer of the queue  
C1 Retry: LD R4, 0(R2)  # get head pointer 
C2  LD R5, 0(R3)  # get tail pointer 
C3  SUB R5, R4, R5  # is there a message? 
C4  BNEZ R5, Pop 
C5  JMP Retry 
C6 Pop: LD R1, 0(R4)  # read message from queue 
C7  ADD R4, R4, 4  # update head pointer 
C8  ST R4, 0(R2) 
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Problem M11.8.A  
 
You are trying to port this code to an architecture that does not have the TST instruction (but, 
happily, the rest of the ISA is unchanged). Instead the new architecture has load-reserve/store-
conditional instructions. Implement TST rs, 0(rt) using load-reserve/store-conditional: 
 
LR rs, Imm(rt): 
 rs ß Memory[(rt) + Imm] 
 Track address (rt) + Imm 
 
SC rs, Imm(rt): 
 If (rt) + Imm modified: 
  rs ß 0     # Fail 
 Else: 
  Memory[(rt) + Imm] = (rs) # Succeed 
  rs ß 1 
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Problem M11.8.B  
 
This new architecture is also not sequentially consistent. Give an example of memory orderings 
between the producer and consumer that would result in incorrect behavior. Explain your answer 
fully or you will not receive credit.  
 
Your answer should look something like: 
P1, P3, P4, C1, C2, P6, P7, C1, C2, C6, C8 
(Except that this is a sequentially consistent ordering, so it is not a correct answer.) 
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Problem M11.8.C  
 
Show where memory fences should be added to the producer and consumer code to ensure 
correctness with a weak consistency model. Explain your answer fully. 
 
P1 SpinLock:TST R4, 0(R3)  # try to acquire tail write lock 
 
 
P2  BNEZ R4, R4, SpinLock 
 
 
P3  LD R4, 0(R2)  # get tail pointer 
 
 
P4  ST R1, 0(R4)  # write message to tail 
 
 
P5  ADD R4, R4, 4  # update tail pointer 
 
 
P6  ST R4, 0(R2) 
 
 
P7  ST R0, 0(R3)   # release lock 
 
 
 
 
 
C1 Retry: LD R4, 0(R2)  # get head pointer 
 
 
C2  LD R5, 0(R3)  # get tail pointer 
 
 
C3  SUB R5, R4, R5  # is there a message? 
 
 
C4  BNEZ R5, Pop 
 
 
C5  JMP Retry 
 
 
C6 Pop: LD R1, 0(R4)  # read message from queue 
 
 
C7  ADD R4, R4, 4  # update head pointer 
 
 
C8  ST R4, 0(R2) 
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Problem M11.8.D  
 
Let’s next consider performance with a single producer thread and consumer thread. The 
following happens repeatedly: 

1. The producer executes all instructions to push a message on the queue. 
2. The consumer executes all instructions to pop a message off the queue. 

Assume data, head, and tail pointers all lie in different, non-conflicting cache blocks. 
 
First, after a few messages have been sent through the queue, will the consumer ever miss 
reading the head pointer? Will the producer ever miss reading the tail write lock, or fail to 
acquire the tail write lock? Explain in one or two sentences. 
 
 
 
 
Problem M11.8.E  

 
We’ll now focus on the tail pointer only. Assuming a MSI invalidate coherence protocol, show 
the state of the tail pointer in the producer and consumer cache after each operation in the 
sequence below. Show any data or permissions transfers, e.g. “MemoryàC” or “C invalidates 
P”. 
 
Operation Producer tail 

pointer state 
Consumer tail 
pointer state 

Transfers 

 I I  
P1 TST try lock    
P3 LD tail_ptr    
P4 ST message    
P6 ST new_tail    
P7 ST release lock    
C1 LD head_ptr    
C2 LD tail_ptr    
C6 LD message    
C7 ST new_head    
P1 TST try lock    
P3 LD tail_ptr    
P4 ST message    
P6 ST new_tail    
P7 ST release lock    
C1 LD head_ptr    
C2 LD tail_ptr    
C6 LD message    
C7 ST new_head    
How many state transitions occur per message in the steady state?  
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Problem M11.8.F  
 
Stay focused on the tail pointer only. Assume an update coherence protocol where the state of 
each line is either valid (V) or invalid (I). Show the state of the tail pointer in the producer and 
consumer cache after each operation in the sequence below in the steady state. Show any data or 
permissions transfers, e.g. “MemoryàC” or “C invalidates P”. 
 
Operation Producer tail 

pointer state 
Consumer tail 
pointer state 

Transfers 

 I I  
P1 TST try lock    
P3 LD tail_ptr    
P4 ST message    
P6 ST new_tail    
P7 ST release lock    
C1 LD head_ptr    
C2 LD tail_ptr    
C6 LD message    
C7 ST new_head    
P1 TST try lock    
P3 LD tail_ptr    
P4 ST message    
P6 ST new_tail    
P7 ST release lock    
C1 LD head_ptr    
C2 LD tail_ptr    
C6 LD message    
C7 ST new_head    
  
How many state transitions occur per message in the steady state? 
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Problem M11.8.G  
 
Your new architecture supports “remote access” for cached lines. This lets you assign a “home 
cache” for lines so that all memory operations will be sent over the network to operate remotely 
on the line without allocating it in the requesting cache. 
 
For example, if line 0x100 is homed to processor A, and processor B writes 0x100, then 
processor A’s cache will be updated and processor B’s will be unchanged. 
 
Assume the tail pointer is mapped to the producer’s cache, and the cache uses an MSI invalidate 
protocol (similar to Question 5). Once again, show the state of the tail pointer for the sequence of 
operations in the steady state and data/permission transfers: 
 
Operation Producer tail 

pointer state 
Consumer tail 
pointer state 

Transfers 

 I I  
P1 TST try lock    
P3 LD tail_ptr    
P4 ST message    
P6 ST new_tail    
P7 ST release lock    
C1 LD head_ptr    
C2 LD tail_ptr    
C6 LD message    
C7 ST new_head    
P1 TST try lock    
P3 LD tail_ptr    
P4 ST message    
P6 ST new_tail    
P7 ST release lock    
C1 LD head_ptr    
C2 LD tail_ptr    
C6 LD message    
C7 ST new_head    
 
How many state transitions occur per message in the steady state? 
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Problem M11.9: Cache Coherence (Spring 2015 Quiz 3, Part B) 
 
Ben Bitdiddle is designing a snoopy-based, write-invalidate MSI protocol for write-back caches. 
Under the standard MSI protocol, when a cache observes a Bus Read Exclusive message 
(BusRdX), it has to invalidate its own copy of the cache block. Ben instead proposes an 
optimization, called delayed invalidation, to potentially reduce the number of read misses. The 
optimization works as follows:  
 
Delayed invalidation: When a cache observes a Bus Read Exclusive message (BusRdX) and it 
has a copy of the block in the Shared (S) state, the cache delays the invalidation of the block until 
before a cache miss happens. In other words, the cache will treat any subsequent requests from 
its own processor as if the BusRdX had not happened, until one of those requests causes a miss. 
At that point, all pending invalidations are performed before processing the miss.   
 
Problem M11.9.A  

 
Suppose processors P1 and P2 are have private, snoopy caches. Both caches are initially empty. 
Consider the following sequence of accesses:  
 

 
 
Assume blocks A and B do not conflict in the cache. Compare Ben’s delayed invalidation 
optimization with the standard MSI protocol by filling the states (on the next page) for each 
cache block after each operation is done and calculate the number of misses in both cases. 
 
 
 
 
 
 
 
 
 
 
  

I0   P2: read   A 
I1   P1: write  A  
I2   P2: read   A  
I3   P1: write  A 
I4   P2: read   A  
I5   P2: read   B 
I6   P2: read   A 
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Assume we use the standard MSI protocol. Fill in the following table.  
 

Standard MSI Protocol 
 Processor P1’s Cache Processor P2’s Cache 

Initial State A: I  B: I A: I  B: I 
After P2 reads A A: I B: I A: S B: I 
After P1 writes A A: B: A: B: 
After P2 reads A A: B: A: B: 
After P1 writes A A: B: A: B: 
After P2 reads A A: B: A: B: 
After P2 reads B A: B: A: B: 
After P2 reads A A: B: A: B: 

 
How many misses occur in the two caches?   
 
 
 
Assume we adopt Ben’s delayed invalidation optimization. Fill in the following table. If there is 
a delayed invalidation, write it in the invalidation queue (the “Inv Queue” column). For example, 
“Inv L” means there is a delayed invalidation on block L.  
 

MSI Protocol with Delayed Invalidation 
 Processor P1’s Cache Processor P2’s Cache 
 MSI state Inv Queue MSI state Inv Queue 
Initial State A: I  B: I  A: I  B: I  
After P2 reads A A: I B: I  A: S B: I  
After P1 writes A A: B:  A: B:  
After P2 reads A A: B:  A: B:  
After P1 writes A A: B:  A: B:  
After P2 reads A A: B:  A: B:  
After P2 reads B A: B:  A: B:  
After P2 reads A A: B:  A: B:  

 
How many misses occur in the two caches?   
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Problem M11.9.B  
 
Does Ben’s delayed invalidation optimization violate cache coherence rules? Please explain your 
answer in one or two sentences.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Problem M11.9.C  

 
Suppose the original system guarantees sequential consistency. Does adding the delayed 
invalidation optimization break sequential consistency? Please explain your answer in one or two 
sentences. If your answer is yes, please provide a sequence of load/store operations that violates 
sequential consistency. 
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Problem M11.9.D  
 
Ben only applies delayed invalidation on cache blocks that are in the S state. When a cache 
observes a Bus Read Exclusive message (BusRdX) and the associated cache block is in the 
Modified (M) state, it sends out the data in response to a BusRdX message and changes the 
cache state to Invalid (I).   
 
Is it possible to delay invalidation when the cache block is in the Modified (M) state? If it is not, 
please explain why. If it is possible, please describe how to make delayed invalidations work 
when the block is in the M state. In other words, please describe the actions the cache needs to 
take when the cache observes a BusRdX message, how to handle subsequent read and write 
accesses if the invalidation is delayed, and when the invalidation needs to be processed. 
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Problem M11.10: Cache Coherence (Spring 2015 Quiz 3, Part C) 
 
Please use Handout #15 to answer the questions in this part.  
 
Problem M11.10.A  

 
Ben designs an architecture that does not have the atomic compare-and-swap (CAS) instruction 
but has load-reserve (LR) and store-conditional (SC) instructions.  
 
Help Ben implement a Boolean compare-and-swap instruction BCAS old, new, 
Imm(base) using load-reserve and store-conditional instructions: 
 

 
BCAS is a simplified CAS instruction that only deals with values 0 and 1. You can use 
temporary registers (tmp1, tmp2, tmp3…) and any algorithmic, logical, memory, and 
branch instructions in the MIPS instruction set.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

LR rs, Imm(rt): 
 <flag, addr> ß <1, rt + Imm> 
 rs ß Memory[rt + Imm] 
 
SC rs, Imm(rt): 
 If <flag, addr> == <1, rt + Imm>: 
  Memory[rt + Imm] ß rs 
          rs ß 1                 # Succeed 
 Else: 
          rs ß 0                 # Fail 
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Problem M11.10.B  
 
Suppose the hardware where the shared-memory queue from Handout #15 is executed has a 
weak consistency model that relaxes all the orderings of reads and writes. Give an example of 
memory orderings between the producer and consumer that would result in incorrect behavior. 
Please fully explain your answer to get full credit.  
 
Your memory ordering example should look something like: 
P1, C2, P2, C4, P4, C5, C7, C9, C10 
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Problem M11.10.C  
 
Please add the minimum number of memory fences (FENCEWR, FENCERW, FENCEWW, or 
FENCERR) to the producer and consumer codes to ensure correctness with a weak consistency 
model. Please explain your answer fully. 
 
Code for producer to enqueue a message: 
 

 
 
 
Code for consumer to dequeue a message: 
 

 
 

P1: LD  R3, 0(R2) # get tail pointer 
 
 

P2: ST  R1, 0(R3) # write message to tail 
 
 

P3: ADD R3, R3, 4 # update tail pointer 
 
 

P4: ST  R3, 0(R2) 

C1: SpinLock: MOV  R6, R0        # set R6 to 0 
 
 

C2:           CAS  R6, R5, 0(R4) # try to acquire lock 
 
 

C3:       BNEZ R6, SpinLock 
 
 

C4:           LD   R7, 0(R2)    # get head pointer 
 
 

C5: Retry:    LD   R8, 0(R3)    # get tail pointer 
 
 

C6:      BEQ  R7, R8, Retry # is there a message? 
 
 

C7:           LD   R1, 0(R7)    # read message from queue 
 
 

C8:       ADD  R7, R7, 4    # update head pointer 
 
 

C9:       ST   R7, 0(R2)      
 
 

C10:          ST   R0, 0(R4)     # release lock 


