
6.823
Fall 2021 Quiz 3 Handout

Page 1 of 2

 6.823 Computer System Architecture
 Predication for VLIW Processors

http://csg.csail.mit.edu/6.823/

As we saw in Lecture 17, Predication is a technique to provide conditional execution without
branches and control dependences. Predication allows associating each operation with a Boolean
flag, called a predicate. If the predicate is true, the operation executes normally; if the predicate is
false, the operation is treated as a no-op. To avoid control dependences, predicated operations are
fetched and decoded as usual, but turned into a no-op if their predicate is false.

In this handout, we will explain how to add predication to VLIW processors by first describing
their ISA, and then explaining how we implement predication on top.

Our VLIW Processor can execute 4 MIPS-like operations with a single instruction: two simple
integer operations, one multiply or divide operation, and one memory operation, with the following
properties:

• All functional units and load/store units are fully pipelined and latch their inputs.
• A simple integer operation has a latency of a single cycle, meaning the result of an

operation issued at cycle X can be used by a dependent instruction in cycle X+1. Simple
integer operations include standard ALU operations and calculating branch address and/or
the target, but exclude multiplies and divides.

• A multiply or divide operation has a fixed latency of 2 cycles
• A load/store has a fixed latency of 3 cycles.

Thus, the following is the instruction encoding:

Simple Int Op Simple Int Op Mul/Div Op Memory Op

We extend our VLIW architecture as follows. We add 32 1-bit predicate registers, p0 to p31,
stored in a predicate register file. We also change the encoding of the integer, multiply/divide, and
load/store operations to allow them to be predicated on the value of one of these predicate registers.

We denote predicated operations in assembly by prefixing them with the predicate in parenthesis.
For example:

(p1)ADD rd, rs, rt SUBI rt, rs, imm MUL rd, rs LW rs, 0(rt)

denotes that the ADD operation is predicated on the value of predicate register p1: if p1 is True
(i.e., 1), the operation will execute as usual, and otherwise it will be turned into a no-op. Note that
predicates are per-operation, so the SUBI, MUL and LW operations are not affected by the predicate
even if they are part of the same VLIW instruction.

We also allow instructions to be predicated on the inverse of a predicate register. For example:

(!p1)ADD rd, rs, rt SUBI rt, rs, imm MUL rd, rs LW rs, 0(rt)

6.823
Fall 2021 Quiz 3 Handout

Page 2 of 2

denotes that this ADD operation is predicated on the inverse of the value of register p1: if p1 is
False (i.e., 0), the operation will execute as usual, and otherwise it will be turned into a no-op.

Finally, we add the following set of simple integer operations which set the predicate register:

• SETPEQ pd, rs, rt: Set PredReg[pd] to 1 if Reg[rs] == Reg[rt], or 0 otherwise
• SETPGE pd, rs, rt: Set PredReg[pd] to 1 if Reg[rs] >= Reg[rt], or 0 otherwise
• SETPLT pd, rs, rt: Set PredReg[pd] to 1 if Reg[rs] < Reg[rt], or 0 otherwise
• SETPNE pd, rs, rt: Set PredReg[pd] to 1 if Reg[rs] != Reg[rt], or 0 otherwise

Give example of if-else code with only the VLIW code and the predicated version.

With these changes, we can implement conditional execution without branches. For example,
consider the following code:

if (x == 0)
 A = B;
 B = B + 1;
else
 A = A * A;

Assuming that registers R1, R2, and R3 hold the values of x, A, and B, respectively, the following
is the VLIW code with a conditional branch:

label Simple Int Op Simple Int Op Mul/Div Op Memory Op
 BNEZ R1, else
if ADDI R2, R3, 0 ADDI R3, R3, 1
 J end
else MUL R2, R2, R2
end

With predication, we can rewrite the above assembly to execute on our VLIW machine without
the branch. The newly introduced SETPEQ operation sets predicate register p0 based on the if-
condition, and the ADDI operations are predicated on p0, and the MUL operation is predication on
the inverse of p0.

label Simple Int Op Simple Int Op Mul/Div Op Memory Op
 SETPEQ p0, R1, R0
 (p0)ADDI R2, R3, 0 (p0)ADDI R3, R3, 1 (!p0)MUL R2, R2, R2
end

