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Computer System Architecture  
6.823 Quiz #4 
May 20, 2021 

 
 

Name: ______SOLUTIONS_______        
 

90 Minutes 
 18 Pages 

 

Notes: 
• Not all questions are equally hard. Look over the whole quiz and budget your 

time carefully. 
• Please state any assumptions you make, and show your work. 
• Please write your answers by hand, on paper or a tablet. 
• Please email all 17 pages of questions with your answers, including this cover 

page. Alternatively, you may email scans (or photographs) of separate sheets of 
paper. Emails should be sent to 6823-staff@csail.mit.edu 

• Do not discuss a quiz's contents with students who have not yet taken the quiz. 
• Please sign the following statement before starting the quiz. If you are emailing 

separate sheets of paper, copy the statement onto the first page and sign it. 
 

I certify that I will start and finish the quiz on time, and that 
I will not give or receive unauthorized help on this quiz. 

 
Sign here: _______________________________ 

  
 

    Part A  ________     30 Points 
   Part B  ________     25 Points 
   Part C  ________     30 Points 
    Part D  ________     15 Points 

 
TOTAL          ________  100 Points 
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Part A: VLIW (30 points) 
 
Consider the following C code, which operates on two arrays A and B that contain 32-bit floating-
point elements: 
 
 for (int i = 0; i < N; i++) { 
  B[i] = A[i]*(A[i] + x) 
 } 
 
The following is the equivalent MIPS assembly code, where: 

• f3 contains the value of variable x 
• r1 and r2 are initialized to the addresses of A[0], B[0] respectively at the beginning of 

the loop 
• r3 contains the address of A[N] 

 
 loop: 
  ld f0, 0(r1) 
  fadd f1, f0, f3 
  fmul f2, f0, f1  
  st f2, 0(r2) 
  addi r1, r1, 4 
  addi r2, r2, 4 
  bne r1, r3, loop 
 
We want to schedule this code on a VLIW processor that issues one instruction per cycle. Each 
VLIW instruction encodes operations for 6 functional units: 

• Two integer ALU units (also used for branches) with a 1-instruction latency (i.e., the result 
of the operation can be used by a dependent instruction 1 cycle later). 

• Two memory units that can be used for both loads and stores. The processor does not have 
a data cache, so all memory accesses have a fixed 2-instruction latency. 

• One floating point adder with 3-instruction latency. 
• One floating point multiplier with 3-instruction latency.  
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Question 1 (5 points) 
 
Schedule operations into VLIW instructions by filling in the following table. Your solution should 
only contain one iteration of the loop (do not unroll). Your schedule take as few cycles as possible 
to earn full credit. You can leave NOPs as blanks. 
 
(For those writing on a separate piece of paper: Simply indicate any VLIW instruction with no 
operations with a solid line across the instruction. For instance, if there is are two empty VLIW 
instructions, you would write the following) 

 
Write down your solution here: 

 

Label Integer  Integer  Memory  Memory  FP add FP mul  
   ld rx, 0(ry)    
       
       
     fadd ra,rb,rc  

Label Integer  Integer  Memory  Memory  FP add  FP mul  
lp: addi r1, r1, r4  ld f0, 0(r1)    

       

     fadd f1, f0, f3  

       

       

      fmul f2, f0, f1 

       

       

 bne r1, r3, lp addi r2, r2, r4  st f2, 0(r2)   
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Question 2 (1 points) 
 
What number of floating point operations per cycle (FLOPs/cycle) does your schedule in Question 
1 achieve? 
 
2/9 
 
 
 
 
 
 
 
 
Question 3 (3 points) 
 
Ben now considers loop unrolling to improve performance. What is the minimum factor by which 
the loop must be unrolled so that, in steady state, every instruction performs at least one memory 
or floating point operation? Whatever degree of unrolling you choose, assume that it divides the 
number of loop iterations exactly. 
 
We need at least 3 factors of unrolling to cover the fadd->fmul latency. 
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Question 4 (6 points) 
 
Ben now wants to apply software pipelining to this loop. With proper application of unrolling and 
software pipelining, Ben achieves the ideal peak throughput of 2 FLOPs/cycle. How many VLIW 
instructions should the body of the steady-state software-pipelined loop contain to achieve this 
throughput (excluding the prologue and epilogue)? You need not write down the whole loop body, 
but explain your reasoning for the number of instructions. 
 
Hint: Note that the fmul instruction has a data dependence on both the ld and the fadd. 
 
The key here is to realize that the destination register of the ld must be alive by the time fmul 
reads it. A simple way to do this is to unroll the loop by the load-use distance of ld to fmul, 
which is 5 instructions. The following is the resulting loop body (integer unit not shown for 
brevity): 
 

 
Here, fadd f1n, fn, f3 depends on ld fn, and fmul f2n, fn, f1n, depends on ld fn and fadd f1n, fn 
f3 where n is an integer ranging from 0 to 5 (we skip f3 because it is taken by x). 
 
However, if you noticed that the load takes 2 cycles to write back its result, you can further 
reduce the loop body down to 4 instructions: 

 
We accepted both answers. 
 
 
 
 
 
  

Label Memory  Memory  FP add  FP mul  

lp: ld f0, 0(r1) st f20, 0(r1) fadd f14, f4, f3 fmul f20, f0, f10 

 ld f1, 4(r1) st f21, 4(r1) fadd f15, f5, f3 fmul f21, f1, f11 

 ld f2, 8(r1) st f22, 8(r1) fadd f10, f0, f3 fmul f22, f2, f12 

 ld f4, 12(r1) st f24, 12(r1) fadd f11, f1, f3 fmul f24, f4, f14 

 ld f5, 16(r1) st f25, 16(r1) fadd f12, f2, f3 fmul f25, f5, f15 

Label Memory  Memory  FP add  FP mul  

lp: ld f0, 0(r1) st f20, 0(r1) fadd f12, f2, f3 fmul f24, f4, f14 

 ld f1, 4(r1) st f21, 4(r1) fadd f14, f4, f3 fmul f20, f0, f10 

 ld f2, 8(r1) st f22, 8(r1) fadd f10, f0, f3 fmul f21, f1, f11 

 ld f4, 12(r1) st f24, 12(r1) fadd f11, f1, f3 fmul f22, f2, f12 
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Ben now introduces a direct-mapped data cache with 8 sets and 64 bytes per line to his processor. 
This cache makes loads have variable latency: 1 cycle if it hits the cache, and 2 cycles otherwise. 
Since VLIW processors expose fixed instructions latencies to software, benefitting from the lower 
latency on cache hits requires some software changes. 
 
To this end, Ben adds a memory latency register (MLR) to his processor. As we saw in lecture, 
the MLR (featured in Cydrome’s Cydra-5) is a programmatically writable register that contains 
the desired latency of loads, in VLIW instructions. The programmer  sets the MLR with following 
instruction: 
 
 setmlr rs ;; Set the MLR to the value of Reg[rs] 
 
The processor is modified to ensure that loads always take the latency specified by the MLR. If 
the load produces the result earlier than the MLR latency (e.g., if MLR is set to 2 instructions but 
the cache replies in 1 cycle), the processor temporarily buffers the data to match the longer latency. 
If the operation produces it later than expected (e.g., if the MLR is set to 1 instruction but memory 
replies in 2 cycles), the processor is stalled until the data is available. 
 
Question 5 (5 points) 
 
Recall that array A contains 32-bit floating point elements. Assume that the data cache is initially 
empty. To what value should Ben set the MLR to maintain the peak throughput in Question 4 with 
software pipelining and loop unrolling? Explain briefly. 
 
MLR should be set to 2. Notice that we already achieve peak throughput in Question 4 with 
software pipelining. Setting MLR to 1 only makes the code size smaller, and will decrease 
throughput if we have any data cache misses. 
 
 
Question 6 (5 points) 
 
Ben now adds a direct-mapped instruction cache with 2 sets and 48 bytes per line. To what value 
should Ben set the MLR such that the body of the software-pipelined loop can fit in the instruction 
cache? Assume instructions are aligned properly. Explain briefly. 
 
Hint: Each VLIW instruction is 32bits´ 6 = 24 bytes. 
 
The instruction cache can hold maximum of 4 VLIW instructions. If you answered 5 in Question 
4, then you need to set MLR to 1 to make the loop body fit in the instruction cache. If not, MLR 
can be set to any value. 
 
In general, if you answered that MLR should be set to 1 to reduce code size (even if your loop 
body still doesn't fit in the icache), we gave some points. 
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Question 7 (4 points) 
 
So far we have ignored the performance impact of instruction cache misses. Suppose that 
instruction cache misses occur a 1-cycle additional latency in fetching the instruction. If Ben uses 
the instruction cache with the same parameters given in Question 6, to what value should he set 
the MLR to maximize the performance (FLOPs/cycle) of his code? 
 
Assume we answered 5 VLIW instrucitons loop body in Question 4. We need to calculate the 
effect of dcache misses with MLR = 2 vs. effect of icache misses with MLR = 1. 
 
with MLR = 1, we have 1 dcache miss every 16 ld instructions, which is every 4 iterations, 
which translates to 1 extra cycle due to stall every 4 iterations. This means that our code 
performs 17/16 cycles/iter (on average). 
 
with MLR = 2, we have 1 icache miss every 2 instructions, which translates to 5 extra cycles due 
to stalls every 2 iterations. This means that our code performs 7.5 cycles/iter. Clearly, MLR=1 
performs better. 
 
If you answered 5 VLIW instructions in Question 4, MLR should be set to 2 to entirely eliminate 
data cache misses and achieve 2 FLOPs/cycle. 
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Part B: Vector Processors and GPUs  (25 points) 
 
For the following questions, we will explore how different vector architecture features can affect 
the performance of various vectorized codes. The following describes the baseline vector processor 
with support for vector masks: 

• Single-issue, in-order execution. 
• Scalar instructions execute on a 5-stage, fully-bypassed pipeline. 
• 32 vector registers named v0 through v31. Each vector register holds 16 elements. The 

register files have enough ports to keep all lanes busy. 
• Four vector lanes, each with one ALU and one load-store unit. Both units are fully-

pipelined and can process vector elements from independent instructions. 
• No support for vector chaining. 
• The ALUs have a 4-cycle latency (4 for FP add/mul and 1 for writeback). 
• The vector memory system has no cache and consists of 16 banks, with 4-byte word 

interleaving (0x0 maps to bank 0, 0x4 to bank 1, etc.). Memory access latency is 4 cycles 
(4 cycles for access, 1 for writeback) with a 2-cycle bank busy time (additional cycles 
between accesses to the same bank). A vector lane’s load-store unit stalls if its required 
bank is busy. 

• Vector instructions are maskable, but each lane always processes all its vector elements 
and turns off writeback for the masked ones. 

 
This schematic shows a simplified view of the processor: 

 

The processor can issue a single (scalar or vector) instruction per cycle. Once it issues, a vector 
instruction uses either all lanes’ ALUs or all lanes’ load-store units for as many cycles as needed 
to produce all of its results. A vector load or store can execute in parallel with independent 
operations that use the vector ALUs, and vector operations can execute in parallel with scalar 
operations. If a vector instruction depends on the result of a prior instruction, it stalls until the prior 
instruction finishes writing back all of its results. The processor implements MIPS plus the 
following vector instructions. 
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Instruction Meaning 
setvlr Rs Set vector length register (VLR) to the value in Rs 
lv Vt, Rs, Stride Load vector register Vt starting at address in Rs, with stride immediate 
sv Vt, Rs, Stride Store vector register Vt starting at address in Rs, with stride immediate 
add.vv Vd, Vs, Vt Add elements in Vs, Vt, and store result in Vd 
mul.vv Vd, Vs, Vt Multiply  elements in Vs, Vt, and store result in Vd 
add.vs Vd, Vs, Rt Add Rt to each element in Vs, and store result in Vd 
mul.vs Vd, Vs, Rt Multiply each element in Vs by Rt, and store result in Vd 
s--.vs Vd, Rs Compare the elements (eq, ne, gt, lt, ge, le) in Vd and Rs. For each 

element, if the condition is true, set the corresponding bit of the vector 
mask register to 1. If the condition is false, set the corresponding bit of 
the vector mask register to 0. 

cvm Set all elements in vector mask register to 1.  
 
The following set of questions give a short vector assembly sequence and ask the performance 
impact of various microarchitectural feature changes. Assume that the vector length register is 
set to 16 before the code segment, and all register values used by the vector instructions are 
initially available. For full credit, explain your answer and clearly state your assumptions. 
 
Question 1 (5 points) 
 
Consider the following vector assembly: 
 
 lv v0, r1, 1       ;; Load with stride of 1  

mul.vv v1, v1, v2 
add.vv v2, v2, v3 
mul.vv v3, v3, v4 
add.vv v4, v4, v0  

 
a) Does doubling the number of vector lanes increase the performance of this code? 

 
Yes. doubling the number of lanes halves the latency of each instruction. 
 
 
 

b) Suppose we now add support for chaining. With chaining, a vector instruction that 
depends on a previous instruction can start execution if the first set of elements it 
processes is already written to the vector register file (assume there’s no bypassing from 
the writeback stage). Does chaining help increase the performance of this code? 
 
No. There is a dependence between the first lv and the last add.vv, the but latency is 
covered by the 3 vector instructions in between. So chaining will not help here. 
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Question 2 (5 points) 
 
Consider the following vector assembly with a load that has a stride of 16: 
 
 lv v0, r1, 16       ;; Load with stride of 16  

mul.vv v1, v0, v1 
  

 
a) Does doubling the number of vector lanes help decrease the latency of the lv instruction?  

 
No. the loads all conflict in the same bank, which increasing the number of lanes won't 
help at all. 

 
 
 

b) Does adding support for chaining (with the same implementation as described in 
Question 1) improve the performance of this code? 
 
Yes, since the mul.vv depends on lv. 
 
 
 

Question 3 (5 points) 
 
Consider the following vector assembly that uses vector masks: 
 
 lv v0, r1, 1       ;; Load with stride of 1  

sgt.vs v0, r0 
add.vv v1, v1, v0 
  

 
Does the performance of this code differ based on the values loaded by lv? 
 
Without any additional assumptions the answer is No. Our description of the processor states that 
masked elements will simply have the writeback turned off, which means that they still go 
through the vector pipeline. 
 
If you assumed that you can optimize the pipeline to entirely skip the writeback stage when all 
elements in a vector group is masked off, then the answer is Yes. 
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Ben Bitdiddle wants to run his C code on a GPU with the following features: 
• 4 threads per warp that share the same PC and thus execute the same instruction in lockstep. 
• The GPU has 4 lanes, with each lane having one ALU and one load-store unit that are fully 

pipelined, with a latency of 16 cycles. 
• Each warp has a stack of masks to handle branch divergence. Each mask has a bit for each 

thread. Each thread looks at its corresponding bit of the mask at the top of the stack. If a 
mask bit is zero, the corresponding thread does not execute the current instruction. 

 
The following is Ben’s code: 
 

 
I1 
 

I2 
 

I3 
 
 

for (int i = 0; i < N; i++) { 
 if (A[i] > 0) { 
  C[i] = A[i] - B[i]; 
 } else { 
  C[i] = A[i] + B[i]; 
 } 
} 
 

Assume that  A[i] is positive if and only if i is divisible by 4 (i.e., A[0], A[4], ...).  
 
Question 3 (5 points) 
 
Ben translates the code to run on the GPU. His code uses N threads (grouped in N/4 warps), and 
each thread executes the a single loop iteration (shown in grey background). Thread i executes 
iteration i. Assume that the warp mask is initially all set, and that N is a multiple of 4. Describe 
the state of the per-warp mask stack after each point I1, I2, and I3 as specified in the above code. 
 
Inital mask state: 1111 
After I1: pushed 1111, push 0111 (mask for the else statement), set mask to 1000 
After I2: pop mask 0111 
After I3: pop mask 1111 
 
Question 4 (5 points) 
 
What is the minimum number of warps needed to achieve the highest pipeline utilization? Note 
that the load-to-use latency is 16 cycles (i.e., you can issue a dependent operation 16 cycles later), 
and different warps execute in lockstep.  
 
We need 16 warps to cover the load-to-use latency. 
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Part C: Transactional Memory (30 points) 
 
In this part we will analyze the operation of different hardware TM (HTM) designs, and the 
concurrency they achieve for different transaction schedules on a multicore system. For any HTM 
design, the memory system dynamically tracks the set of addresses read or written by each 
transaction (i.e., its read set and write set) as accesses are performed. 
 
Consider the following two HTM designs: 
 

• Eager & Pessimistic HTM uses eager version management and pessimistic conflict 
detection. For every transactional load, the memory system checks whether this load reads 
an address in the write set of any other transaction, and declares a conflict if so. For every 
transactional store, the memory system checks whether this store writes an address in the 
read set or write set of any other transaction, and declares a conflict if so. Upon a conflict, 
the requester stalls and waits until all conflicting transactions abort or commit. Assume 
that the requester immediately resumes execution once all conflicting transactions have 
aborted or committed. 

  
• Lazy & Optimistic HTM uses lazy version management and optimistic conflict detection. 

Conflicts are detected when a transaction attempts to commit. The finished transaction 
validates its write-set with coherence actions. If any of its writes appear in the read- or 
write-set of other transactions in the system, a conflict is declared, and the committer wins, 
aborting any other conflicting transactions. Assume that the aborted transaction 
immediately re-executes from the beginning at the same cycle. 

 
In the following questions, for timing, assume conflict detection and coherence happen in the same 
cycle a memory access executes. Note that we denote a transaction reading from or writing to a 
memory location A by Rd A and Wr A, respectively. 
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Question 1 (10 points) 
 
Consider the following scenario, where two transactions X and Y begin at cycles 5 and 0. The 
following table shows how the transactions would proceed in the absence of conflict detection: 
 

Cycle 0 5 10 15 20 25 30 35 40 45 
Transaction X  Begin  Wr A   Rd B Wr B  End 
Transaction Y Begin Rd A   Wr B Rd A  End   

 
 
a) Is the above execution schedule serializable in the absence of conflict detection? If so, what is 
the serialization order? 
 
Not serializable 
 
 
 
 
b) At which cycle is a conflict detected between the two transactions for the two HTM systems? 
If you think that no conflict detection will occur, write "No Conflict" as your answer. 
 

• Eager & Pessimistic: 15 
 
 

• Lazy & Optimistic: 35 
 
 
 
 
 
 
c) At which cycle will both transactions have finished execution with the two HTM systems? 
 

• Eager & Pessimistic: 35 + (45-15) = 65 
 
 

• Lazy & Optimistic: 35 + 40 = 75 
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Question 2 (10 points) 
 
Consider the following scenari,o where two transactions X and Y begin at cycles 0 and 5. The 
following table shows how the transactions would proceed in the absence of conflict detection: 
 

Cycle 0 5 10 15 20 25 30 35 40 45 
Transaction X Begin  Rd B   Wr B   Rd A End 
Transaction Y  Begin  Rd B Rd A  Wr A End   

 
 
a) Is the above execution schedule serializable in the absence of conflict detection? If so, what is 
the serialization order? 
 
 
Serializable in the order of Y®X 
 
 
 
b) At which cycle is a conflict detected between the two transactions for the two HTM systems? 
If you think that no conflict detection will occur, write "No Conflict" as your answer. 
 

• Eager & Pessimistic: 25 
 
 

• Lazy & Optimistic: No Conflict 
 
 
 
 
 
 
c) At which cycle will both transactions have finished execution with the two HTM systems? 
 

• Eager & Pessimistic: 35 + (45 - 25) = 55 
 
 

• Lazy & Optimistic: 45 
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Question 3 (10 points) 
 
Consider the following scenario, where three transactions X, Y, and Z begin at cycle 0. The 
following table shows how the transactions would proceed in the absence of conflict detection: 
 

Cycle 0 5 10 15 20 25 30 35 40 45 
Transaction X Begin Rd A Wr A     End   
Transaction Y Begin   Rd A Wr A    End  
Transaction Z Begin     Rd A  Wr A  End 

 
 
a) Is the above execution schedule serializable in the absence of conflict detection? If so, what is 
the serialization order? 
 
 
Serializable in the order of X®Y®Z 
 
 
 
b) At which cycles is the first conflict detected between any two transactions for the two HTM 
systems? If you think that no conflict detection will occur, write "No Conflict" as your answer. 
 

• Eager & Pessimistic: 15 
 
 

• Lazy & Optimistic: 35 
 
 
c) At which cycle will all transactions have finished execution with the two HTM systems? 
 

• Eager & Pessimistic: This will actually Deadlock on cycle 45, when Tx Z declares 
conflict with Tx Y. But since we didn't say that deadlock was an option, we gave full 
points for the solution below:  
 
This is a bit tricky. Let's write down how Tx's evolve over time: 
cycle 15: Tx Y declares conflict with Tx X, stalls (Rd A conflicts w/ write set of Tx X) 
cycle 25: Tx Z declares conflict with Tx X,  stalls (Rd A conflicts w/ write set of Tx X) 
cycle 35: Tx X commits. Tx Y and Z resume 
cycle 40: Tx Y declares conflict with Tx Z, stalls (Wr A conflics / read set of Tx Z) 
cycle 55: Tx Z commits. Tx Y resumes 
cycle 75: Tx Y commits. 
Thus, total cycles is 75. 

• Lazy & Optimistic: 35 + 40 + 45 = 120 
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Part D: Security & Virtualization (15 points) 
 
Question 1 (6 points) 
 
For the following questions, answer True or False. (2 points each) 
 
 

a) Hardware support is necessary to implement virtual machines. 
 
False 
 
 
 
 
 

b) Suppose we have a virtual machine running on top of our Virtual Machine Monitor 
(VMM) with no support for shadow page tables. If the guest OS uses M-level page tables 
and the host OS uses N-level page tables, a TLB miss will incur (M+1)(N+1)-1 page 
table entry accesses. 
 
True 
 
 
 
 

c) In an out-of-order processor that supports simultaneous multithreading, the physical 
register file can be a potential side channel. 
 
True 
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Question 2 (4 points) 
 
Recall, for an architecture to be effectively virtualizable (by Popek and Goldberg’s rules), all 
sensitive instructions should be privileged so the VMM can emulate them through traps. This is 
called classical virtualization. 
 
Are the following instructions classically virtualizable? Briefly explain why or why not. 
 
a) sptbr rs: 

 if in supervisor mode: 
  # Move the content of GPR rs to register ptbr,  
  # which holds the physical  address of the  
  # root (level-1) page table 
  ptbr ¬ Reg[rs] 
 else: 
  set supervisor bit to 1, jump to exception handler 
 
This is virtualizable. It is control sensitive and privileged. 
 

b) mret rs: 
 if in supervisor mode: 
  set supervisor bit to 0, enable interrupts 
  pc ¬ Reg[rs] 
 else: 
  # Treat mret as a normal jump 
  pc ¬ Reg[rs] 
 
This isn't virtualizable since it is behavior sensitive. The behavior of the instruction depends 
on the hardware configuration, in this case the supervisor mode. The instruction should be 
trapped for VMM to know when the OS has transitioned from "guest supervisor" mode to 
user mode. 
 

c) invlpg rs1, rs2: 
   invalidate the TLB entry for the virtual address = Reg[rs1] 
   and the address space id = Reg[rs2] 
   # The TLB uses address space ids to avoid flushing on context 
   # switches. Since the TLB is microarchitectural state, the ISA 
   # designers made invlpg work identically in user and supervisor 
   # mode 
 
This isn't virtualizable since it is sensitive in a nuanced way. The ASIDs must be virtualized 
since they may conflict between multiple OS's. Thus, if this doesn't trap, the OS may 
invalidate the wrong entry, causing incorrect behavior due to stale TLB entries.  
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Question 3 (5 points) 
 
Consider an out-of-order processor with support for simultaneous multithreading. The processor 
has a single, unpipelined floating point divider that takes N cycles when the numerator has N bits 
that are set. The processor also has support for very precise timers.  
 
Consider the following kernel C code: 
 
 float secret, x, a, b; 
 ... 
  
 if (x < 1024) 
  secret = secret / x; 
 float a = a / b; 
 
Imagine a scenario where the attacker invokes this kernel code (e.g., through a system call) with 
small values of x to prime the branch to be not taken, and provides a value of x larger than 1024 
when he wishes to extract information about secret. Can this code be used as a transmitter to 
leak information about the contents of secret to the attacker under speculative execution? If so, 
how much detail could the attacker reveal about secret? Explain your reasoning. 
 
A clarification that the "branch not being taken" means it enters the if-statement.  
 
Information about how many bits are set in the secret can be leaked due to the timing of when 
the divider is available for the second division after the misprediction is recognized.  


