Last updated:
11/29/2021

Problem M15.1: Exploiting Parallelism (Spring 2014 Quiz 3, Part B)

Consider the following C code sequence:

const int size = 64 * 1024;
int a[SIZE], b[SIZE], c[SIZE];
for (int 1 = 0; 1 < SIZE; i++) {
if (a[i] > b[i]) {
cl[i] = ali] + bli];
}
}

This is a repetitive computation with a simple dependency graph. If we look at the MIPS assembly
code, we see that a large percentage of the instructions are doing bookkeeping. We’d like to reduce
this overhead.

// Rl points to a, R2 points to b, R3 points to c
// R6 is i
ADD R6, RO, SIZE
Loop: LD R4, O (R1)
LD R5, 0(R2)
SUB R8, R4, R5
BGEZ R8, Skip
ADD R4, R5, R4
ST R4, 0(R3)
Skip: ADD R1, RI,
ADD R2, R2,
ADD R3, R3,
SUB R6, RO,
BNEZ R6, Loop

= s D

Problem M15.1.A

3 >4

Circle the MIPS instructions in the assembly above that perform “useful work™ rather than

bookkeeping.



Last updated:
11/29/2021

Problem M15.1.B

If the loads in the preceding code take four cycles, then this code sequence will stall and
performance will suffer. Explain how an in-order, fine-grain multithreaded processor with two
threads could mitigate this effect?

How would the program need to change for multhreading? (You do not need to write the code.)



Last updated:
11/29/2021

Problem M15.1.C

An alternative approach is to hide the load latency within a single thread by using loop unrolling.
Loads take four cycles and adds take one cycle. Write a loop unrolled VLIW version of the
preceding code using the same VLIW instruction format as in Part A:

Memory operation ALU operation ALU operation / Branch

Unroll the fewest number of loop iterations necessary to cover the load’s latency. Whatever degree
of unrolling you choose, assume it divides the array size. Also assume that predication is allowed:

(pl) instruction executes the instruction if predicate register p1 is set.
cmp.gt pl, rl, r2 setspredicate register pl if r1 is greater than r2.

Finally, R1 points to a, R2 points to b, R3 points to c, and R6 is 1.

NOTE: The back of this page has additional space.

Additional space:




Last updated:
11/29/2021

Problem M15.1.D

Write a vector version using vector instructions and the vector mask register. Assume that the
vector machine can do up to 64 operations per instruction, and note that STZE is a multiple of 64.

VLR register stores the vector length.

LV vl, rl, Imm loads vector register vl with memory starting at address r1 and stride Tmm.
SV vl, rl, Imm behaves similarly for stores.

ADDV v1, v2, v3addsv2 and v3 and puts the result in v1.

SGTVV v1l, wv2 sets the vector mask register for each vector element in v1 greater than the
corresponding element in v2 (mask set means the operation is enabled).

CVM resets the vector mask register (turns on all elements).



Last updated:
11/29/2021

// Rl points to a, R2 points to b, R3 points to c
// R6 is i
ADD R6, RO, SIZE
LI VLR, 64
Loop:

Skip: ADD R1, R1, 64*4
ADD R2, R2, 64*4
ADD R3, R3, 64*4
SUB R6, R6, 64
BNEZ R6, Loop



Last updated:
11/29/2021

Problem M15.1.E

Is this program easy to map to GPUs? What inefficiencies may arise? Explain your answer in one
or two sentences.



Last updated:
11/29/2021

Problem M15.2: VLIW, Vector Machines, and GPUs (Spring 2015 Quiz 4, Part
0)

Consider the following C code fragment:

for(int i = 0; i < ;o 1+4)
{
if(A[i] '= B[i])
C[i] = A[i] + 1;
else
C[i] = A[i] - 1:
}

A, B and C are arrays of 301 integers each. (Note: sizeof(int) = 4 bytes). Assume that A, B and C
are stored in non-overlapping regions of memory.

The MIPS assembly for this code is shown below.

# Rl points to A[O0]
# R2 points to B[O0]
# R3 points to C[0]
# R4 contains a value of 301

loop: LW R5, O (R1)
LW R6, 0 (R2)
BEQ R5, R6, else
ADDI R5, R5, #1
J next

else: ADDI R5, R5, #-1

next: SW R5, 0 (R3)
ADDI R1, R1, #4
ADDI R2, R2, #4
ADDI R3, R3, #4
ADDI R4, R4, #-1
BNEZ R4, loop

In the rest of the problem, assume that load instructions that hit in the cache take 4 cycles (i.e., if
load instruction I1 starts execution at cycle N, then instructions that depend on the result of I1 can
only start execution at or after cycle N+4) while all other instructions take 1 cycle. Assume the
data cache has two read ports, two write ports, and is pipelined (i.e., it can accept a new request
every cycle). Also assume perfect branch prediction and 100% hit rate in the instruction and data
caches.




Problem M15.2.A

Last updated:
11/29/2021

Consider a VLIW processor. Each instruction can contain up to two integer ALU operations
(including branches) and two memory operations. In addition, in this machine, any operation can
be predicated with any general-purpose register. For example:

[R3] SW RI1,

SW R1, O0(R2) executes the store only if R3 is zero.

0 (R2) executes the store instruction only if R3 is not zero; similarly, [ ! R3]

Fill in the following table by unrolling enough loop iterations to eliminate the stall cycles in the

main loop. Do not use software pipelining.

Label

Mem

Mem

ALU/Branch

ALU/Branch




Last updated:
11/29/2021

Problem M15.2.B

Now consider a vector machine. In addition to scalar registers, the machine has 32 vector registers,
each 32-elements long. Vector instructions are described in the following table.

Instruction Meaning I
MTCI1 VLR, Ri Set VLR (vector length register) to the value of register Ri.
CVM Set all elements in vector-mask (VM) register to 1.
LV Vi, Rj Load vector register Vi from memory starting at address Rj (under mask
vector).
SV Vi, Rj Store Vi to memory starting at address Rj (under mask vector).

ADDVV Vi, Vj, Vk Add elements of Vj and Vk and then put each result in Vi

(under mask vector).

ADDVS Vi, Vj, Rk Add Rk to each element of Vj and then put each result in Vi

(under mask vector).

SUBVV Vi, Vj, Vk Subtract elements of Vk from Vj and then put each result in Vi

(under mask vector).

SUBVS Vi, Vj, Rk Subtract Rk from elements of Vj and then put each result in Vi

(under mask vector).

S--VV Vi, Vj Compare the elements (EQ, NE, GT, LT, GE, LE) in Vi and Vj. If the
condition is true, put a 1 in the mask vector (VM), otherwise put 0.

Rewrite the code fragment for this vector machine by filling in the table on the next page. For your
convenience, part of the assembly code is already written for you. You may not need all the rows.

R1 points to A[O]
R2 points to B[O]
R3 points to C[O0]
R4 contains a value of 301

H o3 o

Label Instruction Comment (Optional)




Last updated:
11/29/2021

loop: CVM Set all elements in mask to 1
LV VI1,RI1

ADD RI,RI1,R6
ADD R2,R2,R6
ADD R3,R3,R6
SUB R4, R4, R5

ADDI RS5, RO, #32 Set RS to 32
MTCI1 VLR, R5 Set VLR to RS
SLL R6, RS, #2 Set R6 to R5*4
BGTZ R4, loop

Problem M15.2.C

Suppose this vector machine has four lanes. Each lane has one ALU for adds, one ALU for
comparisons, and a load-store unit with one read port and one write port. Both ALUs take a single
cycle, and memory takes 4 cycles. Assume we use vector chaining to reduce stalls due to data
dependences. The machine can chain a load to an ALU instruction, or an add ALU instruction to a



Last updated:
11/29/2021

compare ALU instruction. Also assume that the mask register is updated at the end of the cycle when
an entire S—V'V instruction is finished.

In this question, assume each vector register has at least N elements. If we run the same program but

with N iterations (instead of 301) on this vector machine, what is the average number of cycles per
element for this loop in steady state for a very large value of N?

Problem M15.2.D

Suppose we code this program to run on a GPU with N warps. Each warp has 32 threads sharing
the same PC and thus executing the same instruction. Assume each operation takes 16 cycles to
execute. At most one instruction can be issued per cycle. In this GPU, each lane has one ALU and
one load-store unit.



Last updated:
11/29/2021

(1) If the machine has 32 lanes, what is the minimum value of N to achieve the highest pipeline
utilization?

(2) If the machine has 16 lanes, what is the minimum value of N to achieve the highest pipeline
utilization?



