
Part A: VLIW

Question 1

I1àI2: 1 cycle
I3àI4: 1 cycle (overlaps with I2 à I3 dependency)
I4àI5: 2 cycles
Total: 4 cycles

Question 2

3 iterations, or 2 iterations (with code reordering).

Question 3

Inst. ALU/Branch Unit Memory Unit Floating Point Unit
1 loop: addi x1, x1, 4 lw f0, 0(x1)
2 addi x2, x2, 4 lw f3, 0(x2)
3 fmul f2, f0, f1
4
5
6 fadd f4, f2, f3
7
8
9 bne x1, x3, loop sw f4, -4(x2)
10
11
12
13
14

Question 4

Inst. ALU/Branch Unit Memory Unit Floating Point Unit
1 lw f0, 0(x1)
2 lw f5, 4(x1)
3 lw f7, 8(x1) fmul f2, f0, f1
4 addi x1, x1, 12 lw f3, 0(x2) fmul f9, f5, f1
5 lw f6, 4(x2) fmul f10, f7, f1
6 lw f8, 8(x2) fadd f4, f2, f3
7 addi x2, x2, 12 fadd f11, f9, f6
8 fadd f12, f10, f8

9 sw f4, -12(x2)
10 sw f11, -8(x2)
11 bne r1, r3, loop sw f12, -4(x2)
12
13
14

Question 5

We need 3 VLIW instructions per iteration.
Each iteration of the loop has 3 memory operations, and we can issue 1 memory op per VLIW
instruction. Hence we need at least 3 instructions per iteration.
Each iteration has 2 floating point operations (one mul and one add) per iteration. So the
throughput is 2/3 floating point operations per cycle.

The software pipelined code of the in-order processor achieves zero stalls (Question 2). But this
code still has 8 instructions per iteration. And one instruction is issued per cycle (assuming no
stalls). So one iteration takes 8 cycles. So the VLIW processor is 8/3 = 3x faster. If you assume
that you can also hide the cost of the 3 bookkeeping instructions (you probably can), then the
speedup is 5/3 = 2x faster. Note that we only gave full points if you clearly explained these cycle
numbers and how you derived them.

Part B: Transactional Memory and Reliability

Question 1

(a) Not serializable
(b) Solution:

 Conflict cycle Aborted Transaction
(X, Y, or Neither)

Eager &
Pessimistic

20 Y

Lazy &
Optimistic

40
 Y

Question 2

Cycle 0 5 10 15 20 25 30 35 40 45

Transaction X Begin Rd
A

 Wr
A

 End

Transaction Y Begin Rd
A

 End

Txn X Write bit
Read bit

Txn Y Write bit
Read bit

Question 3

Yes, just abort transactions on all cores when a bitflip is detected. Then have the cores sync at a
barrier, clear the bitflip error flag, and continue normal execution.

Part C: Security

Question 1

(a) Guess one int of the password at a time: when you get the right i-th int, the code will run
slightly longer (one extra iteration of the loop).

(b) L2 an L3

Question 2

 li a0,1
loop:
 lw t0,0(a0)
 lw t1,0(a1)
 sub t0,t0,t1
 seqz t0,t0
 and a0,a0,t0
 addi t0,t0,4
 addi t1,t1,4
 addi a2,a2,-1
 bgt a2,x0,loop
retTrue:
 ret
retFalse:
 ret

Part D: Accelerators

Question 1

The two plots intersect at x=10 (we also accept x=20).

Question 2

N^2 multiplies. N^2 + N loads. Operational intensity = N^2/(N^2+N) = N/(N+1) > 0.5 and < 1.

Question 3

RyanAir for all N (see roofline).

Question 4

2*N^2 loads. N^3 operations. Operational intensity = N^3/(2*N^2) = N/2.

Question 5

RyanAir better for N<20 (we also accept N<40). Axelerator better for N>20 (we also accept
N>40). See roofline.

Operational intensity
(multiplies per word loaded)

M
ul

tip
lie

s p
er

 cy
cle

Axelerator Peak

RyanAir Peak

2 3010

1

3

Question 6

0 loads. N operations. Operational intensity = infinity.

Question 7

Both systems perform equally well. The factorial function has a dependency between every
iteration, so it is parallelism bound.

Question 8

Axel needs to increase memory bandwidth to at least match that of RyanAir (0.5 words/cycle).

