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Computer System Architecture 
6.5900 Quiz #3 

December 13th, 2023 
 
 
 

 
Name: ___________________________        

 
This is a closed book, closed notes exam. 

80 Minutes 
 16 Pages (+2 Scratch) 

 
Notes: 
• Not all questions are of equal difficulty, so look over the entire exam and 

budget your time carefully. 
• Please carefully state any assumptions you make. 
• Show your work to receive full credit. 
• Please write your name on every page in the quiz. 
• You must not discuss a quiz's contents with other students who have not 

yet taken the quiz. 
• Pages 17 and 18 are scratch pages. Use them if you need more space to 

answer one of the questions, or for rough work. 
 

     
    

   Part A  ________     28 Points     
   Part B  ________     22 Points 
   Part C  ________     18 Points 
   Part D  ________     32 Points 

    
TOTAL          ________  100 Points 
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Part A: VLIW Processors (28 points)  
 
In this question, we will examine the execution of the code below on a single-issue in-order 
processor and a VLIW processor. 
 

// A, X, and Y hold single-precision (32-bit) 
// floating point values 
float A, X[N], Y[N]; 
for (int i = 0; i < N; i++) 
    Y[i] = Y[i] + A*X[i]; 
 
// Initial values: 
//  f1 = A 
//  x1 = &X[0] 
//  x2 = &Y[0] 
//  x3 = &X[N] (first address after vector X) 

I1:  loop: lw     f0, 0(x1) 
I2:        fmul.s f2, f0, f1 
I3:        lw     f3, 0(x2) 
I4:        fadd.s f4, f2, f3 
I5:        sw     f4, 0(x2) 
I6:        addi   x1, x1, 4 
I7:        addi   x2, x2, 4 
I8:        bne    x1, x3, loop 
 
Question 1 (5 points) 
 
The code above runs on an in-order, single-issue processor with perfect branch prediction 
and full bypassing. ALU (integer) operations have a 1-cycle latency (so, thanks to 
bypassing, consecutive dependent ALU operations execute without stalling), loads and 
stores have a 2-cycle latency, and floating-point operations have a 3-cycle latency. How 
many cycles will the processor stall per loop iteration? 
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Question 2 (5 points) 
 
If you apply software pipelining to the loop, what is the minimum number of iterations that 
you would need to overlap to remove all stalls in steady-state operation? You are allowed 
to reorder instructions. (Hint: You don’t need to actually software-pipeline the loop to 
answer this.) 
 
 
 
 
 
 
 
 
 
 
 
Question 3 (6 points) 
 
Write the VLIW schedule of the instructions in one iteration of the original loop. You only 
need to write instructions on the critical. (You may also write instructions off the critical 
path if you want, which we will not grade). The 3-operation VLIW format is shown below. 
The VLIW architecture has the same fixed delays as the in-order processor (1/2/3 cycles 
for ALU/memory/floating-point operations, respectively), and has no stall logic. You may 
reorder and modify instructions. For full credit, your implementation should use the 
minimum number of VLIW instructions. 
 
Inst. ALU/Branch Unit Memory Unit Floating Point Unit 
1    
2    
3    
4    
5    
6    
7    
8    
9    
10    
11    
12    
13    
14    
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Question 4 (6 points) 
 
Apply loop unrolling to the VLIW code in Question 3. Unroll the fewest number of 
iterations required to eliminate all stalls. Whatever degree of unrolling you choose, assume 
it divides the total number of loop iterations exactly. Again, you only need to write 
instructions on the critical path. 
 
Inst. ALU/Branch Unit Memory Unit Floating Point Unit 
1    
2    
3    
4    
5    
6    
7    
8    
9    
10    
11    
12    
13    
14    

 
 
Question 5 (6 points) 
 
What is the maximum throughput, in floating-point operations per cycle, that the VLIW 
processor can achieve by applying software pipelining to the original loop? How much 
better is this throughput, roughly, than the best throughput of the in-order, single-issue 
processor? Please explain your answer. (To answer this, it’s sufficient to give the nearest 
integer factor, e.g., about 5x better.) 
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Part B: Transactional Memory & Reliability (22 points) 
 
In this part you will analyze the operation of different hardware TM (HTM) designs, and 
the concurrency they achieve for different transaction schedules on a 2-core system as 
described in the handout. 
 
The system runs a program consisting of the following two transactions.  
 

Transaction X  Transaction Y 
Begin  Begin 
Read A  Read A 
Write A  Read B 
Read B  Write B 
End  End 

 
In the following questions, for timing, assume conflict detection and coherence actions all 
happen in the same cycle when a memory access executes. 
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Question 1 (6 points) 
 
Suppose transaction X starts at cycle 0 and transaction Y starts at cycle 5, and they would 
produce the following schedule. 
 
 

Cycle 0 5 10 15 20 25 30 35 40 45 
Transaction X Begin  Rd A  Wr A  Rd B  End  
Transaction Y  Begin  Rd A  Rd B  Wr B  End 

 
 
(a) In the absence of conflict detection (i.e., no HTM), if the memory operations 

interleaved in the given order, would the transactions be serializable? If so, circle what 
would be the apparent commit order of the transactions, or circle “Not serializable”. (2 
points) 
 

 
X before Y Y before X Not serializable 

 
 

(b) Given the two HTM designs described in the handout, indicate in the following table 
at what cycle a conflict is detected, if any, and which transaction aborts (or neither). (4 
points) 
  

 

 Conflict cycle Aborted Transaction 
(X, Y, or Neither) 

Eager & 
Pessimistic 

 
  

Lazy & 
Optimistic 
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Question 2 (10 points) 
 
We now study reliability in the context of HTM, specifically the ACEness of the read and 
write bits of each cache line. 
 
Note that needless transaction aborts that do not lead to incorrect computation results are 
architecturally correct execution. Thus, if flipping a bit only causes needless transaction 
aborts, and the final computation outcome is still architecturally correct, this bit is un-ACE. 
 
Consider the lazy & optimistic HTM implementation described the handout, running 
transactions X and Y shown below (these are a simplified version of the transactions in 
Question 1, with the same timings and accesses to A, but no accesses to B). 
 
Mark the cells in the following table that correspond to cycles at which the read and write 
bits of the cache line storing A are ACE, for transactions X and Y. (If you prefer, you can 
instead list the specific cycles for each of these four bits below the table.) 
 

Cycle 0 5 10 15 20 25 30 35 40 45 
Transaction X Begin  Rd A  Wr A    End  
Transaction Y  Begin  Rd A      End 

Txn X 

Write 
bit 

          

Read 
bit 

          

Txn Y 

Write 
bit 

          

Read 
bit 
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Question 3 (6 points) 
 
Assume that the HTM implementation includes an error detection mechanism for the read 
and write bits. Each private cache is extended with an error detection code that is able to 
reliably inform when a bit flip has happened on at least one of the read/write bits in the 
cache. However, the mechanism does not tell which of the bits has suffered a flip. 
 
Assuming lazy & optimistic HTM implementation from the handout, can you modify the 
HTM design to eliminate reliability errors due to bit flips in read/write bits using this 
mechanism? Your modifications cannot introduce additional state or error-detection 
mechanisms. If yes, describe these modifications. If not, explain why not. 
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Part C: Security (18 points) 
 
Consider the C code with labeled line numbers: 
 
L0: bool checkPassword(int* password, int* guess, int size) { 
L1:   for (int i = 0; i < size; i++) { 
L2:    if (password[i] != guess[i]) { 
L3:      return false; 
L4:    } 
L5:  } 
L6:  return true; 
L7:} 
 
 
The C code roughly produces the following RISC-V 32 assembly: 

 
// Initial register values:  
// a0 = &password[0] 
// a1 = &guess[0] 
// a2 = size (assumed > 0 in the code) 

loop:  
        lw      t0, 0(a0) 
        lw      t1, 0(a1) 
        bne     t0, t1, retFalse 
        addi    a0, a0, 4 
        addi    a1, a1, 4 
        addi    a2, a2, -1 
        bgt     a2, x0, loop 
retTrue: 
        li a0, 1   // loads constant 1 into register a0 
        ret 
retFalse: 
        li a0, 0 
        ret 
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Question 1 (10 points) 
 

(a) How can an attacker learn the password faster than brute force search? (7 points) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Which line(s) is/are the transmitter in the C code? (3 points) 
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Question 2 (8 points) 
 
Rewrite the relevant lines in the assembly code to eliminate micro-architectural side-
channels. You can also write C code instead of assembly; if you write C code, we will 
grade your answer based on the assembly produced by compiling with clang 17.0.0 with 
no compiler flags.  
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Part D: Accelerators (32 points) 
 
Axel is building a linear algebra accelerator called the Axelerator. It can do 3 multiplies 
per cycle and has 0.1 words/cycle memory bandwidth. Ryan is a CEO of a laptop 
manufacturing company; he makes the audacious claim that his second-tier laptop model, 
the RyanAir, outperforms the Axelerator on some workloads despite having 3x fewer 
multipliers. The RyanAir has 0.5 words/cycle memory bandwidth. Both machines have a 
multiplier FU latency of 1 cycle and run at the same clock frequency. 
 
Question 1 (4 points) 
 
In the plot below, draw the rooflines for the Axelerator and the RyanAir. For each of the 
two rooflines, label the (x, y) coordinates of the corner of the roofline, i.e., the point where 
the system goes from memory bandwidth-bound to compute-bound. 
 
Note: Remember that a multiply has two inputs. 
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We will analyze the performance of three kernels on the Axelerator and the RyanAir. For 
all the remaining the questions, assume the following: 
• Ignore the cost of all operations but multiplications and loads from main memory. Also 

ignore dependencies on the loop indices i, j, and k. 
• Assume instructions are executed in program order. Assume that at each cycle all 

multiplications that have their dependencies satisfied are issued (up to the number of 
multiplier functional units). 

• Assume an unbounded on-chip cache. 
• Ignore stores (the results of each computation stay on-chip and are not written back to 

main memory). 
• All kernels are assumed to run many times on different inputs. All questions concern 

only steady-state behavior. 
• Assume kernel computation and kernel operand loading are decoupled, i.e., the 

operands for each run of the kernel are loaded far enough in advance to ensure that they 
will be available when the kernel computation starts. Therefore, load latency does not 
matter (but throughput does!). 

• On both systems, at any point in time at most one kernel is being computed on. 
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Question 2 (4 points) 
 
The code below performs matrix-vector multiply of an NxN matrix and an N-element 
vector. 
 
for (int j = 0; j < N; j++) 
  for (int i = 0; i < N; i++) 
    result[i] += matrix[i][j] * vector[j]; 
 
What is the operational intensity of matrix-vector multiply as a function of N? Give your 
result in multiplies per word loaded from main memory. 
 
 
 
 
 
 
 
 
Question 3 (4 points) 
 
Which machine performs better on matrix-vector multiply as a function of N? Can you 
use the roofline model to answer this question? If yes, how? If no, why? 
 
 
 
 
 
 
 
 
 
 
  



Name ____________________________ 
 

Page 15 of 18 
 

Question 4 (4 points) 
 
The code below performs matrix-matrix multiply of two NxN-element matrices. 
 
for (int k = 0; k < N; k++) 
  for (int i = 0; i < N; i++) 
    for (int j = 0; j < N; j++) 
      C[i][j] += A[i][k] * B[k][j]; 
 
What is the operational intensity of matrix-matrix multiply as a function of N? 
 
 
 
 
 
 
 
 
 
Question 5 (4 points) 
 
Which machine performs better on matrix-matrix multiply as a function of N? Can you 
use the roofline model to answer this question? If yes, how? If no, why? 
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Question 6 (4 points) 
 
The code below computes the N-th factorial (since the code uses an unsigned 32-bit 
integer, the result is actually the N-th factorial modulo 232). 
 
unsigned result = 1; // constants don’t come from main memory 
for (unsigned i = 1; i < N; i++) 
   result = result * i; 
 
What is the operational intensity of computing the N-th factorial, as a function of N? 
 
 
 
 
 
 
Question 7 (4 points) 
 
Which machine performs better on computing the N-th factorial as a function of N? Can 
you use the roofline model to answer this question? If yes, how? If no, why? 
 
 
 
 
 
 
 
 
Question 8 (4 points) 
 
How can Axel change the Axelerator so that it at least matches the performance of the 
RyanAir on all the kernels above for all N? 
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Scratch Space 
 
Use these extra pages if you run out of space or for your own personal notes. We will not 
grade this unless you tell us explicitly in the earlier pages. 
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Scratch Space 
 
Use these extra pages if you run out of space or for your own personal notes. We will not 
grade this unless you tell us explicitly in the earlier pages. 
 


