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AI Ingredients

350M images 
uploaded per 
day

2.5 Petabytes 
of customer 
data hourly

300 hours of 
video uploaded 
every minute

Big Data
Availability

GPU
Acceleration

February 2, 2026

New ML
Techniques
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ACM’s Celebration of 50 Years of the ACM Turing Award 
(June 2017)

“Compute has been the oxygen of deep learning” 

– Ilya Sutskever, Research Director of Open AI
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GPUs Targeting Deep Neural Networks

Source: Nvidia

Add specialized hardware to support matrix multiplication,
add support for reduced precision formats and exploit sparsity 

Introduced Tensor Core in 2017
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Software Companies are Building HW

Google 
TPUv1 in 2016 for inference

TPUv4 in 2021 for training and inference

Amazon 
Inferentia in 2019 for inference

Trainium in 2020 for training

Data center operators build their own specialized hardware

February 2, 2026
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Specialized Hardware for Deep Neural Networks

Cerebras (WSE– Aug 2018)
400,000 cores, 18 GB SRAM, 9.6 PB/s

https://www.cerebras.net/wp-
content/uploads/2019/08/Cerebras-Wafer-Scale-

Engine-An-Introduction.pdf
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Mobile SOCs for Deep Neural Networks

Apple M2 (June 2022) 

Phone and laptop chips have specialized hardware for DNNs in their System on Chip (SoC)

Apple A11 (Sept 2017)
Apple Neural Engine (ANE) introduced 

for FaceID and animated emojis (Animoji)
16 Neural Engine cores

A15 (Sept 2021) also has 16 neural 
Engine cores with a 26x speed up 
over A11

https://machinelearning.apple.com/r
esearch/neural-engine-
transformers

Can run small, unsigned integer, pruned DNNs in 3 to 15 msec
https://machinelearning.apple.com/research/on-device-scene-analysis
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Rapid Growth of Energy Consumption for Computing

Source: Nature (https://www.nature.com/articles/d41586-018-06610-y)

Data centers accounted for 3% of 
US global electricity demand in 2022 
and is expected to grow to 8% by 2030
[Goldman Sachs, April 2024]
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Compute Demands for Deep Neural Networks 

Source: Open AI (https://openai.com/blog/ai-and-compute/)

[Strubell, ACL 2019]

Petaflop/s-days 
(exponential)

Year

AlexNet to AlphaGo Zero: 
A 300,000x Increase in Compute
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Cloud Service Providers Investing in Power Plants



L01-11

Sze and EmerSze and Emer

Large Language Models: ChatGPT

Slide credit: Liane BernsteinFebruary 2, 2026
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Computing Cost of ChatGPT (Training)

• ChatGPT is based on a variant of GPT-3 [Brown, NeurIPS 2020]

• GPT-3 has 96-layers, 175 billion parameters and requires 

3.14x1023 FLOPS of computing for training

• It would take 355 years to train GPT-3 on a Tesla V100 GPU

• It would cost ~$4.6 million to train GPT-3 on using the lowest 

cost GPU cloud provider

• Training costs continue to rise 

• e.g., GPT-4 estimated over $100 million 

Source: https://lambdalabs.com/blog/demystifying-gpt-3
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Changing Trends?

https://play.ht/blog/deepseek-v3-vs-r1-vs-coder/
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Computing Cost of ChatGPT (Inference)

https://twitter.com/sama/status/1599671496636780546 https://twitter.com/sama/status/1599669571795185665

Estimated monthly cost of 
$1.5 to $8 million!

Source: https://medium.com/swlh/3-questions-
puzzled-me-about-openais-chatgpt-and-here-is-
what-i-learned-1dda74b5f6db

February 2, 2026
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Compute for Training versus Inference

• Training high cost per iteration, but low frequency

• Inference low cost per iteration, but high frequency

• Regarding computing at Google:

– “Across all three years [2019-2021], about three-fifths of the ML energy use was for 

inference, and two-fifths were for training” [Patterson, Computer 2022]

• Regarding computing at Meta:

– “…trillions of inference per day across Meta’s 

data centers. … we observe a rough power 

capacity breakdown of 10:20:70 for AI 

infrastructures devoted to the three key phases 

— Experimentation, Training, and Inference” 
[Wu, MLSys 2022]
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Huge Financial Investment in GPUs

Source: https://www.pcmag.com/news/zuckerbergs-meta-is-spending-billions-to-buy-350000-nvidia-h100-gpus
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GPU Shortage

Source: https://www.wired.com/story/nvidia-chip-shortages-leave-ai-startups-
scrambling-for-computing-power/

Source: https://www.nytimes.com/2023/08/16/technology/ai-
gpu-chips-shortage.html
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Processing “On-Device” instead of the “Cloud”

Communication Privacy Latency

February 2, 2026
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Computing Challenge for Self-Driving Cars

(Feb 2018)

Cameras and radar generate 
~6 gigabytes of data every 30 

seconds. 

Generates wasted heat and some 
prototypes need water-cooling!

Self-driving car prototypes 
use approximately 2,500 Watts 

of computing power.

February 2, 2026
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Self-Driving Cars: Data Center On Wheels

[Sudhakar, IEEE Micro 2023]

Autonomous vehicles (AVs) w/ 10 deep neural 
network (DNN) inferences at 60 Hz on 10 cameras:

One AV: 21.6 million inferences per hour driven

One million AVs (< 0.1% of vehicles worldwide): 
21.6 trillion inferences per hour driven!

Data 
center

“[T]rillions of inference per day 
across Facebook’s data centers” 

[Wu, MLSys 2021]

February 2, 2026
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Existing Processors Consume Too Much Power

< 1 Watt > 10 Watts
February 2, 2026
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Transistors Are Not Getting More Efficient

Slowdown of Moore’s Law and 
Dennard Scaling 

General purpose microprocessors 
(CPUs) are not getting faster or 

more efficient 

Need specialized / 
domain-specific hardware for 

significant improvements in speed 
and energy efficiency

Slowdown

February 2, 2026
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Simple In-Order Pipeline

February 2, 2026
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Basic Out-of-order Pipeline

February 2, 2026
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Out-of-Order SMT Pipeline

February 2, 2026
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ExTensor [MICRO2019]

SCNN [ISCA2017]

Every Accelerator is Unique

Gamma [ASPLOS2021] spZip [ISCA2021

Eyeriss [JSSC2017] Eyeriss V2 
[JETCAS2019]

Selected tensor accelerator designs - 2017-2021

February 2, 2026
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Every Accelerator is Unique

Overbooking [MICRO2023]

Highlight [MICRO2023]

Trapezoid [ISCA 2024] FuseMax [MICRO2024]

RAELLA [ISCA2023]ISOSceles [HPCA2023]

Selected tensor accelerator designs - 2023 -

February 2, 2026
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TeAAL Pyramid of Concerns

February 2, 2026

Compute

Mapping

Format

Binding

A
rch

itecture

[TeAAL, Nayak et.a. MICRO 2023]

constraints

constraints

constraints

constraints
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FuseMax - Enhancements

February 2, 2026

Compute

Mapping

Format

Binding

A
rch

itecture

constraints

constraints

constraints

constraints

Improved computation 
reducing data 
movement

Exploit capabilities 
exposed by architecture 
changes.

Improved binding to improve 
resource utilization 

Changed architecture to enable 
better mapping
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PE Utilization - Baseline

[FuseMax, Nayak et.a. MICRO 2024]
February 2, 2026
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PE Utilization – Enhanced Computation

February 2, 2026
[FuseMax, Nayak et.a. MICRO 2024]
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PE Utilization – Improve Architecture/Mapping

February 2, 2026
[FuseMax, Nayak et.a. MICRO 2024]



L01-33

Sze and EmerSze and Emer

PE Utilization – Improved binding

February 2, 2026
[FuseMax, Nayak et.a. MICRO 2024]
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FuseMax - Speedup on Attention

February 2, 2026
[FuseMax, Nayak et.a. MICRO 2024]
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Challenges and Opportunities

• Define the domain and degree of flexibility required

• Requires understanding of domain, variants of algorithms (identify which 

ones are important), and resulting workloads

• Handle heterogenous computing at the system level 

• Handle heterogenous devices (emerging device technology)

• May have tighter resource constraints since hardware cannot be used for 

other applications

• Co-design across algorithms and hardware

• Domain specific languages to program specialized hardware

• Tools for rapid evaluation and prototyping

February 2, 2026
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Class Overview

February 2, 2026
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Course Outline

• Overview of Deep Neural Networks (DNNs)

• DNN Development Resources

• DNNs on Programmable Hardware

• DNN Accelerator Architecture

• DNN Model and Hardware Co-Design

• Advanced Technologies for DNN

February 2, 2026
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Takeaways

• Know the key computations used by DNNs 

• Be familiar with how DNN computations are mapped to various 
hardware platforms

• Understand the tradeoffs between various architectures and platforms

• Be able to evaluate different DNN accelerator implementations with 
benchmarks and comparison metrics 

• Have an appreciation for the utility of various optimization and 
approximation approaches

• Be able to distill the key attributes of recent implementation trends and 
opportunities

February 2, 2026
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Course Objective

By the end of this course, we want you to be able understand a new 

design in terms of attributes like:

– Order of computation

– Partitioning of computation

– Flow of data for computation

– Data movement in the storage hierarchy

– Data attribute specific optimizations

– Exploiting algorithm/hardware co-design  

– Degree of flexibility

February 2, 2026



L01-40

Sze and EmerSze and Emer

Course Staff and Contact Info

• Instructors (Office hours by request)

– Joel Emer (jsemer@mit.edu)

– Vivienne Sze (sze@mit.edu) 

• TAs (Office hours W 5-6PM @ Location TBD)

– Tanner Andrulis (andrulis@mit.edu)

– Michael Gilbert (gilbertm@mit.edu) 

– Fisher Xue (fzyxue@mit.edu)

– Reng Zheng (rengz@mit.edu)

• Schedule

– Lectures: MW 1PM-2:30PM – 54-100

– Recitations/Office Hours: F 11AM-12PM – 32-155

• Course Website: http://csg.csail.mit.edu/6.5930/ Slide Contributors: Joel Emer, Yu-Hsin 
Chen and Tien-Ju Yang 

(http://eyeriss.mit.edu/tutorial.html)

Michael Gilbert

Vivienne Sze Tanner Andrulis

Fisher Xue Reng Zheng 

Joel Emer

February 2, 2026
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Course Requirements and Materials

• Pre-requisites 
– 6.1910[6.004] (Computation Structures)

– 6.3000[6.003] (Signal Processing) or 6.3900[6.036] (Intro to Machine Learning)

• We will use Python and PyTorch

– PyTorch website: https://pytorch.org/

– Introduction to PyTorch Code Examples: https://cs230.stanford.edu/blog/pytorch/

• Course Textbook/Readings 
– Book “Efficient Processing of Deep Neural Networks”

• https://doi.org/10.1007/978-3-031-01766-7 (download free on MIT network)

• We welcome feedback (including errata) on Piazza thread

– Selected papers published in past few years.

• Course Handouts (uploaded on http://csg.csail.mit.edu/6.5930/ )

February 2, 2026
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Labs

• Lab 0: Infrastructure setup (Released Today on Piazza)

– Release: Feb 2 – Due: Feb 6 

• Lab 1: Analyze and Evaluate DNN workloads (Einsums)

– Release: Feb 4 – Due: Feb 13 (1.5 weeks)

• Lab 2: Hardware Design & Mapping

– Release: Feb 13 – Due: Feb 23 (1.5 weeks)

• Lab 3: Advanced Mapping: Parallel Processing and Fusion

– Release: Feb 23 – Due: March 4 (1.5 weeks)

• Lab 4: Sparsity

– Release: March 4 – Due: March 13 (1.5 weeks)

• Lab 5: Compute In Memory (CiM) 

– Release: March 13 – Due: March 20 (1 week)

February 2, 2026

All labs due before 
spring break
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Typical Architecture for DNN Accelerator

DRAM 
Global 
Buffer 

PE 

PE PE 

ALU fetch data to run  
a MAC here 

ALU 

Buffer ALU 

RF ALU 

Normalized Energy Cost* 

200× 

6× 

PE ALU 2× 

1× 

1× (Reference) 

DRAM ALU 

0.5 – 1.0 kB 

100 – 500 kB 

NoC: 200 – 1000 PEs 

* measured from a commercial 65nm process 

Farther and larger
memories consume 

more power

0.5 – 1.0 kB

Control

Reg File**
Spatial architecture 
with small (< 1kB) 
low-cost memory 

near compute

**Register File is also 
referred to as local buffer
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Example Design Choices for DNN Accelerator

• Processing Element (PE) array (Lab 2 & 3)

– number of PEs, connection between PEs (Network on chip [NoC])

• Memory hierarchy (Lab 2 & 3)

– number of levels, capacity per level, data layout in memory

• Scheduling of operations to reduce data movement and increase PE utilization (Lab 2 & 3)

– mapping (dataflow, tiling), parallelism, fusion

• Handling sparsity (Lab 4)

– gating, skipping, representation format (compression)

• Technology used to implement components such as PE, NoC and Memory (Lab 5)

– e.g., RRAM, optical, superconductors

DRAM 
Global 
Buffer 

PE 

PE PE 

ALU fetch data to run  
a MAC here Control

Reg File

February 2, 2026
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Evaluate Inefficiencies in DNN Accelerators

Use roofline model as a systematic way to evaluate how each architectural 
decision affects performance (throughput) for a given DNN workload

Tightens the roofline model
(MAC/cycle)

(MAC/data)

Step 1: maximum workload parallelism (total iteration space of Einsum (Lab 1))

Step 5: # of active PEs under fixed storage capacity (space for stationary data)

Step 2: maximum dataflow parallelism (product of loop limits of parallel_for)
peak
perf.

Number of PEs (Theoretical Peak Performance)

Step 3: # of active PEs under a finite PE array size (<= min (# of PEs, Step 2))
Step 4: # of active PEs under fixed PE array dimension (constrained on both dimens.)

Step 7: lower active PE util. due to insufficient instantaneous BW (ramp up/down)
Step 6: lower active PE util. due to insufficient average BW (tools cover up to this)

Slope = BW to only active PE

See Chapter 6 in Book
Compute intensity (Lab 1)
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Why Architectural Modeling?

• In this class, primarily dealing with architectural design decisions

• Want to rapidly explore design space and evaluate design decisions
– Each design would take a long time to implement and evaluate using RTL

• Perform evaluation of architectural design decisions using modeling tools 

(AccelForge and Accelergy)
– Once identify desirable architecture can implement portions in RTL to increase accuracy of 

evaluation (not part of labs, but can be part of design project)

• Note: No GPUs programming (check out 6.S894) or FPGA implementation (check out 6.2050 [6.111])

February 2, 2026
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Design Project

• Project

– Choose from a list of suggested projects

• Use tools from labs

– PyTorch, Accelergy, AccelForge

• Teams of 3 (may change due to course enrollment)

• Schedule

– March 9 – List of projects released

– March 18 – Submit project selection 

– March 30 – April 29 – Weekly check ins + milestone report outs with mentor during lecture 
(attendance at weekly check ins is mandatory)

• April 17 - Milestone 3 proposal due

– May 1 – Project Report Due 
• Graduate groups (w/ at least one member enrolled in grad version) include an overview on related work

• Poster sessions May 4, 6, and 11

February 2, 2026

Lecture time dedicated to 
project after spring break
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Design Project

• Design project allows for deeper understanding and application of concepts 

covered in course

– Explore more advanced functionality of modeling tools used in the labs

• Projects will have three key milestones 
– Milestone 1 (April 6) [15 pt]: Read relevant paper and model prior work (baseline design)

– Milestone 2 (April 13) [10 pt]: Perform various modifications to analyze impact on design metrics. 

Demonstrate understanding the various tradeoffs.

– Milestone 3 (April 27) [5 pt]: Open-ended design space exploration (Proposal due April 17)

• Note: 

– We recommend that you “complete” each milestone before moving on to the next

February 2, 2026
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Example Design Projects

• Hardware design study of well-known DNN accelerators (e.g., TPU, NVDLA) 

and analyze architectural tradeoffs though modeling

• Analyze co-design approaches to gain deeper understanding of impact on 

accuracy and efficiency

• Evaluate impact of new technologies (e.g., RRAM, Optical, superconductors)

• Extend tools for improved design exploration and analysis capabilities

Goal: Apply concepts and tools from class!

February 2, 2026
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Published Design Projects!

ISPASS 2024 MARC 2025
February 2, 2026
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Assignments and Grading

• Grading 

– Labs 50%

• Lab 0: 1 / Lab 1: 12 / Lab 2: 25 / Lab 3: 25 / Lab 4: 25 / Lab 5: 25

– Final Project 50%

• Milestone 1: 15 / Milestone 2: 10 / Milestone 3: 5

• Project proposal (due April 17) : 5

• Final project: 115

• All assignments are due by 11:59PM ET on the due date (submitted online)

• Labs are to be completed individually, although discussion of course concepts covered 

in the laboratories is encouraged. Please carefully review collaboration policy at 

http://csg.csail.mit.edu/6.5930/collaboration.html

February 2, 2026
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Late Policy

• Late Policy for Labs 

– You should always submit your labs on time. Nonetheless, since unexpected situations, like 

illnesses, might occur, you have a budget of 5 late days to spend on the labs. We will not 

grant any additional extensions, so please use these days carefully.

– The budget is spent in increments of 1 day, and you may not use more than 2 days per lab. 

– If you submit your lab later than two days after the deadline, or if you are late and have 

no budget left, your submission will not count towards your grade.  However, you must 

complete all the labs to pass the course.

– You do not need to inform us about your use of your budget. The course staff will keep track of 

the days you have spent.

• No late days for project due to tight timeline

February 2, 2026
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Pre-requisites

• 6.191 Computation Structures and (6.390 Intro to Machine Learning 
or 6.300 Signal Processing).

• Students who don't fulfill the prerequisites will be de-registered in the 
second week of class.

If you believe you have equivalent prior experience 
(e.g., a computer architecture course taken during your 
undergraduate studies at another institution), you may 
petition for consideration. Please submit your Petition 
Form by this Friday, Feb 6,11:59 PM ET

February 2, 2026


