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Big Data
Availability

—

350M images

facebook uploaded per
day

300 hours of

Yuf) video uploaded
every minute

| 2.5 Petabytes
Walmart>{ of customer
data hourly

GPU
Acceleration

—

New ML
Techniques
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ACM'’s Celebration of 50 Years of the ACM Turing Award
(June 2017)

“Compute has been the oxygen of deep learning”

— llya Sutskever, Research Director of Open Al
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GPUs Targeting Deep Neural Networks

Add specialized hardware to support matrix multiplication,
add support for reduced precision formats and exploit sparsity

NVIDIA V100 Tensor Core FP16 NVIDIA A100 Tensor Core FP16 with Sparsity
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Introduced Tensor Core in 2017
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Software Companies are Building HW

Data center operators build their own specialized hardware

Google Amazon
TPUv1 in 2016 for inference Inferentia in 2019 for inference
TPUv4 in 2021 for training and inference Trainium in 2020 for training

February 2, 2026 U Sze and Emer



Specialized Hardware for Deep Neural Networks

Cerebras (WSE- Aug 2018)
400,000 cores, 18 GB SRAM, 9.6 PB/s

https://www.cerebras.net/wp-
content/uploads/2019/08/Cerebras-Wafer-Scale-
Engine-An-Introduction.pdf

Cerebras WSE Largest GPU

1.2 Trillion transistors 21.1 Billion transistors
46,225 mm? silicon 815 mm?2 silicon

LO1-6
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Mobile SOCs for Deep Neural Networks

Phone and laptop chips have specialized hardware for DNNs in their System on Chip (SoC)
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Engine cores with a 26x speed up
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https.//machinelearning.apple.com/r
esearch/neural-engine-
transformers

Can run small, unsigned integer, pruned DNNs in 3 to 15 msec
https://machinelearning.apple.com/research/on-device-scene-analysis
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Rapid Growth of Energy Consumption for Computing

9,000 terawatt hours (TWh)

~  ENERGY FORECAST 20.9% of projected”
Widely cited forecasts suggest that the electricity demand

_ total electricity demand of information and
communications technology (ICT) will
accelerate in the 2020s, and that data
centres will take a larger slice.

Data centers accounted for 3% of
US global electricity demand in 2022

and is expected to grow to 8% by 2030
[Goldman Sachs, April 2024]

M Networks (wireless and wired)
M Production of ICT

Consumer devices (televisions,
computers, mobile phones)

M Data centres

2010 2012 2014 2016 2018 2020 2022 2024 2026 2028 2030

Source: Nature (https://www.nature.com/articles/d41586-018-06610-y)

February 2, 2026 U Sze and Emer



LO1-9

Compute Demands for Deep Neural Networks

AlexNet to AlphaGo Zero:
A 300,000x Increase in Compute

Petaflop/s-days
(exponential)

AlphaGoZero s

.
AlphaZero
si2 Neural Machine
Translation
Neural Architecture
Search
le+l
- T17 D. 1
Xception otailvl
le+0
DeepS?eechZ
le-1 VGG, ®
® Seq28eq ResNets
Visualizing and -
le-2 Understanding Conv
AlexNet Nets Rooglehet
. .
.
1e-3 Dropout
3.4-month doubling
le-4
«DON
le-5
2012 2013 2014 2015 2016 2017 2018

Year
Source: Open Al (https://openai.com/blog/ai-and-compute/)
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Common carbon footprint benchmarks

in Ibs of CO2 equivalent

Roundtrip flight b/w NY and SF

(1 passenger) ‘ 1,984

Human life (avg. 1 year) I 11,023

B 36.156

626,155

American life (avg. 1 year)

US car including fuel (avg. 1
lifetime)

Transformer (213M
parameters) w/ neural
architecture search

Chart: MIT Technology Review [Strubell, ACL 2019]
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Cloud Service Providers Investing in Power Plants

=onere e e NuclearNewswire a

TOPICS ~ SOURCES ~ SIGNUP ~ BUYERSGUIDE = ADVERTISE  @AmericanNuclear Society

NEWS A CULTURE J MUsiC 3 PODCASTS & SHOWS Q SEARCH

NATIONAL

Three Mile Island nuclear plant will
reopen to power Microsoft data centers

SEPTEMBER 20, 2024 - 1:40 PM ET

By C Mandler

Headlines For You

Supreme Court urged to uphold ruling
against Texas SNF storage site
32mago

NRC board to hear petitions on Palisades
restart
16h ago

Ann Stouffer Bisconti—ANS member since
1990

19hago

A message from PYRAGON and SOR
Controls Group

The Advantage of Upgrading

Power Supply Infrastructure in m
Nuclear Power Plants

CRANE program offers teachings on
computational methods in nuclear fusion
22hago

A message from Studsvik Scandpower

Studsvik About Studsvik Scandpower

Learn More

INDUSTRY

Amazon buys nuclear-powered data center from Talen

ST o T ——

Thu, Mar 7, 2024, 8:01AM Nuclear News

NY
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Large Language Models: ChatGPT

THE WALL STREET JOURNAL Subscribe = SignIn

Home World U.S. Politics Economy Business Tech Markets Opinion Books & Arts Real Estate Life & Work Style Sports Q

TECH | PERSONALTECH | PERSONAL TECHNOLOGY: JOANNA STERN

= ChatGPT Wrote My AP English Essay—and I Passed

Our columnist went back to high school, this time bringing an Al chatbot to complete her

B | assignments OpenAl Unveils New A.I. That Can
‘Reason’ Through Math and Science

= a INSIDER ~~ = €= Problems

HOME > TECH

A job application written by ChatGPT fooled recruiters and beat The artificial intelligence start-up said the new system, OpenAl
more than 80% of human candidates to an interview, report says 03, outperformed leading A.l. technologies on tests that rate skills

in math, science, coding and logic.

MEDPAGETODAY

Specialties .~ COVID-19 Opinion Health Policy Meetings Special Reports Break Room Conditions \» Society Partners -~

AT Passes U.S. Medical Licensing Exam

— Two papers show that large language models, including ChatGPT, can pass the USMLE

February 2, 2026 Illll Slide credit: Liane Bernstein Sze and Emer
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Computing Cost of ChatGPT (Training)

 ChatGPT is based on a variant of GPT-3 [Brown, NeurlPS 2020]

« GPT-3 has 96-layers, 175 billion parameters and requires
3.14x10%3 FLOPS of computing for training

* It would take 355 years to train GPT-3 on a Tesla V100 GPU

* |t would cost ~$4.6 million to train GPT-3 on using the lowest
cost GPU cloud provider

 Training costs continue to rise
* e.g., GPT-4 estimated over $100 million

Source: https://lambdalabs.com/blog/demystifying-gpt-3

February 2, 2026 U Sze and Emer



Changing Trends?
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How Chinese A.I. Start-Up DeepSeek
Is Competing With Silicon Valley
Giants

The company built a cheaper, competitive chatbot with fewer
high-end computer chips than U.S. behemoths like Google and
OpenAl, showing the limits of chip export control.

Training Costs | Pre-Training Context Extension Post-Training | Total
in H800 GPU Hours 2664K 119K 5K 2788K
in USD $5.328M $0.238M $0.01M $5.576M

Table 1 | Training costs of DeepSeek-V3, assuming the rental price of H800 is $2 per GPU hour.

February 2, 2026 U

Feature/Model

Primary Purpose

Training Focus

Architecture

Use Cases

Open Source

Parameter Range

DeepSeek V3

General-purpose
multitasking

Coding,
mathematics,
multilingualism

Mixture-of-Experts
(MoE)

Multilingual tools,
research, Al apps

Yes

671B (37B activated
per token)

DeepSeek Coder

Coding and
programming-
specific tasks

Code datasets (87%
code, 13% natural
language)

Traditional
Transformer
architecture

IDE integration,
coding platforms

Yes

1.3B to 33B

DeepSeek R1

Logical reasoning
and problem-
solving

Reinforcement
learning for
reasoning

Reinforcement
Learning (RL)
optimized
Educational
platforms, research

tools

Yes

1.5B to 70B

https://play.ht/blog/deepseek-v3-vs-r1-vs-coder/
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Computing Cost of ChatGPT (Inference)

B Elon Musk & @elonmusk - Dec 5, 2022
- Replying to @sama
What’s the average cost per chat?

Q 2677 1 1,828 Q 523K ihl &

£ Sam Altman &
@sama

Replying to @elonmusk

average is probably single-digits cents per chat;

trying to figure out more precisely and also how we

can optimize it

2:46 AM - Dec 5,2022  https://twitter.com/samal/status/1599671496636780546

Estimated monthly cost of
$1.5 to $8 million!

Source: https://medium.com/swlh/3-questions-
puzzled-me-about-openais-chatgpt-and-here-is-
what-i-learned-1dda74b5f6db

Chief Disruptor € @ahmedsalims - Dec 5, 2022
Replying to @sama
Will it be FREE forever?

Q 13 o iy Q 306 ihi i

N SamAltman @
' @sama

Replying to @ahmedsalims

we will have to monetize it somehow at some point;
the compute costs are eye-watering

2:38 AM - Dec 5, 2022 https://twitter.com/sama/status/1599669571795185665

We're experiencing exceptionally high demand. Please hang tight as we work on scaling our systems. X

Hey there!

A lot of peaple are checking out ChatGPT right now. We're doing our best
to make sure everyone has a chance to try it out, so please check back
soon!

Get notified when we're back

Illil- Sze and Emer
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Compute for Training versus Inference

Training high cost per iteration, but low frequency

Inference low cost per iteration, but high frequency

Regarding computing at Google:

— “Across all three years [2019-2021], about three-fifths of the ML energy use was for
inference, and two-fifths were for training” [Patterson, Computer 2022]

Regarding computing at Meta:

— “...trillions of inference per day across Meta’s i . .

-_ % Experimentation
data centers. ... we observe a rough power / Training
capacity breakdown of 10:20:70 for Al Inference
infrastructures devoted to the three key phases

: , . , [Wu, MLSys 2022]
— Experimentation, Training, and Inference

February 2, 2026 U Sze and Emer
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Huge Financial Investment in GPUs

Home > News > Components > Graphics Cards

Zuckerberg's Meta Is Spending Billions to
Buy 350,000 Nvidia H100 GPUs

In total, Meta will have the compute power equivalent to 600,000 Nvidia HI00 GPUs to help it
develop next-generation Al, says CEO Mark Zuckerberg.

m By MichaelKan January18,2024 § X [

Source: https://www.pcmag.com/news/zuckerbergs-meta-is-spending-billions-to-buy-350000-nvidia-h100-gpus

February 2, 2026 U Sze and Emer
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GPU Shortage

Ehe New ork Eimes

mImEm BACKCHANNEL BUSINESS CULTURE GEAR IDEAS POLITICS SCIENCE SECURITY MERCH SIGN IN m

[ (R The Desperate Hunt for the A.L.

g\ggls u(ilhnlg ggvt\),;t:ges Leave Al Startups Scrambling for Booni's Most Indispensable Prize

Trimming profits, delaying launches, begging friends. Companies are going to extreme lengths to make do with shortages of GPUs, the chips | TO power artiﬁCial'intel]igence prOdUCtS, start-ups and investors
the heart of generative Al programs.

are taking extraordinary measures to obtain critical chips known
as graphics processing units, or GPUs.

ﬁ Share full article ~ D CJ42

...........

Source: https://www.wired.com/story/nvidia-chip-shortages-leave-ai-startups- = oo
scrambling-for-computing-power/

Source: https://www.nvtimes.com/2023/08/16/technology/ai-
gpu-chips-shortage.html

February 2, 2026 U Sze and Emer
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Processing “On-Device” instead of the “Cloud”

Communication Privacy Latency

February 2, 2026 U Sze and Emer
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Com utin Challen e for Self-Driving Cars

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

BEGOMINGAPROBL i M 1 E] E E]

(Feb 2018)

Cameras and radar generate
~6 gigabytes of data every 30
seconds.

Self-driving car prototypes
use approximately 2,500 Watts
of computing power.

Generates wasted heat and some
prototypes need water-cooling!

February 2, 2026 U Sze and Emer
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Self-Driving Cars: Data Center On Wheels

. (O—O»

center
Autonomous vehicles (AVs) w/ 10 deep neural
network (DNN) inferences at 60 Hz on 10 cameras:

“[T]rillions of inference per day

) ” One AV: 21.6 million inferences per hour driven
across Facebook’s data centers

[Wu, MLSys 2021] One million AVs (< 0.1% of vehicles worldwide):
21.6 trillion inferences per hour driven!

[Sudhakar, IEEE Micro 2023]

February 2, 2026 ||||| Sze and Emer
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Existing Processors Consume Too Much Power

< 1 Walftt > 10 Watts

February 2, 2026 U Sze and Emer
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Transistors Are Not Getting More Efficient

I Stuttering [ Chip introduction
@ Transistors per chip, ‘000 @ Clock speed (max), MHz @ Thermal design power*, w dates, selected
’
Transistors bought per $, m I Pentium 4 ‘ I Xeon | ICoreZ Duol Slowdown of Moore’s Law and
20 Log scale Dennard Scallng

15 Pentium 111 10°
~
:
L]
:

I I T T I I LI 0
200204 06 08 10 12 15 486

General purpose microprocessors
(CPUs) are not getting faster or
10 more efficient

| 8086 | | 386 |

Slowdown

4004

Need specialized /
domain-specific hardware for
significant improvements in speed
and energy efficiency

107

LN N SN S S B B N B B S RN S BN S S S SN S B R LIS LA AL LI L B R

T T T T T T T 1 T T T T
1970 75 80 85 90 95 2000 05 10 15
Sources: Intel; press reports; Bob Colwell; Linley Group; IB Consulting; The Economist *Maximum safe power consumption
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Simple In-Order Pipeline

(Branch Read
Prediction)
Regs
Icache
Superscalar
Issue Rules

Width

February 2, 2026

Execute Dcache/ Reg
Store Write
Buffer

Cache
Replacement

Sze and Emer
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Basic Out-of-order Pipeline

Next PC
(Line
Predlctlon

Cache
Access
(Predictive
Associative

)

February 2, 2026

Decode/ Queue Execute

Map

Reg
Read

Dcache/ Reg Retire
Store Write
Buffer

Register
File Loops

Dependenc
y Prediction
(Store-Sets)

Cache Retirement
Replacement Policy
(DRRIP)

Sze and Emer
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Out-of-Order SMT Pipeline

Thread
_hoosing
(Ilcount)

Fetch Decode/ Queue Reg Execute Dcache/ Reg Retire
Map Read Store Write
Buffer

Dcach Regs

February 2, 2026 U Sze and Emer
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Every Accelerator is Unique

Selected tensor accelerator designs - 2017-2021

nj ctivations Weights sums |
| Input Activat ig P Out §§ E
mg 7 38[2
2-stage
pipelined :“:;:’t“;';':r': Weight FIFO
multiplier
i Pyl l i Pe i 2';‘3:‘ (;p:i:: ® e ® :% @ Buffer bank HIPPlu;
i H EH § L fell
. o 2 ‘®| \ Compress
put 1 I Buffer bank
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St L Fxl multiplier array A accumulator buffers
(24x16b REG) it
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Every Accelerator is Unique

Selected tensor accelerator designs - 2023 -

On-ChipANetwork Off-chip
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Memory ~

I
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Lane 015 [ ] ter-layer - Artay - (S
Frontend Queues wlfnsursdsan)
ISOSceles [HPCA2023]
AGEN Request Data
11 e nica g S
" tio H
o it Pt
il 5 = EE
: Overwriting & =
Global Buffer : Fill E
' P B
|‘: Buffer, !
PE PE |1} Read/ }. @
el =8 e
Children vy et e St (ndex 0) ¢

Overbooking [MICRO2023]

February 2, 2026

Crossbar |

IMA

1 Tile

512x512
2T2R
ReRAM

DAC

2kB Input Buffer

64kB eDRAM
Inputs/Outputs

ko

-

Center+Offset Correct

ADC / Shift + Add
Input Sum It
7688 Psum Buffer M‘;::'V
vl VI |
Buffe

RAELLA [ISCA2023]

To PErow 2
H H

T:

Mul | Mul | Mul
t s 1

: I
i Merg'e_-reduc}.on tree

ML.I| x128
13

=
=]
8— "' ADistribution -0
| 3 L) L g
E ARsg (AReg| AReg) - ARsg.s . G
£~ | BoDistibuton | "
""" ‘g i ; - | il
£ | PERow1 ™ | - =

From PErow 0 °

Trapezoid [ISCA 2024]

e Bao [Bso [Ban [B70 [Bso

‘Gloful m

Unit

BiaoaFa e

€
2
2
2
a
E
S
S

2D Array

1D Array

2D Array

1D Array

FuseMax [MICRO2024]

Sze and Emer



February 2, 2026

>
=
(@)
>
=
(9]
(@)
—
c
-
(0]

TeAAL Pyramid of Concerns

constraints

constraints

constraints

constrain

Mapping

Binding

[TeAAL, Nayak et.a. MICRO 2023]
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FuseMax - Enhancements
Improved computation
constraints /\/ ;fg\lljgxgnciata

Exploit capabilities
exposed by architecture
changes.

constraints

Mapping

24N}09}1Yyo.y

constraints
Format

constrain

Binding

Changed architecture to enable Improved binding to improve
better mapping resource utilization

February 2, 2026 U Sze and Emer
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PE Utilization - Baseline

B Unfused
FLAT
[ o

0.00 1 | i I 1 i i I 1 B i
' 1K 4K 16K 64K 256K 1M 1K 4K 16K 64K 256K 1M
BERT TrXL

B Unfused
FLAT
| =

0.00 " i i i i i I I I I I I

1K 4K 16K 64K 256K 1M 1K 4K 16K 64K 256K 1M
1o XLM

o [FuseMax, Nayak et.a. MICRO 2024]
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PE Utilization — Enhanced Computation

1.00
A mm Unfused
~ 0.75 FLAT
5 0.50 FuseMax
§ ) +Cascade
S 0.25

0.00 ! i | i i i ¥ i 1 | i 1

1K 4K 16K 64K 256K 1M 1K 4K 16K 64K 256K 1M
BERT TrXL

1.00
- B Unfused
~ 0.75 FLAT
_5 0.50 FuseMax
E ' +Cascade
g 0.25

0.00 | i | i | i I I I I I I

' 1K 4K 16K 64K 256K 1M 1K 4K 16K 64K 256K 1M
T XLM
T [FuseMax, Nayak et.a. MICRO 2024]
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PE Utilization — Improve Architecture/Mapping

A 100 = Unfused
~N0.75 FLAT

5 FuseMax
§ 0.50 +Cascade

'4::0,25 | | | I | | I | | | I | Bm +Architecture
0.00 | | | | | i i | [ | il |

1K 4K 16K 64K 256K 1M 1K 4K 16K 64K 256K 1M

BERT TrXL
1.00
- B Unfused
~ 0.75 FLAT
8 FuseMax
< 0.50

+Cascade
B +Architecture

o Lol ol il il il ol
0_00||||||IIIIII

1K 4K 16K 64K 256K 1M 1K 4K 16K 64K 256K 1M
1o XLM

T [FuseMax, Nayak et.a. MICRO 2024]
February 2, 2026 Illll Sze and Emer



L01-33

PE Utilization — Improved binding

A mmm Unfused
™~ 0.75 FLAT
5 FuseMax
§ 0.50 +Cascade
Sl L =™
0.00 MU ol ol o0l w0l o ol ol il ol il Mal

1K 4K 16K 64K 256K 1M 1K 4K 16K 64K 256K 1M
BERT TrXL

1.00

s B Unfused
~ 0.75 FLAT
o FuseMax
s D0 +Cascade
= 0.25 | | ‘ I ‘ B +Architecture
| EEm +Binding
0.00

1K 4K 16K 64K 256K 1M 1K 4K 16K 64I( 256K 1M
XLM

n

iliza

U

T [FuseMax, Nayak et.a. MICRO 2024]
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FuseMax - Speedup on Attention

B Unfused
Q FLAT
é FuseMax
g 5 +Cascade
n | I I | I | Bm +Architecture
I " I I I i Emm +Binding
1K 4I< 16I< 64K 256K 1M 1K 4K 16K 64K 256K 1M
BERT TrXL
B Unfused
Q FLAT
§ FuseMax
Q5 +Cascade
n | B +Architecture
II II II || II || B +Binding

1K 4K 16K 64K 256K 1M 1K 4K 16K 64K 256K 1M
XLM

T [FuseMax, Nayak et.a. MICRO 2024]
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Challenges and Opportunities

« Define the domain and degree of flexibility required

* Requires understanding of domain, variants of algorithms (identify which
ones are important), and resulting workloads

« Handle heterogenous computing at the system level
« Handle heterogenous devices (emerging device technology)

« May have tighter resource constraints since hardware cannot be used for
other applications

« Co-design across algorithms and hardware
« Domain specific languages to program specialized hardware
 Tools for rapid evaluation and prototyping

February 2, 2026 ||||| Sze and Emer
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Class Overview

February 2, 2026 ||||| Sze and Emer
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Course Outline

* Overview of Deep Neural Networks (DNNs)
 DNN Development Resources

 DNNs on Programmable Hardware

* DNN Accelerator Architecture

 DNN Model and Hardware Co-Design

« Advanced Technologies for DNN

February 2, 2026 ||||| Sze and Emer
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Takeaways

 Know the key computations used by DNNs

« Be familiar with how DNN computations are mapped to various
hardware platforms

« Understand the tradeoffs between various architectures and platforms

« Be able to evaluate different DNN accelerator implementations with
benchmarks and comparison metrics

« Have an appreciation for the utility of various optimization and
approximation approaches

« Be able to distill the key attributes of recent implementation trends and
opportunities

February 2, 2026 ||||| Sze and Emer
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Course Objective

By the end of this course, we want you to be able understand a new
design in terms of attributes like:

— Order of computation

— Partitioning of computation

— Flow of data for computation

— Data movement in the storage hierarchy

— Data attribute specific optimizations

— Exploiting algorithm/hardware co-design

— Degree of flexibility

February 2, 2026 ||||| Sze and Emer
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Course Staff and Contact Info

» Instructors (Office hours by request)

— Joel Emer (jsemer@mit.edu)

Lz = 'g,

A

A5

Tanner Andrulis

— Vivienne Sze (sze@mit.edu)
TAs (Office hours W 5-6PM @ Location TBD)
— Tanner Andrulis (andrulis@mit.edu)
— Michael Gilbert (gilbertm@mit.edu)
— Fisher Xue (fzyxue@mit.edu)

— Reng Zheng (rengz@mit.edu)

Schedule ‘ : =
— Lectures: MW 1PM-2:30PM — 54-100 Michael Gilbert Fisher Xue Reng Zheng
— Recitations/Office Hours: F 11AM-12PM — 32-155

Course Website: http://csqg.csail.mit.edu/6.5930/ Slide Contributors: Joel Emer, Yu-Hsin
Chen and Tien-Ju Yang

February 2, 2026 U (http.//eyeriss.mit.edu/tutorial. html)

Sze and Emer



LO1-41

Course Requirements and Materials

Pre-requisites
— 6.1910 904 (Computation Structures)
— 6.3000 05 (Signal Processing) or 6.3900 o3¢, (INtro to Machine Learning)

We will use Python and PyTorch
— PyTorch website: https://pytorch.org/

— Introduction to PyTorch Code Examples: https://cs230.stanford.edu/blog/pytorch/

Course Textbook/Readings

— Book “Efficient Processing of Deep Neural Networks”
* https://doi.org/10.1007/978-3-031-01766-7 (download free on MIT network)

*  We welcome feedback (including errata) on Piazza thread

— Selected papers published in past few years.

Course Handouts (uploaded on http://csg.csail.mit.edu/6.5930/ )

February 2, 2026 ||||| Sze and Emer
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Lab O: Infrastructure setup (Released Today on Piazza)
— Release: Feb 2 — Due: Feb 6

Lab 1: Analyze and Evaluate DNN workloads (Einsums)
— Release: Feb 4 — Due: Feb 13 (1.5 weeks)

Lab 2: Hardware Design & Mapping

— Release: Feb 13 — Due: Feb 23 (1.5 weeks)

Lab 3: Advanced Mapping: Parallel Processing and Fusion
— Release: Feb 23 — Due: March 4 (1.5 weeks)

Lab 4: Sparsity

— Release: March 4 — Due: March 13 (1.5 weeks)

Lab 5: Compute In Memory (CiM)

— Release: March 13 — Due: March 20 (1 week)

February 2, 2026 U

All labs due before
spring break
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Typical Architecture for DNN Accelerator

Global

Buffer

Reg File**

Control

0.5-1.0kB |\

NoC: 200 - 1000 PEs
100 - 500 kB J:

PE

ALU

ALU

ALU

ALU

ALU

Spatial architecture
with small (< 1kB)
low-cost memory

near compute

**Register File is also
referred to as local buffer

Normalized Energy Cost’

1x (Reference)

1%

Farther and larger
memories consume
more power

* measured from a commercial 65nm process
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Example Design Choices for DNN Accelerator

Global Reg File

Buffer

Control

* Processing Element (PE) array (Lab 2 & 3)
— number of PEs, connection between PEs (Network on chip [NoC])
* Memory hierarchy (Lab 2 & 3)
— number of levels, capacity per level, data layout in memory
» Scheduling of operations to reduce data movement and increase PE utilization (Lab 2 & 3)
— mapping (dataflow, tiling), parallelism, fusion
* Handling sparsity (Lab 4)
— gating, skipping, representation format (compression)

» Technology used to implement components such as PE, NoC and Memory (Lab 5)

— e.g., RRAM, optical, superconductors
February 2, 2026 |||i|- Sze and Emer
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Evaluate Inefficiencies in DNN Accelerators

Use roofline model as a systematic way to evaluate how each architectural
decision affects performance (throughput) for a given DNN workload

Tightens the roofline model

(MAi/Cyde) Slope = BW to only active PE

°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°° —> Step 1: maximum workload parallelism (total iteration space of Einsum (Lab 1))

------------------------------------- —> Step 2: maximum dataflow parallelism (product of loop limits of parallel_for)

oo —> Number of PEs (Theoretical Peak Performance)

°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°° —> Step 3: # of active PEs under a finite PE array size (<= min (# of PEs, Step 2))

------------------------------------ —> Step 4: # of active PEs under fixed PE array dimension (constrained on both dimens.)

--------------- —> Step 5: # of active PEs under fixed storage capacity (space for stationary data)
I —> Step 6: lower active PE util. due to insufficient average BW (tools cover up to this)
""""""""""""""""""""" —> Step 7: lower active PE util. due to insufficient instantaneous BW (ramp up/down)

> (MAC/data)
Compute intensity (Lab 1) i

peak
perf.

See Chapter 6 in Book Sze and Emer



LO1-46

Why Architectural Modeling?

* In this class, primarily dealing with architectural design decisions
« Want to rapidly explore design space and evaluate design decisions
— Each design would take a long time to implement and evaluate using RTL

« Perform evaluation of architectural design decisions using modeling tools
(AccelForge and Accelergy)

— Once identify desirable architecture can implement portions in RTL to increase accuracy of
evaluation (not part of labs, but can be part of design project)

* Note: No GPUs programming (check out 6.5894) or FPGA implementation (check out 6.2050 5 111;)

February 2, 2026 ||||| Sze and Emer
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Design Project

* Project

— Choose from a list of suggested projects
« Use tools from labs

— PyTorch, Accelergy, AccelForge

« Teams of 3 (may change due to course enrollment) Lecture time dedicated to
« Schedule project after spring break

— March 9 — List of projects released

— March 18 — Submit project selection

— March 30 — April 29 — Weekly check ins + milestone report outs with mentor during lecture
(attendance at weekly check ins is mandatory)
* April 17 - Milestone 3 proposal due
— May 1 — Project Report Due
» Graduate groups (w/ at least one member enrolled in grad version) include an overview on related work
» Poster sessions May 4, 6, and 11

February 2, 2026 ||||| Sze and Emer
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Design Project

» Design project allows for deeper understanding and application of concepts
covered in course

— Explore more advanced functionality of modeling tools used in the labs

* Projects will have three key milestones

— Milestone 1 (April 6) [15 pt]: Read relevant paper and model prior work (baseline design)

— Milestone 2 (April 13) [10 pt]: Perform various modifications to analyze impact on design metrics.
Demonstrate understanding the various tradeoffs.

— Milestone 3 (April 27) [5 pt]: Open-ended design space exploration (Proposal due April 17)
* Note:

— We recommend that you “complete” each milestone before moving on to the next

February 2, 2026 ||||| Sze and Emer
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Example Design Projects

« Hardware design study of well-known DNN accelerators (e.g., TPU, NVDLA)
and analyze architectural tradeoffs though modeling

* Analyze co-design approaches to gain deeper understanding of impact on
accuracy and efficiency

« Evaluate impact of new technologies (e.g., RRAM, Optical, superconductors)

« Extend tools for improved design exploration and analysis capabilities

Goal: Apply concepts and tools from class!

February 2, 2026 ||||| Sze and Emer
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Architecture-Level Modeling of Photonic Deep
Neural Network Accelerators

Tanner Andrulis  Gohar Irfan Chaudhry  Vinith M. Suriyakumar Joel S. Emer Vivienne Sze
MiT MIT MIT MIT, Nvidia MiT
Cambridge, USA Cambridge, USA Cambridge, USA Cambridge, USA Cambridge, USA
andrulis@mit.edu girfan@mit.edu vinithms@mit.edu jsemer@mit.edu sze@mit.edu

Abstract—Photonics is a promising technology to accelerate
Deep Neural Networks as it can use optical interconnects to
reduce data movement energy and it enables low-energy, high-
throughput optical-analog computations.

To realize these benefits in a full system (accelerator + DRAM),
designers must ensure that the benefits of using the electrical,
optical, analog, and digital domains exceed the costs of converting
data between domains. Designers must also consider system-level
energy costs such as data fetch from DRAM. Converting data and
accessing DRAM can consume significant energy, so to evaluate
and explore the photonic system space, there is a need for a tool
that can model these full-system considerations.

In this work, we show that similarities between Compute-in-
Memory (CiM) and photonics let us use CiM system modeling

tools to model p systems.
tools to enables of ina
full-system context, rapid design space design,

Fig. 1. Albireo architecture. As data traverse the DE, AQ, and AE domains,
they leverage difTerent movement and reuse opportunities but pay energy for
data converters, notated X/ for conversion from domain X to domain Y.

optical (i.e., what p are
used, how many components, how they connect), workload
(i.e., DNN layer types, tensor shapes/values), and mapping
(i.e., how the workload is onto the i
Fortunately, these characteristics are not unique to pho-
tonics. Analog Compute-in-Memory (CiM) systems have a

and comparison between systems.
Using our open-source model, we show that cross-domain

conversion and DRAM can consume a significant portion of

photonic system energy. We then demonstrate optimizations that

reduce conversions and DRAM accesses (o improve photonic

system energy efficiency by up to 3x.
Index Te h i i

large full-syst design space, leverage the advantages of
multiple domains. (AE and DE), and face the challenge of
high cross-domain conversion energy.

In this work, we show that these similarities let us leverage
the open-source CiMLoop [11-[4] tool to accurately model
photonic sysiems. Bringing this tool to photonics enables

optical i
ing, pute-i v, modeli 1

ic comput-

L. INTRODUCTION

Deep Neural Networks (DNNs) can be energy-intensive to
compute due to the movement of large tensors and the many
multiply- late (MAC) i that they require. To

hers to (1) ly and pare research
contributions in a full-system context (e.g., see how a novel
component affects a full system or compare two photonic
systems across a range of DNN workloads) (2) perform fast
design-space exploration over the large co-design space [1],
and (3) share knowledge between the photonics and CiM
research communities.

II. PHOTONICS MODELING TOOL

The tool takes as input specifications of a DNN workload,
and archi as defined in Section 1. The tool

address these chall k ic systems (accel +
DRAM) | ge the digital ical (F), analog: ical
(AFE), digital-optical (DO), log-optical (AQ) domains.
Specifically, optical (ie,, DO and AO) i can

mane tha aivan mndidaed an tha acahitants and astente full

ISPASS 2024
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Ultra-low Power Superconducting Electronics for Deep Learning
Accelerator Architectures: Evaluating Energy Efficiency and Scalability

L. Camron Blackburn, Evan Golden, Tanner Andrulis, Vivienne Sze, Joel Emer, Neil
Gershenfeld, Karl K. Berggren

Sponsorship: MIT Lincoln Laboratory, the MIT AT Hardware Program

Since the invention of the Josephson junction in the 1960s, superconducting electronics have
shown promise for high-speed and energy-efficient computing. Since 2013, the Adiabatic Quan-
tum Flux Parametron (AQF P) device has gained popularity for its ultra-low energy dissipation.
AQFP inverters dissipate 10-%'J per switching event, 100X less than other superconductorlogic,
and 10°X less energy than modern-day CMOS transistors or 10°X when including the cryogenic
cooling cost. As Moore’s law ends and energy efficiency emerges as alimit on today’s computing
systems, superconducting AQFP logicis a promising technology to address these energy challenges.
Although individual AQFP device performance is impressive, superconducting electronics
have failed to replace CMOS systems in the past in part due to the high cost of cryogenic low-
noise testing environments and the limitations of superconductor memory scaling. To realize
the promise of superconducting electronics, there is a need to architect full systems that can
leverage the benefits of the unique superconductor physics (e.g., low-energy logic, low-energy
interconnects on zero-resistance wires) while addressing the challenges (e.g,, using low-noise
cryogenic environments commoditized by the quantum computing industry, constructing a
memory hierarchy that addresses the lack of a scalable, high-density superconducting memory).
In this work, we extend Timeloop/Accelergy accelerator modeling tools to support supercon-
ducting accelerators. This framework explores the design space of deep learning accelerator
architectures with a toolbox of superconducting circuits from various logic families. We pres-
ent results demonstrating the tradeoffs between superconductor vs. CMOS accelerators while
running a range of deep learning workloads.

MARC 2025
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Assignments and Grading

« Grading
— Labs 50%
« Lab0:1/Lab1:12/Lab 2: 25/ Lab 3: 25/ Lab 4: 25/ Lab 5: 25
— Final Project 50%
* Milestone 1: 15/ Milestone 2: 10 / Milestone 3: 5
* Project proposal (due April 17) : 5
* Final project: 115
» All assignments are due by 11:59PM ET on the due date (submitted online)

» Labs are to be completed individually, although discussion of course concepts covered
in the laboratories is encouraged. Please carefully review collaboration policy at
http://csg.csail.mit.edu/6.5930/collaboration.html
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Late Policy

» Late Policy for Labs

You should always submit your labs on time. Nonetheless, since unexpected situations, like
illnesses, might occur, you have a budget of 5 late days to spend on the labs. We will not
grant any additional extensions, so please use these days carefully.

The budget is spent in increments of 1 day, and you may not use more than 2 days per lab.

If you submit your lab later than two days after the deadline, or if you are late and have
no budget left, your submission will not count towards your grade. However, you must
complete all the labs to pass the course.

You do not need to inform us about your use of your budget. The course staff will keep track of
the days you have spent.

* No late days for project due to tight timeline

February 2, 2026 U
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Pre-requisites

* 6.191 Computation Structures and (6.390 Intro to Machine Learning
or 6.300 Signal Processing).

« Students who don't fulfill the prerequisites will be de-registered in the
second week of class.

If you believe you have equivalent prior experience
(e.g., a computer architecture course taken during your
undergraduate studies at another institution), you may
petition for consideration. Please submit your Petition
Form by this Friday, Feb 6,11:59 PM ET
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