
L02-1

Sze and Emer

6.5930/1

Hardware Architectures for Deep Learning

Overview of Deep Neural Network

Components

Joel Emer and Vivienne Sze

Massachusetts Institute of Technology

 Electrical Engineering & Computer Science

February 4, 2026

L02-2

Sze and Emer

Outline of Today’s Lecture

• Accelerator Design Methodology: From Workload to Hardware

– Einsums

– Roofline Models

• DNN Workloads

L02-3

Sze and Emer

From Workload to Hardware

Slides from “TeAAL and HiFiber: Precise and Concise Descriptions of (Sparse) Tensor Algebra Accelerators”

https://teaal.csail.mit.edu/

https://teaal.csail.mit.edu/

L02-4

Sze and Emer

Accelerator Design Methodology

(1) Describe the architecture (2) Develop the workload

(3) Evaluate the

workload

(4) Compare

implementations
(5) Optimize the design

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators

(described in TeAAL [Nayak, MICRO 2023])

L02-5

Sze and Emer

Describing the Hardware Architecture

(1) Describe the architecture

Select from a library of components

and organize them by writing an

accelerator specification

(2) Develop the workload

(3) Evaluate the

workload

(4) Compare

implementations
(5) Optimize the design

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators

L02-6

Sze and Emer

Architecture for the Simple End-to-End Example

DRAM

× +

REG PE

Basic hardware architecture for

tensor algebra operations:

 PE: ALU and local register files

 Memory: DRAM for global

storage

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators

L02-7

Sze and Emer

Developing the Workload

(1) Describe the architecture

Select from a library of components

and organize them by writing an

accelerator specification

(2) Develop the workload

Write the cascade, mapping, format,

and binding specifications

(3) Evaluate the

workload

(4) Compare

implementations
(5) Optimize the design

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators

L02-8

Sze and Emer

Separation of Concerns

Cascade

of Einsums

Mapping

Format

Binding

Fi
ner-g

ra
in

 d
ecisi

o
ns

M
ore concise

L02-9

Sze and Emer

Tensor Algebra

Tensors are multi-dimensional arrays of data

Many applications can be framed as tensor algebra

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators

9

0D Tensor / Scalar

2 0 0

1 8 -4

-5 0 -1

2D Tensor/ Matrix

2 0 0

1 8 -4

-5 0 -1

2 0 0

1 8 -4

-5 0 -1

2 0 0

1 8 -4

-5 0 -1

3D Tensor / Cube 4D Tensor 5D Tensor

1D Tensor / Vector

1 0 -5 3 2

6

Deep Learning
Internet &

Social media
Circuit

Simulation
Problems in

Statistics

Computational
Chemistry

Recommendation
systems

Graphics courtesy of Hadi Asghari-Moghaddam

L02-10

Sze and Emer

Tensor Terminology

Scalar: 0 ranks Vector: 1 rank

Matrix: 2 ranks Cube: 3 ranks

In this class, we used the term “rank” to denote

the dimension

Properties of a Tensor:

Number of Ranks = Number of dimensions

Rank Shape = Number of elements in each rank

Size of Tensor = Total number of elements in

tensor (product of the shape of each rank)

L02-11

Sze and Emer

Matrix Multiplication

A Z

B

M

N

K

K

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators

Properties of B tensor:

Number of Ranks = 2

Rank names: N and K

Rank shape: N and K

Size of Tensor = N x K

Shape of Tensor = [N,K]

Properties of Z tensor:

Number of Ranks = 2

Rank names: M and N

Rank shape: M and N

Size of Tensor = M x N

Shape of Tensor = [M,N]

Properties of A tensor:

Number of Ranks = 2

Rank names: M and K

Rank shape*: M and K

Size of Tensor = M x K

Shape of Tensor = [M,K]

*In general shape and name same, but

there are some exceptions we will see
later (e.g., in attention of transformer)

L02-12

Sze and Emer

Einstein Summation Notation (Einsums)

We can represent matrix multiplication with:

 𝑍𝑚,𝑛 = 𝐴𝑘,𝑚 × 𝐵𝑘,𝑛

With implicit reduction (sum)

over K A Z

B

M

N

K

K

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators

L02-13

Sze and Emer

Einstein Summation Notation (Einsums)

We can represent matrix multiplication with:

 𝑍𝑚,𝑛 = σ𝑘 𝐴𝑘,𝑚 × 𝐵𝑘,𝑛

Explicit reduction is not

necessary A Z

B

M

N

K

K

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators

L02-14

Sze and Emer

Einstein Summation Notation (Einsums)

We can represent matrix multiplication with:

 𝑍𝑚,𝑛 = 𝐴𝑘,𝑚 × 𝐵𝑘,𝑛

A Z

B

M

N

K

K

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators

L02-15

Sze and Emer

Operational Definition of an Einsum (ODE)

Simplifying to matrix-vector multiplication:

 𝑍𝑚 = 𝐴𝑘,𝑚 × 𝐵𝑘

A Z

B

M

K

K

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators

L02-16

Sze and Emer

Operational Definition of an Einsum (ODE)

Einsum: 𝑍𝑚 = 𝐴𝑘,𝑚 × 𝐵𝑘

Iteration Space: Cartesian product

of all legal coordinates in the Einsum

A Z

B

M

K

K

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators

L02-17

Sze and Emer

Operational Definition of an Einsum (ODE)

Einsum: 𝑍𝑚 = 𝐴𝑘,𝑚 × 𝐵𝑘

Iteration Space: 0, 𝐾 × [0, 𝑀)

A Z

B

M

K

K

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators

L02-18

Sze and Emer

Operational Definition of an Einsum (ODE)

Einsum: 𝑍𝑚 = 𝐴𝑘,𝑚 × 𝐵𝑘

Iteration Space: 𝐾 × 𝑀

A Z

B

M

K

K

M

K
Iteration Space Point: (4, 2)

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators

Many ways to traverse iteration space

(processing order)

L02-19

Sze and Emer

Operational Definition of an Einsum (ODE)

Einsum: 𝑍𝑚 = 𝐴𝑘,𝑚 × 𝐵𝑘

Iteration Space: 𝐾 × 𝑀

For each point 𝑘, 𝑚 in the iteration space:

• Select the input values 𝐴𝑘,𝑚 and 𝐵𝑘

• Multiply (×) them together

• Update the output value 𝑍𝑚

• Reduce (+) if necessary

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators

L02-20

Sze and Emer

Operational Definition of an Einsum (ODE)

• Einsum defines

– an iteration space over tensors

– what computation is done on and between tensors at each point in the iteration space

• Traverse all points in space of all legal index values (iteration space)

– The size of space is the Cartesian product of number of values of the unique indices

(e.g., K*M) → amount of work that needs to be done!

• At each point in iteration space:

– Calculate value on right hand side at specified indices for each operand (tensor)

– Assign value to operand at specified indices on left hand side

– Perform reduction across indices that appear on right-hand side but not left-hand side

• Note: Einsum will be the input format of the workload to the modeling tools for this class

𝑍𝑚 = 𝐴𝑘,𝑚 × 𝐵𝑘

L02-21

Sze and Emer

Evaluating the Workload

(1) Describe the architecture

Select from a library of components

and organize them by writing an

accelerator specification

(2) Develop the workload

Write the cascade, mapping, format,

and binding specifications

(3) Evaluate the

workload

Model the workload and

analyze with metrics like

number of computes,

memory traffic, and

compute intensity

(4) Compare

implementations
(5) Optimize the design

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators

L02-22

Sze and Emer

Analysis: What Compute is Required?

Einsum: 𝑍𝑚 = 𝐴𝑘,𝑚 × 𝐵𝑘

Iteration Space: 𝐾 × 𝑀

One multiply (×) and reduce (+) per point in

the iteration space (excluding edge effects)

• 𝐾 × M multiplies

• 𝐾 − 1 × M adds

M

K

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators

L02-23

Sze and Emer

Analysis: What is the Best-Case Compute Intensity?

• Compute Intensity is a measure of how much data reuse is

theoretically possible

– Higher compute intensity implies more data reuse feasible → potentially

less data movement required

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators

DRAM
Global
Buffer

PE

PE PE

ALU fetch data to run

a MAC here

ALU

Buffer ALU

RF ALU

Normalized Energy Cost*

200×

6×

PE ALU 2×

1×

1× (Reference)

DRAM ALU

0.5 – 1.0 kB

100 – 500 kB

NoC: 200 – 1000 PEs

* measured from a commercial 65nm process

L02-24

Sze and Emer

Defining Compute Intensity (CI)

(Standard) Compute Intensity: FLOPs / byte

However, this definition introduces questions:

• Is the multiply-accumulate (MAC) one operation or two?

• What is the bitwidth of our values?

Compute Intensity: Multiplications / value

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators

L02-25

Sze and Emer

Analysis: What is the Best-Case CI?

Compute Intensity: Multiplications / value

Multiplications : 𝐾 × 𝑀

Best-case memory traffic:

• 𝐾 × 𝑀 loads of 𝐴𝑘,𝑚

• 𝐾 loads of 𝐵𝑘

• 𝑀 stores of 𝑍𝑚

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators

L02-26

Sze and Emer

Analysis: What is the Best-Case CI?

Compute Intensity: Multiplications / value

Multiplications : 𝐾 × 𝑀

Best-case memory traffic: 𝐾 × 𝑀 + K + M values

Best-case compute intensity:
𝐾 × 𝑀

𝐾 × 𝑀 + K + M

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators

Lab 1 focuses on this

type of analysis of

workloads (Einsum)

L02-27

Sze and Emer

Developing the Workload

(1) Describe the architecture

Select from a library of components

and organize them by writing an

accelerator specification

(2) Develop the workload

Write the cascade, mapping, format,

and binding specifications

(3) Evaluate the

workload

Model the workload and

analyze with metrics like

number of computes,

memory traffic, and AI

(4) Compare

implementations
(5) Optimize the design

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators

L02-28

Sze and Emer

Separation of Concerns

Cascade

of Einsums

Mapping

Format

Binding

Fi
ner-g

ra
in

 d
ecisi

o
ns

M
ore concise

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators

L02-29

Sze and Emer

Traversing the Iteration Space

Can do so in any order

M

K

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators

L02-30

Sze and Emer

Traverse with Loop Nests

for k in range(K):

 for m in range(M):

 Z[m] += A[k, m] * B[k]

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators

Lab 2 & 3 focuses

on traverse order

of iteration space

(mapping)

L02-31

Sze and Emer

Evaluating the Workload

(1) Describe the architecture

Select from a library of components

and organize them by writing an

accelerator specification

(2) Develop the workload

Write the cascade, mapping, format,

and binding specifications

(3) Evaluate the

workload

Model the workload and

analyze with metrics like

number of computes,

memory traffic, and

compute intensity

(4) Compare

implementations
(5) Optimize the design

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators

L02-32

Sze and Emer

Analysis: What is the Achieved Traffic?

for k in range(K):

 for m in range(M):

 a_reg = A[k, m]

 b_reg = B[k]

 z_reg = Z[m]

 Z[m] += A[k, m] * B[k]

 Z[m] = z_reg

DRAM

× +

REG PE

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators

L02-33

Sze and Emer

Analysis: What is the Achieved Traffic?

for k in range(K):

 for m in range(M):

 a_reg = A[k, m]

 b_reg = B[k]

 z_reg = Z[m]

 Z[m] += a_reg * B[k]

 Z[m] = z_reg

DRAM

REG PE

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators

× +

L02-34

Sze and Emer

Analysis: What is the Achieved Traffic?

for k in range(K):

 for m in range(M):

 a_reg = A[k, m]

 b_reg = B[k]

 z_reg = Z[m]

 Z[m] += a_reg * b_reg

 Z[m] = z_reg

DRAM

× +
REG PE

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators

L02-35

Sze and Emer

Analysis: What is the Achieved Traffic?

for k in range(K):

 for m in range(M):

 a_reg = A[k, m]

 b_reg = B[k]

 z_reg = Z[m]

 z_reg += a_reg * b_reg

 Z[m] = z_reg

DRAM

× +
REG PE

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators

L02-36

Sze and Emer

Exploit Stationarity

for k in range(K):

 for m in range(M):

 a_reg = A[k, m]

 b_reg = B[k]

 z_reg = Z[m]

 z_reg += a_reg * b_reg

 Z[m] = z_reg

DRAM

× +
REG PE

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators

L02-37

Sze and Emer

Exploit Stationarity

for k in range(K):

 b_reg = B[k]

 for m in range(M):

 a_reg = A[k, m]

 b_reg = B[k]

 z_reg = Z[m]

 z_reg += a_reg * b_reg

 Z[m] = z_reg

DRAM

× +
REG PE

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators

L02-38

Sze and Emer

Analysis: What is the Achieved Traffic?

for k in range(K):

 b_reg = B[k]

 for m in range(M):

 a_reg = A[k, m]

 z_reg = Z[m]

 z_reg += a_reg * b_reg

 Z[m] = z_reg

Achieved memory traffic:

 𝐾 × M loads of 𝐴𝑘,𝑚

 𝐾 loads of 𝐵𝑘

 𝐾 − 1 × 𝑀 loads of 𝑍𝑚

 𝐾 × 𝑀 stores of 𝑍𝑚

DRAM

× +

REG PE

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators

L02-39

Sze and Emer

Analysis: What is the Achieved Traffic?

for k in range(K):

 for m in range(M):

 Z[m] += A[k,m] * B[k]

Achieved memory traffic:

 𝐾 × M loads of 𝐴𝑘,𝑚

 𝐾 loads of 𝐵𝑘

 𝐾 − 1 × 𝑀 loads of 𝑍𝑚

 𝐾 × 𝑀 stores of 𝑍𝑚

Loads and stores are always

derivable from the loop order

DRAM

× +

REG PE

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators

L02-40

Sze and Emer

Analysis: What is the Achieved CI?

Multiplications: 𝐾 × M

Achieved memory traffic: 3 × 𝐾 × 𝑀 − 𝑀 + 𝐾

Achieved compute intensity:
𝐾 × M

3 × 𝐾 × 𝑀 −𝑀+𝐾

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators

L02-41

Sze and Emer

Example: Best Case vs Achieved CI

 Best Case CI

𝐾 × M

𝐾 × M + K + M
=

250 × 100

250 × 100 + 250 + 100
=

𝟎. 𝟗𝟗 𝑴𝒖𝒍𝒕𝒊𝒑𝒍𝒊𝒄𝒂𝒕𝒊𝒐𝒏𝒔/𝒗𝒂𝒍𝒖𝒆

 Achieved CI

𝐾 × M

3 × 𝐾 × 𝑀 − 𝑀 + 𝐾
=

250 × 100

3 × 250 × 100 − 100 + 250
=

𝟎. 𝟑𝟑 𝑴𝒖𝒍𝒕𝒊𝒑𝒍𝒊𝒄𝒂𝒕𝒊𝒐𝒏𝒔/𝒗𝒂𝒍𝒖𝒆

𝐾 = 250; 𝑀 = 100

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators

L02-42

Sze and Emer

Roofline Model

0

1

2

3

4

5

6

7

8

9

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

M
u

lt
i/
C

y
c
le

Compute Intensity (multi/value)

Multi/cycle limited by

amount of compute
(parallelism)

Multi/cycle

limited by
memory

bandwidth

Williams, Samuel, Andrew Waterman, and David Patterson. "Roofline: an insightful visual performance model for multicore archi tectures."

Communications of the ACM 52.4 (2009): 65-76.

L=8

(8 MACs/cycle)

L02-43

Sze and Emer

Roofline Model

• Roofline Model is a way to visualize throughput given

– Memory bandwidth, amount of parallelism, and computational intensity

– Tells you if more parallelism would help, or more memory bandwidth

• When memory bound, increasing number of lanes will not increase throughput → parallelism does not always

equal speed up in throughput

– Tells you how far you are from limit

• Away from limit due to overhead (e.g., stalls, instruction overhead, mapping limitations)

• Compute intensity

– Theoretical upper bound [max reuse] (best-case compute intensity) (computed in Lab 1)

– Actual implementation depends on processing order (amount of reuse exploited by hardware)

• Roofline model can be draw for each level of the memory hierarchy (though

typically for DRAM)

L02-44

Sze and Emer

Accelerator Design Methodology

(1) Describe the architecture

Select from a library of components

and organize them by writing an

accelerator specification

(2) Develop the workload

Write the cascade, mapping, format,

and binding specifications

(3) Evaluate the

workload

Model the workload and

analyze with metrics like

number of computes,

memory traffic, and

compute intensity

(4) Compare

implementations

Write corresponding

specifications, normalize

hardware parameters,

and reevaluate

(5) Optimize the design

Incrementally modify one

or more specifications

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators

L02-45

Sze and Emer

Convolutional Neural Networks (CNNs)

L02-46

Sze and Emer

Applications of CNN
Computer Vision Speech Recognition

Game Play Medical

Spectrogram

L02-47

Sze and Emer

Convolutional Neural Networks

Modern Deep CNN: 5 – 1000 Layers

Classes
FC

Layer

CONV

Layer

Low-Level

Features
CONV

Layer

High-Level

Features…

1 – 3 Layers

L02-48

Sze and Emer

Depth of Network

Input:
Image

Output:
“Volvo XC90”

Modified Image Source: [Lee, CACM 2011]

Low Level Features High Level Features

L02-49

Sze and Emer

Convolutional Neural Networks

Classes
FC

Layer

CONV

Layer

Low-Level

Features
CONV

Layer

High-Level

Features…

Convolution Activation

×

L02-50

Sze and Emer

Convolutional Neural Networks

Classes
FC

Layer

CONV

Layer

Low-Level

Features
CONV

Layer

High-Level

Features…

Fully

Connected

Activation

×

L02-51

Sze and Emer

Convolutional Neural Networks

Classes
FC

Layer

CONV

Layer

CONV

Layer

High-Level

Features

Optional layers in between

CONV and/or FC layers

NORM

Layer

POOL

Layer

Normalization Pooling

L02-52

Sze and Emer

Convolutional Neural Networks

Classes

High-Level

Features
FC

Layer

CONV

Layer

CONV

Layer

NORM

Layer

POOL

Layer

Convolutions account for more

than 90% of overall computation,

dominating runtime and energy

consumption

L02-53

Sze and Emer

Convolution (CONV) Layer

R

S

H

a plane of input activations

a.k.a. input feature map (fmap)

filter* (weights)

W

* also referred to as kernel

L02-54

Sze and Emer

R

filter (weights)

Convolution (CONV) Layer

input fmap

S

Element-wise
Multiplication

H

W

L02-55

Sze and Emer

R

filter (weights)

S

Convolution (CONV) Layer

P

Q

Partial Sum (psum)
Accumulation

input fmap output fmap

Element-wise
Multiplication

H

W

an output

activation

L02-56

Sze and Emer

H
R

filter (weights)

S

Convolution (CONV) Layer

P

Sliding Window Processing

input fmap

an output

activation

output fmap

W Q

L02-57

Sze and Emer

2D Convolution Example

0 1 0

1 1 1

0 1 0

Filter

(3x3)

Input

Feature

Map

(5x5)

Output

Feature

Map

0 1 2 3 2

1 2 2 2 0

0 1 0 1 3

1 2 2 1 0

0 1 0 3 1

Convolution (Stride 1)

Filter support: 3x3

Also referred to as the receptive field

(each output requires 9 multiplications*)

*assume no optimization for zeros

L02-58

Sze and Emer

2D Convolution Example

0 1 0

1 1 1

0 1 0

0 1 2 3 2

1 2 2 2 0

0 1 0 1 3

1 2 2 1 0

0 1 0 3 1

Filter

(3x3)

Input

Feature

Map

(5x5)

Output

Feature

Map

7

Convolution (Stride 1)

L02-59

Sze and Emer

2D Convolution Example

0 1 0

1 1 1

0 1 0

Filter

(3x3)

Input

Feature

Map

(5x5)

Output

Feature

Map

7 80 1 2 3 2

1 2 2 2 0

0 1 0 1 3

1 2 2 1 0

0 1 0 3 1

Convolution (Stride 1)

L02-60

Sze and Emer

2D Convolution Example

0 1 0

1 1 1

0 1 0

0 1 2 3 2

1 2 2 2 0

0 1 0 1 3

1 2 2 1 0

0 1 0 3 1

Filter

(3x3)

Input

Feature

Map

(5x5)

Output

Feature

Map

7 8 8

Convolution (Stride 1)

L02-61

Sze and Emer

2D Convolution Example

0 1 0

1 1 1

0 1 0

Filter

(3x3)

Input

Feature

Map

(5x5)

Output

Feature

Map

7 8 8

5 6 7

0 1 2 3 2

1 2 2 2 0

0 1 0 1 3

1 2 2 1 0

0 1 0 3 1

Convolution (Stride 1)

L02-62

Sze and Emer

2D Convolution Example

0 1 0

1 1 1

0 1 0

Filter

(3x3)

Input

Feature

Map

(5x5)

Output

Feature

Map

7 8 8

5 6 7

0 1 2 3 2

1 2 2 2 0

0 1 0 1 3

1 2 2 1 0

0 1 0 3 1

Convolution (Stride 1)

L02-63

Sze and Emer

2D Convolution Example

0 1 0

1 1 1

0 1 0

Filter

(3x3)

Input

Feature

Map

(5x5)

Output

Feature

Map

7 8 8

5 6 7

0 1 2 3 2

1 2 2 2 0

0 1 0 1 3

1 2 2 1 0

0 1 0 3 1

Convolution (Stride 1)

L02-64

Sze and Emer

2D Convolution Example

0 1 0

1 1 1

0 1 0

Filter

(3x3)

Input

Feature

Map

(5x5)

Output

Feature

Map

(3x3)

7 8 8

5 6 7

6 5 7

0 1 2 3 2

1 2 2 2 0

0 1 0 1 3

1 2 2 1 0

0 1 0 3 1

Convolution (Stride 1)

Output Feature Map = (Input Feature Map – Filter + Stride) / Stride

of multiplications?

Size of Size of Size of

L02-65

Sze and Emer

2D Convolution Example

0 1 0

1 1 1

0 1 0

Filter

(3x3)

Input

Feature

Map

(5x5)

Output

Feature

Map

0 1 2 3 2

1 2 2 2 0

0 1 0 1 3

1 2 2 1 0

0 1 0 3 1

Convolution (Stride 2)

7

L02-66

Sze and Emer

2D Convolution Example

0 1 0

1 1 1

0 1 0

Filter

(3x3)

Input

Feature

Map

(5x5)

Output

Feature

Map

0 1 2 3 2

1 2 2 2 0

0 1 0 1 3

1 2 2 1 0

0 1 0 3 1

Convolution (Stride 2)

7 8

L02-67

Sze and Emer

2D Convolution Example

0 1 0

1 1 1

0 1 0

Filter

(3x3)

Input

Feature

Map

(5x5)

Output

Feature

Map

0 1 2 3 2

1 2 2 2 0

0 1 0 1 3

1 2 2 1 0

0 1 0 3 1

Convolution (Stride 2)

7 8

6 6

L02-68

Sze and Emer

2D Convolution Example

0 1 0

1 1 1

0 1 0

Filter

(3x3)

Input

Feature

Map

(5x5)

Output

Feature

Map

0 1 2 3 2

1 2 2 2 0

0 1 0 1 3

1 2 2 1 0

0 1 0 3 1

Convolution (Stride 2)

7 8

6 7

L02-69

Sze and Emer

2D Convolution Example

0 1 0

1 1 1

0 1 0

Filter

(3x3)

Input

Feature

Map

(5x5)

Output

Feature

Map

(2x2)

0 1 2 3 2

1 2 2 2 0

0 1 0 1 3

1 2 2 1 0

0 1 0 3 1

Convolution (Stride 2)

7 8

6 7

Output Feature Map = (Input Feature Map – Filter + Stride) / Stride

of multiplications?

Size of Size of Size of

L02-70

Sze and Emer

2D Convolution Example

0 1 0

1 1 1

0 1 0

Filter

(3x3)

Input

Feature

Map

(5x5)

Output

Feature

Map

(1x1)

0 1 2 3 2

1 2 2 2 0

0 1 0 1 3

1 2 2 1 0

0 1 0 3 1

Convolution (Stride 3)

7

Output Feature Map = (Input Feature Map – Filter + Stride) / Stride

of multiplications?

Size of Size of Size of

L02-71

Sze and Emer

Impact of Stride on Convolution

Stride 2

Output

Feature

Map

(2x2)

7 8

6 7Output

Feature

Map

(3x3)

7 8 8

5 6 7

6 5 7

Stride 1

Stride > 1 is equivalent to downsampling the

output feature map when Stride =1

Stride 3

Output

Feature

Map

(1x1)

7

L02-72

Sze and Emer

Zero Padding

• The size of the output shrinks relative to the input

• Use zero padding to control the size of the output

• Can set padding based on filter size such that the output size is equal to

original the input size

0 1 2 3 2

1 2 2 2 0

0 1 0 1 3

1 2 2 1 0

0 1 0 3 1

0 0 0 0 0 0 0

0 0 1 2 3 2 0

0 1 2 2 2 0 0

0 0 1 0 1 3 0

0 1 2 2 1 0 0

0 0 1 0 3 1 0

0 0 0 0 0 0 0

L02-73

Sze and Emer

2D Convolution Example

0 1 0

1 1 1

0 1 0

Filter

(3x3)

Input

Feature

Map

(7x7)

Output

Feature

Map

(5x5)

Convolution (Stride 1) + zero padding

0 0 0 0 0 0 0

0 0 1 2 3 2 0

0 1 2 2 2 0 0

0 0 1 0 1 3 0

0 1 2 2 1 0 0

0 0 1 0 3 1 0

0 0 0 0 0 0 0

2 5 8 9 5

3 7 8 8 4

3 5 6 7 4

3 6 5 7 5

2 3 6 5 4

L02-74

Sze and Emer

Zero Padding in PyTorch

• padding (python:int or tuple, optional) added to input. Default: 0

– https://pytorch.org/docs/stable/nn.html#padding-layers

– Ex: padding=1, pad 1 to the top, bottom, right, and left.

– Ex. padding=[1,2], pad 1 to the top and bottom, pad 2 to the right and left

• Default: No zero padding

– filter is RxS and input is HxW, and stride U

– output is (H-R+U)/U x (W-S+U)/U

• Padding=[(R-1)/2, (S-1)/2]: zero padding so that output remains the same for U=1

– filter is RxS and input is HxW, and stride U

– output is ceil(H/U) x ceil(W/U)

• Padding is not always explicitly defined, but can be inferred from the size of the feature map

– Deep networks use padding to prevent feature maps from shrinking

• Different frameworks can use different types of padding

https://pytorch.org/docs/stable/nn.html#padding-layers
https://pytorch.org/docs/stable/nn.html#padding-layers
https://pytorch.org/docs/stable/nn.html#padding-layers
https://pytorch.org/docs/stable/nn.html#padding-layers

L02-75

Sze and Emer

Depth of Network: Convolution

As you go deeper into the network, more pixels contribute to each activation.

0 0 0 0 0 0 0

0 0 1 2 3 2 0

0 1 2 2 2 0 0

0 0 1 0 1 3 0

0 1 2 2 1 0 0

0 0 1 0 3 1 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 1 2 3 2 0

0 1 7 8 8 0 0

0 0 5 6 7 3 0

0 1 6 5 7 0 0

0 0 1 0 3 1 0

0 0 0 0 0 0 0

Example: 3x3 filter

0 0 0 0 0 0 0

0 0 1 2 3 2 0

0 1 2 2 2 0 0

0 0 1 31 1 3 0

0 1 2 2 1 0 0

0 0 1 0 3 1 0

0 0 0 0 0 0 0

Input to Layer 1 Layer 2 Layer 3

Feature maps of deep layers typically give higher level features

L02-76

Sze and Emer

H

Convolution (CONV) Layer

R

S

C

input fmap

output fmap
Cfilter

Many Input Channels (C)

P

W Q

e.g., For Layer 1, C=3 for the red, green, and blue components of an image

L02-77

Sze and Emer

Convolution (CONV) Layer

P

output fmapmany

filters (M)

Many

Output Channels (M)*

M
…

R

S

1

R

S

C

M

H

input fmap

C

C

W Q

e.g., # of output channels (M1) of Layer 1 becomes # of

input channels (C2) of Layer 2

Note: # of filters often referred to as width of network

*some works use K rather than M

L02-78

Sze and Emer

Convolution (CONV) Layer

Batch Size (N)

…

M

…

Many

Input fmaps (N) Many

Output fmaps (N)

…
R

S

R

S

C

C

filters

P

Q

H

C

H

W

C

P

1 1

N
N

W Q

1

M

L02-79

Sze and Emer

CNN Decoder Ring

• N – Number of input fmaps/output fmaps (batch size)

• C – Number of channels in input fmaps (activations) & filters (weights)

• H – Height of input fmap (activations)

• W – Width of input fmap (activations)

• R – Height of filter (weights)

• S – Width of filter (weights)

• M – Number of channels in output fmaps (activations)

• P – Height of output fmap (activations)

• Q – Width of output fmap (activations)

• U – Stride of convolution

These variables define the rank and shape of the various tensors (input fmap, filter, output fmap)

L02-80

Sze and Emer

Input Feature Map (fmap) Tensor

I[C][H][W]

H=3

Input fmap (activations)

C=3

W=3

In this example, the input feature map has

three ranks* named C, H and W

The rank shapes are C=3, H=3, and W=3

*technically also has fourth rank N, with shape of N=1

L02-81

Sze and Emer

CONV Layer Tensor Computation

Input fmap (I)

Filter weights (W)

Output fmap (O)

Biases (B)

L02-82

Sze and Emer

Einstein Notation (Einsum)

𝑂𝑛,𝑚,𝑝,𝑞

= 𝐵𝑚 + 𝐼𝑛,𝑐,𝑈×𝑝+𝑟,𝑈×𝑞+𝑠× 𝐹𝑚,𝑐,𝑟,𝑠

[Einstein, Annalen der Physike 1916], [Kjolstad, TACO, OOPSLA 2017], [Parashar, Timeloop, ISPASS 2019]

Einsum Notation

Algebraic Notation

Einsum does not enforce any computational order

(function in Numpy, Pytorch and Tensorflow)

L02-83

Sze and Emer

CONV Layer Implementation

Naïve 7-layer for-loop implementation:

for n in [0..N):
for m in [0..M):

 for q in [0..Q):
 for p in [0..P):

 O[n][m][p][q] = B[m];
 for c in [0..C):
 for r in [0..R):
 for s in [0..S):
 O[n][m][p][q] += I[n][c][Up+r][Uq+s]
 × F[m][c][r][s];

 O[n][m][p][q] = Activation(O[n][m][p][q]);

for each output fmap value

convolve

a window

and apply

activation

Note that loop nest enforces an order → Einsum is more general!

L02-84

Fully Connected Layer

L02-85

Sze and Emer

Fully-Connected (FC) Layer

Input

Layer
Hidden

Layer

Output

Layer

Fully-Connected
Sparsely-Connected

Fully-Connected: all i/p neurons connected to all o/p neurons

L02-86

Sze and Emer

H

W

C

N

FC Layer – from CONV Layer POV

… …

input fmaps
output fmaps

…

H

W

C

H

C

1
W

M

1
1

1

H

C

filters

W

1

1

N

1

M

L02-87

Sze and Emer

input fmaps

H

W

C

1

Fully Connected Computation

output fmaps

…

filters

1

1

1
H

C

1
W

H

W

C

M

Variant of CONV layer with:

 R == H

 S == W

M

L02-88

Sze and Emer

input fmaps

H

W

C

1

Fully Connected Computation

output fmaps

…

filters

1

1

1
H

C

1
W

H

W

C

M

𝑂𝑚 = 𝐼𝑐,ℎ,𝑤 × 𝐹𝑚,𝑐,ℎ,𝑤
Einsum of FC computation

 (does not enforce processing order)

M

L02-89

Sze and Emer

Fully Connected Computation

int i[C][H][W]; # Input activations
int f[M][C][H][W]; # Filter weights
int o[M]; # Output activations

for m in [0, M):
 o[m] = 0;
 for c in [0, C):
 for h in [0, H):
 for w in [0, W):
 o[m] += i[c][h][w]*f[m][c][h][w]

Should be bias, which

we will ignore for
simplicity

Loop nest of FC computation

(enforces some processing order)

L02-90

Sze and Emer

Convert FC Compute to Matrix-Vector Multiply

int i[C][H][W]; # Input activations
int f[M][C][H][W]; # Filter weights
int o[M]; # Output activations

for m in [0, M):
 o[m] = 0;
 for c in [0, C):
 for h in [0, H):
 for w in [0, W):
 o[m] += i[c][h][w]*f[m][c][h][w]

Flatten C, H, W ranks to CHW

int i[CHW]; # Input activations
int f[M][CHW]; # Filter weights
int o[M]; # Output activations

for m in [0, M):
 o[m] = 0;
 for chw in [0, CHW):
 o[m] += i[chw]*f[CHW*m + chw]

L02-91

Sze and Emer

Convert FC Compute to Matrix-Vector Multiply

int i[C][H][W]; # Input activations
int f[M][C][H][W]; # Filter weights
int o[M]; # Output activations

for m in [0, M):
 o[m] = 0;
 for c in [0, C):
 for h in [0, H):
 for w in [0, W):
 o[m] += i[c][h][w]*f[m][c][h][w]

int i[CHW]; # Input activations
int f[M][CHW]; # Filter weights
int o[M]; # Output activations

for m in [0, M):
 o[m] = 0;
 for chw in [0, CHW):
 o[m] += i[chw]*f[m][chw]

L02-92

Sze and Emer

FC Compute as Matrix-Vector Multiply

M

CHW

CHW

1

Filters Input fmaps

×

1

Output fmaps

M=

Multiply all inputs in all channels by a weight and sum

L02-93

Sze and Emer

FC Compute as Matrix-Vector Multiply

M

CHW

CHW

1

Filters Input fmaps

×

1

Output fmaps

M=

Multiply all inputs in all channels by a weight and sum

(increment chw)

partial sum

L02-94

Sze and Emer

FC Compute as Matrix-Vector Multiply

M

CHW

CHW

1

Filters Input fmaps

×

1

Output fmaps

M=

Multiply all inputs in all channels by a weight and sum

(increment chw)

partial sum

L02-95

Sze and Emer

FC Compute as Matrix-Vector Multiply

M

CHW

CHW

1

Filters Input fmaps

×

1

Output fmaps

M=

Multiply all inputs in all channels by a weight and sum

(increment chw)

completed sum

L02-96

Sze and Emer

FC Compute as Matrix-Vector Multiply

M

CHW

CHW

1

Filters Input fmaps

×

1

Output fmaps

M=

Multiply all inputs in all channels by a weight and sum

L02-97

Sze and Emer

FC Compute as Matrix-Vector Multiply

M

CHW

CHW

1

Filters Input fmaps

×

1

Output fmaps

M=

Multiply all inputs in all channels by a weight and sum

(increment m)

L02-98

Sze and Emer

Einsum for Flattened FC

𝑂𝑚 = 𝐼𝑐,ℎ,𝑤 × 𝐹𝑚,𝑐,ℎ,𝑤 → 𝑂𝑚 = 𝐼𝑐ℎ𝑤 × 𝐹𝑚,𝑐ℎ𝑤

𝐼𝑐,ℎ,𝑤 → 𝐼𝐻×𝑊×𝑐+𝑊×ℎ+𝑤 → 𝐼𝑐ℎ𝑤

𝐹𝑚,𝑐,ℎ,𝑤 → 𝐹𝑚,𝐻×𝑊×𝑐+𝑊×ℎ+𝑤 → 𝐹𝑚,𝑐ℎ𝑤

Original Flattened

L02-99

Sze and Emer

Einsum for FC as Matrix Vector

𝑂𝑚 = 𝐼𝑐ℎ𝑤 × 𝐹𝑚,𝑐ℎ𝑤

M

CHW

CHW

1

Filters Input fmaps

×

1

Output fmaps

M
=

L02-100

Sze and Emer

H

W

C

N

FC Layer – Batch (N)

…

M

…

input fmaps
output fmaps

…

filters

H

C

1

1 1

1

1

N

W 1

H

C

1
W

H

W

C

M

L02-101

Sze and Emer

M

CHW

CHW

N

Filters Input fmaps

×

N

Output fmaps

M
=

After flattening, having a batch size of N turns the

matrix-vector multiply into a matrix-matrix multiply

𝑂𝒏,𝑚 = 𝐼𝒏,𝑐ℎ𝑤 × 𝐹𝑚,𝑐ℎ𝑤

FC Compute → Matrix-Matrix Multiply

L02-102

Sze and Emer

FC Compute → Matrix-Matrix Multiply

𝑂𝑛,𝑚 = 𝐼𝑛,𝑐ℎ𝑤 × 𝐹𝑚,𝑐ℎ𝑤

𝐶𝑚,𝑛 = 𝐴𝑚,𝑘 × 𝐵𝑘,𝑛

Typical matrix multiplication notation

Note: for Einsum, the order of ranks does not matter

reduction on rank chw

reduction on rank k

	Default Section
	Slide 1: 6.5930/1 Hardware Architectures for Deep Learning Overview of Deep Neural Network Components
	Slide 2: Outline of Today’s Lecture

	Overview of Workload to Hardware
	Slide 3
	Slide 4: Accelerator Design Methodology
	Slide 5: Describing the Hardware Architecture
	Slide 6: Architecture for the Simple End-to-End Example
	Slide 7: Developing the Workload
	Slide 8: Separation of Concerns
	Slide 9: Tensor Algebra
	Slide 10: Tensor Terminology
	Slide 11: Matrix Multiplication
	Slide 12: Einstein Summation Notation (Einsums)
	Slide 13: Einstein Summation Notation (Einsums)
	Slide 14: Einstein Summation Notation (Einsums)
	Slide 15: Operational Definition of an Einsum (ODE)
	Slide 16: Operational Definition of an Einsum (ODE)
	Slide 17: Operational Definition of an Einsum (ODE)
	Slide 18: Operational Definition of an Einsum (ODE)
	Slide 19: Operational Definition of an Einsum (ODE)
	Slide 20: Operational Definition of an Einsum (ODE)
	Slide 21: Evaluating the Workload
	Slide 22: Analysis: What Compute is Required?
	Slide 23: Analysis: What is the Best-Case Compute Intensity?
	Slide 24: Defining Compute Intensity (CI)
	Slide 25: Analysis: What is the Best-Case CI?
	Slide 26: Analysis: What is the Best-Case CI?
	Slide 27: Developing the Workload
	Slide 28: Separation of Concerns
	Slide 29: Traversing the Iteration Space
	Slide 30: Traverse with Loop Nests
	Slide 31: Evaluating the Workload
	Slide 32: Analysis: What is the Achieved Traffic?
	Slide 33: Analysis: What is the Achieved Traffic?
	Slide 34: Analysis: What is the Achieved Traffic?
	Slide 35: Analysis: What is the Achieved Traffic?
	Slide 36: Exploit Stationarity
	Slide 37: Exploit Stationarity
	Slide 38: Analysis: What is the Achieved Traffic?
	Slide 39: Analysis: What is the Achieved Traffic?
	Slide 40: Analysis: What is the Achieved CI?
	Slide 41: Example: Best Case vs Achieved CI
	Slide 42: Roofline Model
	Slide 43: Roofline Model
	Slide 44: Accelerator Design Methodology

	Overview of DNNs
	Slide 45
	Slide 46: Applications of CNN
	Slide 47: Convolutional Neural Networks
	Slide 48: Depth of Network
	Slide 49: Convolutional Neural Networks
	Slide 50: Convolutional Neural Networks
	Slide 51: Convolutional Neural Networks
	Slide 52: Convolutional Neural Networks
	Slide 53: Convolution (CONV) Layer
	Slide 54: Convolution (CONV) Layer
	Slide 55: Convolution (CONV) Layer
	Slide 56: Convolution (CONV) Layer
	Slide 57: 2D Convolution Example
	Slide 58: 2D Convolution Example
	Slide 59: 2D Convolution Example
	Slide 60: 2D Convolution Example
	Slide 61: 2D Convolution Example
	Slide 62: 2D Convolution Example
	Slide 63: 2D Convolution Example
	Slide 64: 2D Convolution Example
	Slide 65: 2D Convolution Example
	Slide 66: 2D Convolution Example
	Slide 67: 2D Convolution Example
	Slide 68: 2D Convolution Example
	Slide 69: 2D Convolution Example
	Slide 70: 2D Convolution Example
	Slide 71: Impact of Stride on Convolution
	Slide 72: Zero Padding
	Slide 73: 2D Convolution Example
	Slide 74: Zero Padding in PyTorch
	Slide 75: Depth of Network: Convolution
	Slide 76: Convolution (CONV) Layer
	Slide 77: Convolution (CONV) Layer
	Slide 78: Convolution (CONV) Layer
	Slide 79: CNN Decoder Ring
	Slide 80: Input Feature Map (fmap) Tensor
	Slide 81: CONV Layer Tensor Computation
	Slide 82: Einstein Notation (Einsum)
	Slide 83: CONV Layer Implementation

	Other Operations
	Slide 84: Fully Connected Layer
	Slide 85: Fully-Connected (FC) Layer
	Slide 86: FC Layer – from CONV Layer POV
	Slide 87: Fully Connected Computation
	Slide 88: Fully Connected Computation
	Slide 89: Fully Connected Computation
	Slide 90: Convert FC Compute to Matrix-Vector Multiply
	Slide 91: Convert FC Compute to Matrix-Vector Multiply
	Slide 92: FC Compute as Matrix-Vector Multiply
	Slide 93: FC Compute as Matrix-Vector Multiply
	Slide 94: FC Compute as Matrix-Vector Multiply
	Slide 95: FC Compute as Matrix-Vector Multiply
	Slide 96: FC Compute as Matrix-Vector Multiply
	Slide 97: FC Compute as Matrix-Vector Multiply
	Slide 98: Einsum for Flattened FC
	Slide 99: Einsum for FC as Matrix Vector
	Slide 100: FC Layer – Batch (N)
	Slide 101: FC Compute  Matrix-Matrix Multiply
	Slide 102: FC Compute  Matrix-Matrix Multiply

