L02-1

6.5930/1
Hardware Architectures for Deep Learning

Overview of Deep Neural Network
Components

February 4, 2026

Joel Emer and Vivienne Sze

Massachusetts Institute of Technology
Electrical Engineering & Computer Science

Illil- Sze and Emer

L02-2

Outline of Today’s Lecture

* Accelerator Design Methodology: From Workload to Hardware
— Einsums

— Roofline Models

« DNN Workloads

Illil- Sze and Emer

L02-3

From Workload to Hardware

Slides from “TeAAL and HiFiber: Precise and Concise Descriptions of (Sparse) Tensor Algebra Accelerators”
https://teaal.csail.mit.edu/

Illil- Sze and Emer

https://teaal.csail.mit.edu/

L02-4

Accelerator Design Methodology
(described in TeAAL [Nayak, MICRO 2023])

(1) Describe the architecture (2) Develop the workload

(3) Evaluate the (4) Compare

workload implementations (5) Optimize the design

I L
TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators I I" Sze and Emer

L02-5

Describing the Hardware Architecture

(1) Describe the architecture

Select from a library of components (2) Develop the workload
and organize them by writing an

accelerator specification

(3) Evaluate the (4) Compare

workload implementations (5) Optimize the design

I L
TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators I I" Sze and Emer

L02-6

Architecture for the Simple End-to-End Example

Basic hardware architecture for

tensor algebra operations: ° ° |
» PE:ALU and local register files |-I PE

» Memory: DRAM for global
DRAM

storage

I
TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators I I" Sze and Emer

LO2-7

Developing the Workload

(1) Describe the architecture (2) Develop the workload

Select from a library of components
and organize them by writing an
accelerator specification

Write the cascade, mapping, format,
and binding specifications

(3) Evaluate the (4) Compare

workload implementations (5) Optimize the design

I L
TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators I I" Sze and Emer

L02-8

Separation of Concerns

Cascade
of Einsums

Mapping

Illil- Sze and Emer

L02-9

Tensor Algebra

Tensors are multi-dimensional arrays of data

O

0D Tensor / Scalar 1D Tensor / Vector

2D Tensor/ Matrix 3D Tensor/ Cube 4D Tensor 5D Tensor
Many applications can be framed as tensor algebra

Internet & Recommendation Circuit Computational Problems in
Social media systems Simulation Chemistry Statistics Deep Learning
Graphics courtesy of Hadi Asghari-Moghaddam III._
i Sze and Emer

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators

L02-10

Tensor Terminology

. Scalar: 0 ranks Vector: 1 rank
In this class, we used the term “rank” to denote

Properties of a Tensor:

_ _ Matrix: 2 ranks Cube: 3 ranks
Number of Ranks = Number of dimensions

Rank Shape = Number of elements in each rank

Size of Tensor = Total number of elements in
tensor (product of the shape of each rank)

Illil- Sze and Emer

L02-11

Matrix Multiplication

Properties of B tensor:

Number of Ranks = 2
Rank names: N and K
Rank shape: N and K
Size of Tensor = N x K
Shape of Tensor = [N,K]

N
K
K
Properties of A tensor: Propertles of Z tensor:
Rank names: M and K Number of Ranks = 2
Rank shape*.: M and K M A Z Ea":: n:meS:l\I/\l/l anddl\ll\l
. . ank shape: M an
Size of Tensor = M x K Sire ot e T2

Shape of Tensor = [M,K] Shape of Tensor = [M,N]

*In general shape and name same, but
there are some exceptions we will see
later (e.g., in attention of transformer)

I L
TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators I I" Sze and Emer

L02-12

Einstein Summation Notation (Einsums)

We can represent matrix multiplication with:

!
N
Zm,n) Ak’ml >< Bk’n l K -
K
Z
1

<=

With implicit reduction (sum)

over K) M A -

I L
TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators I I" Sze and Emer

L02-13

Einstein Summation Notation (Einsums)

We can represent matrix multiplication with:
N

e on [
K

Explicit reduction is not
necessary M

I L
TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators I I" Sze and Emer

L02-14

Einstein Summation Notation (Einsums)

We can represent matrix multiplication with:
N

Zm,n) Ak’m X Bk’n K -
K

I L
TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators I I" Sze and Emer

L02-15

Operational Definition of an Einsum (ODE)

Simplifying to matrix-vector multiplication:

L = Ak,m X By

I L
TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators I I" Sze and Emer

L02-16

Operational Definition of an Einsum (ODE)

Einsum: Z,,, = A m| X B

Iteration Space: Cartesian product
of all legal coordinates in the Einsum

I L
TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators I I" Sze and Emer

L02-17

Operational Definition of an Einsum (ODE)

Einsum: Z,,, = Ay, X By

Iteration Space: [0,K) X [0, M)

I L
TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators I I" Sze and Emer

L02-18

Operational Definition of an Einsum (ODE)

Einsum: Z,,, = Ay, X By

Iteration Space: K x M

K
lteration Space Point: (4, 2)
000000
©o0o00o00 M
©ooo0oo0@o
000000
M ooco0o0o0o0

000000
000000
000000
Many ways to traverse iteration space

(processing order)

I L
TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators I I" Sze and Emer

L02-19

Operational Definition of an Einsum (ODE)

Einsum: Z,, = A, X By

Iteration Space: K X M

For each point (k,m) in the iteration space:
- Select the input values 4, ,, and By,

* Multiply (x) them together

« Update the output value 7.,

 Reduce (+) if necessary

I L
TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators I I" Sze and Emer

L02-20

Operational Definition of an Einsum (ODE)

Einsum defines Lm = Axm X By

— an iteration space over tensors

— what computation is done on and between tensors at each point in the iteration space
Traverse all points in space of all legal index values (iteration space)

— The size of space is the Cartesian product of number of values of the unique indices

(e.g., K*M) = amount of work that needs to be done!

At each point in iteration space:

— Calculate value on right hand side at specified indices for each operand (tensor)

— Assign value to operand at specified indices on left hand side

— Perform reduction across indices that appear on right-hand side but not left-hand side

Note: Einsum will be the input format of the workload to the modeling tools for this class

Illil- Sze and Emer

L02-21

Evaluating the Workload

(1) Describe the architecture (2) Develop the workload

Select from a library of components
and organize them by writing an
accelerator specification

Write the cascade, mapping, format,
and binding specifications

(3) Evaluate the
workload
Model the workload and
analyze with metrics like
number of computes,
memory traffic, and
compute intensity

(4) Compare

implementations (5) Optimize the design

I L
TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators I I" Sze and Emer

Analysis: What Compute is Required?

Einsum: Z,,, = Ay, X By

Iteration Space: K x M

A

One multiply (x) and reduce (+) per point in
the iteration space (excluding edge effects)

« K X M multiplies
« (K—1) x M adds

TeAAL and HiFiber: Precise and Conci

ise Descr|

iptions

of Tensor Algebra Accelerators

L02-22

Sze and Emer

Analysis: What is the Best-Case Compute Intensity?

« Compute Intensity is a measure of how much data reuse is

theoretically possible

— Higher compute intensity implies more data reuse feasible - potentially

less data movement required

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators

Global g ikl L2
Buffer
PE P ALU == fetch data to run

a MAC here

Normalized Enerqy Cost’

L02-23

ALU 1x (Reference)
0.5-10kB
NoC: 200 - 1000 PEs | PE | ALU
100 - 500 kB
DRAM ALU N 200%
eeeeeeee d from a commercial 65nm process
Illil- Sze and Emer

L02-24

Defining Compute Intensity (Cl)

(Standard) Compute Intensity: FLOPs / byte

However, this definition introduces questions:
* Is the multiply-accumulate (MAC) one operation or two?

 What is the bitwidth of our values?

Compute Intensity: Multiplications / value

I L
TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators I I" Sze and Emer

L02-25

Analysis: What is the Best-Case CI?

Compute Intensity: Multiplications / value

Multiplications : K X M

Best-case memory traffic:
K X M loads of A ,,,
* K loads of By,

« M stores of Z,,

I L
TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators I I" Sze and Emer

L02-26

Analysis: What is the Best-Case CI?

Compute Intensity: Multiplications / value

Lab 1 focuses on this
type of analysis of

Multiplications : K x M workloads (Einsum)

Best-case memory traffic. K x M + K+ M values

KXM
KXM+K+M

Best-case compute intensity:

I L
TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators I I" Sze and Emer

L02-27

Developing the Workload

(1) Describe the architecture (2) Develop the workload

Select from a library of components
and organize them by writing an
accelerator specification

Write the cascade, mapping, format,
and binding specifications

(3) Evaluate the

workload
Model thelworklogd a.nd _ (4) Compa_re (5) Optimize the design
analyze with metrics like implementations

number of computes,
memory traffic, and Al

I L
TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators I I" Sze and Emer

L02-28

Separation of Concerns

Cascade
of Einsums

/ Mapping \

I L
TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators I I" Sze and Emer

L02-29

Traversing the lteration Space

Can do so in any order

I L
TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators I I" Sze and Emer

L02-30

Traverse with Loop Nests

for k in range(K):
for m 1n range (M) :

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators

Zmlll+=l ALk, m]| *|IB[k
O 99999
00 00O0O0
© 0 0000
© 00 0 0 o
00000
© 0 0 0 0 0
000000
(OB © B O)

Lab 2 & 3 focuses
on traverse order
of iteration space

(mapping)

Sze and Emer

L02-31

Evaluating the Workload

(1) Describe the architecture (2) Develop the workload

Select from a library of components
and organize them by writing an
accelerator specification

Write the cascade, mapping, format,
and binding specifications

(3) Evaluate the
workload
Model the workload and
analyze with metrics like
number of computes,
memory traffic, and
compute intensity

(4) Compare

implementations (5) Optimize the design

I L
TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators I I" Sze and Emer

L02-32

Analysis: What is the Achieved Traffic?

for k in range(K):

for m 1in range (M) :

a reg = Alk, m]
b reg = B[k]
z reg = Z[m]
Z[m] += Al[k, m] * B[k]

Z[m] = z reg

I L
TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators I I" Sze and Emer

L02-33

Analysis: What is the Achieved Traffic?

for k in range(K):

for m 1in range (M) :

Ii=reg = Alk, m]
b reg = B[k]

z reg = Z[m]

Zz[m] +=|a reg|* Bl[k]

N
=
I

Z reg

I L
TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators I I" Sze and Emer

L02-34

Analysis: What is the Achieved Traffic?

for k in range(K):

for m 1in range (M) :

a reg = Alk, m]

b reg = B[k]

z reg = Z[m]

Zz[m] += a reg *|b reg

Z[m] = z reg

I L
TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators I I" Sze and Emer

L02-35

Analysis: What is the Achieved Traffic?

for k in range(K):

for m 1in range (M) :

a reg = Alk, m]
b reg = B[k]

z reg = Z[m]

z_reg|+= a reg * b reg

I L
TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators I I" Sze and Emer

L02-36

Exploit Stationarity

for k in range(K):

for m 1in range (M) :

a reg = Alk, m]

b reg = B[k]

z reg = Z[m]
z reg += a reg * b reg

Z[m] = z reg

I L
TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators I I" Sze and Emer

L02-37

Exploit Stationarity

for k in range(K):

b reg = B[k]
for m 1in range (M) :

a reg = Alk, m]
b—reg—=DB{kt
z reg = Z[m]
z reg += a reg * b reg

Z[m] = z reg

I L
TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators I I" Sze and Emer

L02-38

Analysis: What is the Achieved Traffic?

for k in range (K) :

Achieved memory traffic:

b reg = B[k]
for m in range (M) : » K X M loads of Akm

= Ak, m]

— - » K loads of B

z reg = Z[m]

z reg += a reg * b reg > (K - 1) X M loads of Zm
» K X M stores of Z,,

I L
TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators I I" Sze and Emer

L02-39

Analysis: What is the Achieved Traffic?

for k in range (X): Achieved memory traffic:
for m in range (M) :
Z[m] += A[k,m] * B[k] » K x M loads of Ay,

» K loads of By,

» (K—1) x M loads of Z,,
» K X M stores of Z,,

Loads and stores are always
derivable from the loop order

I L
TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators I I" Sze and Emer

L02-40

Analysis: What is the Achieved CI?

Multiplications: K X M

Achieved memory traffic: 3 X K x M — M + K

K XM
3XKXM-M+K

Achieved compute intensity:

I L
TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators I I" Sze and Emer

L02-41

Example: Best Case vs Achieved CI

K = 250; M =100

» Best Case CI » Achieved CI
K X M K X M B
KXM+K+M_ 3XKXM-M+K
250 x 100 250 x 100 B
250 x 100 + 250 + 100 3 x 250 x 100 — 100 + 250

0.99 Multiplications/value 0.33 Multiplications/value

I L
TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators I I" Sze and Emer

L02-42

Roofline Model

L=8
9 _ (8 MACs/cycle)
8 Multi/cycle
7 limited by
6 memory
3 bandwidth
30 Multi/cycle limited by
= 4 amount of compute
S 3 (parallelism)
2
1
0

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
Compute Intensity (multi/value)

Williams, Samuel, Andrew Waterman, and David Patterson. "Roofline: an insightful visual performance model for multicore architectures."
Communications of the ACM 52.4 (2009): 65-76.

Illil- Sze and Emer

L02-43

Roofline Model

» Roofline Model is a way to visualize throughput given
— Memory bandwidth, amount of parallelism, and computational intensity

— Tells you if more parallelism would help, or more memory bandwidth

» When memory bound, increasing number of lanes will not increase throughput - parallelism does not always
equal speed up in throughput

— Tells you how far you are from limit
» Away from limit due to overhead (e.g., stalls, instruction overhead, mapping limitations)

« Compute intensity

— Theoretical upper bound [max reuse] (best-case compute intensity) (computed in Lab 1)
— Actual implementation depends on processing order (amount of reuse exploited by hardware)

* Roofline model can be draw for each level of the memory hierarchy (though
typically for DRAM)

Illil- Sze and Emer

L02-44

Accelerator Design Methodology

(1) Describe the architecture (2) Develop the workload

Select from a library of components
and organize them by writing an
accelerator specification

Write the cascade, mapping, format,
and binding specifications

(3) Evaluate the

workload (4) Compare

implementations . :
Model the workload and (5) Optimize the design
analyze with metrics like
number of computes,
memory traffic, and

compute intensity

Write corresponding
specifications, normalize
hardware parameters,
and reevaluate

Incrementally modify one
or more specifications

I L
TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators I I" Sze and Emer

L02-45

Convolutional Neural Networks (CNNs)

Illil- Sze and Emer

L02-46

Applications of CNN

Computer Vision

I Speech Recognition

0+4 045 0+6 0+7 0+8] 1
]

Spectrogram l

LEE SEDOL
.. 00:01:00

Illil- Sze and Emer

L02-47

Convolutional Neural Networks

Modern Deep CNN: 5-1000 Layers

Low-Level High- Level
> Features > - % Features &Classes

1-3 Layers

Illil- Sze and Emer

L02-48

Depth of Network

Output:
“Volvo XC90”

Modified Image Source: [Lee, CACM 2011]

Illil- Sze and Emer

L02-49

Convolutional Neural Networks

f-—"’ Low-Level High-Level
N, > Features > -)m Features &Classes

/ \
I’ \\
4 S

Convolution| | Activation

A

|E-‘—-.i !

Illil- Sze and Emer

L02-50

Convolutional Neural Networks

Classes

Low-Level High-Level
> Features > -)m Features

Fully Activation
Connected N |:| I

Illil- Sze and Emer

L02-51

Convolutional Neural Networks

Optional layers in between
CONV and/or FC layers

ngh -Level
NORM g POOL Features Classes
Layer § Layer
’ “

/
/ \

4 Y

Normalization Pooling

Illil- Sze and Emer

L02-52

Convolutional Neural Networks

FC
Layer

CONV B NORM @ POOL @ CONV
Layer Layer | Layer @ Layer

Convolutions account for more
than 90% of overall computation,
dominating runtime and energy
consumption

Illil- Sze and Emer

filter* (weights)

Convolution (CONV) Layer

a plane of input activations
a.k.a. input feature map (fmap)

!

R|

l

«~ S —>

* also referred to as kernel

L02-53

Sze and Emer

Convolution (CONV) Layer

input fmap

filter (weights) ==

< S < W >
Element-wise
Multiplication

L02-54

Sze and Emer

L02-55

Convolution (CONV) Layer

input fmap output fmap

an output
| activation

filter (weights)

i ® |IN@

< S —> <€ W > <« Q_>
Element-wise Partial Sum (psum)
Multiplication Accumulation

Illil- Sze and Emer

L02-56

Convolution (CONV) Layer

input fmap output fmap

filter (weights) an output

Sliding Window Processing

Illil- Sze and Emer

Filter
(3x3)

Input
Feature
Map
(5x5)

2D Convolution Example

o -~ O -~ O

= N =N -

—

O N O N DN

Convolution (Stride 1)

W = =2 N W

- O W O N

Feature

Filter support: 3x3
Also referred to as the receptive field
(each output requires 9 multiplications™)

Output

Map

*assume no optimization for zeros

L02-57

Sze and Emer

Filter
(3x3)

Input
Feature
Map
(5x5)

2D Convolution Example

0O 1 0
1 1 1
0O 1 O
0 1 2
1 2 2
0 1 0
1 2 2
0O 1 0

W = =2 N W

- O W O N

Feature

Convolution (Stride 1)

Output

Map

L02-58

Sze and Emer

L02-59

2D Convolution Example

Convolution (Stride 1)

0 1 0

Filter 1 1 1

(3x3) 0 1 0

o1 2 3|2 7 8

Input 112 2 2fo0 Output
Feature Of1 0 1) 3 Feature

Map 1.2 2 10 Map

(5x5) 01 0 3 1

Illil- Sze and Emer

L02-60

2D Convolution Example

Convolution (Stride 1)

0 1 0
Filter 1 1 1
(3x3) 0 1 0
0 12 3 2 7 8 8
Input 1 212 2 0 Output
Feature 0O 1710 1 3 Feature
Map 1.2 2 10 Map
(5x5) 01 0 3 1

Illil- Sze and Emer

Filter
(3x3)

Input
Feature
Map
(5x5)

2D Convolution Example

0O 1 O
1 1 1
0O 1 O
0O 1 2
1 2 2
0O 1 0
1 2 2
0O 1 0

W = =2 N W

- O W O N

Feature

Convolution (Stride 1)

Output

Map

7 8 8
5

L02-61

Sze and Emer

L02-62

2D Convolution Example

Convolution (Stride 1)

0 1 0

Filter 1 1 1

(3x3) 0 1 0

01 2 3 2 7 8

Input 112 2 2|0 Output 5 6
Feature 01 0 1} 3 Feature

Map 112 2 1]0 Map

(5x5) 01 0 3 1

Illil- Sze and Emer

L02-63

2D Convolution Example

Convolution (Stride 1)

0 1 0
Filter 1 1 1
(3x3) 0 1 0
01 2 3 2 7 8
Input 1 2|2 2 0 Output 5 6 7
Feature O 110 1 3 Feature
Map 1 212 1 0 Map
(5x5) 01 0 3 1

Illil- Sze and Emer

2D Convolution Example

Convolution (Stride 1)

010
Filter T 1 1
(3x3) 0 1 0

01 2 3 2 7 8 8
Input 1.2 2 20 Output 5 6 7
Feature o1 0 1 3 Feature 6 5 7
Map 1 2 2 1 0 Map
(5x5) 0 1 0 3 1 (3x3)

Size of Size of Size of

Output Feature Map = (Input Feature Map — Filter + Stride) / Stride
of multiplications?

L02-64

Sze and Emer

Filter
(3x3)

Input
Feature
Map
(5x5)

2D Convolution Example

0O 1 0
1 1 1
0O 1 O
0 1 2
1 2 2
0 1 0
1 2 2
0O 1 0

W = =2 N W

- O W O N

Feature

Convolution (Stride 2)

Output

Map

L02-65

Sze and Emer

L02-66

2D Convolution Example

Convolution (Stride 2)

0 1 0

Filter 1 1 1

(3x3) 0 1 0

0 12 3 2 7 8

Input 1 212 2 0 Output
Feature 0O 1710 1 3 Feature

Map 1.2 2 10 Map

(5x5) 01 0 3 1

Illil- Sze and Emer

Filter
(3x3)

Input
Feature
Map
(5x5)

2D Convolution Example

0O 1 O
1 1 1
0O 1 O
0O 1 2
1 2 2
0O 1 0
1 2 2
0 1 0

W = =2 N W

- O W O N

Feature

Convolution (Stride 2)

Output

Map

7
6

8

L02-67

Sze and Emer

L02-68

2D Convolution Example

Convolution (Stride 2)

0 1 0
Filter 1 1 1
(3x3) 0 1 0
01 2 3 2 7 8
Input 1.2 2 2 0 Output 6 7
Feature O 110 1 3 Feature
Map 1 212 1 0 Map
(5x5) 0 100 3 1

Illil- Sze and Emer

2D Convolution Example

Convolution (Stride 2)

0 1 0
Filter 1 1 1
(3x3) 0 1 0
01 2 3 2 7 8
Input 1.2 2 20 Output 6 7
Feature o1 0 1 3 Feature
Map 1 2 2 1 0 Map
(5x5) 0 1 0 3 f (2x2)
Size of Size of Size of

Output Feature Map = (Input Feature Map — Filter + Stride) / Stride
of multiplications?

L02-69

Sze and Emer

2D Convolution Example

Convolution (Stride 3)

0 1 0
Filter 1 1 1
(3x3) 0 1 0

0 1 2|3 2 7
Input 1.2 2[2 0 Output
Feature 01 01 3 Feature
Map 1 2 2 1 0 Map
(5x5) 0 1.0 3 1 (1x1)

Size of Size of Size of

Output Feature Map = (Input Feature Map — Filter + Stride) / Stride
of multiplications?

L02-70

Sze and Emer

L02-71

Impact of Stride on Convolution

Stride > 1 is equivalent to downsampling the
output feature map when Stride =1

Stride 1 Stride 2 Stride 3
7 8 8 7 8 7
Output 5 6 7 Output 6 7 Output
Feature 6 5 7 Feature Feature
Map Map Map

(3x3) (2x2) (1x1)

Illil- Sze and Emer

L02-72

Zero Padding

» The size of the output shrinks relative to the input
« Use zero padding to control the size of the output

« Can set padding based on filter size such that the output size is equal to
original the input size

000 00O 0O
PN R e e o123 2B
12121213 01 22200
01013~0010130
12121110 0122100
Sl lolals o103 1B

000 00O 00O

Illil- Sze and Emer

Filter
(3x3)

Input
Feature
Map
(7X7)

2D Convolution Example

Convolution (Stride 1) + zero padding

0
1
0

o O O O O o o
c O -~ O »~ O O

1
1
1

S =~ N =~ N =~ O

o - O

S O N O N N O

S W = =~ N W O

S -~ O W O N O

O O O O o o o

Output

Feature

Map
(5x5)

N WO W W DN

W o o1 N O

S o1 O 0

OO N N o ©

A~ o0 A B O

L02-73

Sze and Emer

L02-74

Zero Padding in PyTorch

padding (python:int or tuple, optional) added to input. Default: 0

— https://pytorch.org/docs/stable/nn.htmi#padding-layers
— Ex: padding=1, pad 1 to the top, bottom, right, and left.

— Ex. padding=[1,2], pad 1 to the top and bottom, pad 2 to the right and left
Default: No zero padding

— filter is RxS and input is HxW, and stride U

— output is (H-R+U)/U x (W-S+U)/U

Padding=[(R-1)/2, (S-1)/2]: zero padding so that output remains the same for U=1
— filter is RxS and input is HXW, and stride U

— output is ceil(H/U) x ceil(W/U)

Padding is not always explicitly defined, but can be inferred from the size of the feature map
— Deep networks use padding to prevent feature maps from shrinking

Different frameworks can use different types of padding

Illil- Sze and Emer

https://pytorch.org/docs/stable/nn.html#padding-layers
https://pytorch.org/docs/stable/nn.html#padding-layers
https://pytorch.org/docs/stable/nn.html#padding-layers
https://pytorch.org/docs/stable/nn.html#padding-layers

L02-75

Depth of Network: Convolution

As you go deeper into the network, more pixels contribute to each activation.

Example: 3x3 filter

o[1]12]3]2
1122210 7|88
ol1]0]|1]3 5|6 |7 31
112(2|1]0 6|57
o[1]0]3]|1

Input to Layer 1 Layer 2 Layer 3

Feature maps of deep layers typically give higher level features

Illil- Sze and Emer

L02-76

Convolution (CONV) Layer

input fmap

filter output fmap

<—S—> < W > <_Q_>

Many Input Channels (C)

e.g., For Layer 1, C=3 for the red, green, and blue components of an image

Illil- Sze and Emer

LO2-77

Convolution (CONV) Layer

input fma

~many P P output fmap
filters (M) ¢’
i | ® | o’
Rl A
| 1s | B

«~ § — < W > «— Q—

® Many
& Output Channels (M)*

e.g., # of output channels (M,) of Layer 1 becomes # of
UM B input channels (C,) of Layer 2
<8 Note: # of filters often referred to as width of network

I | 8]
I'ii *some works use K rather than M Sze and Emer

L02-78

Convolution (CONV) Layer

Many
Input fmaps (N) Many
flters e OUtp“;t fmaps (N)
)
R|
|1
«~ S —

Illil- Batch Size (N) Sze and Emer

L02-79

CNN Decoder Ring

* N — Number of input fmaps/output fmaps (batch size)

 C — Number of channels in input fmaps (activations) & filters (weights)
* H - Height of input fmap (activations)

W — Width of input fmap (activations)

R - Height of filter (weights)

« S — Width of filter (weights)

* M — Number of channels in output fmaps (activations)

* P — Height of output fmap (activations)

* Q - Width of output fmap (activations)

« U - Stride of convolution

These variables define the rank and shape of the various tensors (input fmap, filter, output fmap)

Illil- Sze and Emer

L02-80

Input Feature Map (fmap) Tensor

Input fmap (activations)

C53
d In this example, the input feature map has

three ranks* named C, H and W

H=3

The rank shapes are C=3, H=3, and W=3

|[C][H][W] *technically also has fourth rank N, with shape of N=1

Illil- Sze and Emer

CONV Layer Tensor Computation

Output fmap (O)
Biases (B) Filter weights (W)

¢C'1R15’1 v

o[n][m][p][q

b[m+TT i[n)[d][Up + r][Uq + 5] x £[m][d][r][s]

Input fmap (I)

c=0 r=0 s=0
Og-n.<N,Ogm<A-I,ng<P=0<_:q<Q,
P=(H-R+U)/UQ=W-5+U)/U.

Shape Parameter | Description
N batch size of 3-D fmaps
M # of 3-D filters / # of ofmap channels
C # of ifmap/filter channels
H/W ifmap plane height/width
R/S filter plane height/width (= H or W in FC)

p/q

ofmap plane height/width (=1 in FC)

L02-81

Sze and Emer

L02-82

Einstein Notation (Einsum)

Algebraic Notation

o[n|[m][p]lq] = blm] + i[n][c][Up +7][Uq + s] x £[m][c][r][s]

Einsum Notation

On,m,p,q

=By + I‘n,C,UXp+T,UXq+SX m,c,r,s
Einsum does not enforce any computational order
(function in Numpy, Pytorch and Tensorflow)

[Einstein, Annalen der Physike 1916], [Kjolstad, TACO, OOPSLA 2017], [Parashar, Timeloop, ISPASS 2019]

Illil- Sze and Emer

L02-83

CONYV Layer Implementation

Many

Naive 7-layer for-loop implementation: Input fmaps (N) Many

filters & Outph:;t frnaps’ (N)
Fid O
for n in [0..N): i EE e 5 Tl IF

f i 0..M):
o 2oinq[in [%. .0): for each output fmap value

convolve
a window
and apply
activation

-8 — W — Q—

for p in [@..P):

o[n][m]lpllal = B[m];
for ¢ in [0..C):
for r in [@..R):
for s in [0..S):

o[n](m1(p1la] += I[n][c][Up+r][Uq+s]
< F[n][c][r]0s];
L o[nln][p][a] = Activation(0[n][n][p][a]);

Note that loop nest enforces an order - Einsum is more general!

Illil- Sze and Emer

Fully Connected Layer

LLLLLL

L02-85

Fully-Connected (FC) Layer

Fully-Connected: all i/p neurons connected to all o/p neurons

Sparsely-Connected

Fully-Connected
v Lol

Hidden
i Layer

Sze and Emer

L02-86

FC Layer — from CONV Layer POV

filters

c/

input fmaps

output fmaps

M-,
A
1

Sze and Emer

L02-87

Fully Connected Computation

filters input fmaps output fmaps
st

1
< w >
e — Variant of CONV layer with:
R ==
H == \\V
M B
< W >

Illil- Sze and Emer

L02-88

Fully Connected Computation

filters input fmaps output fmaps

Om = Ic,h,w X Fmechw

Einsum of FC computation
(does not enforce processing order)

Illil- Sze and Emer

Fully Connected Computation

int i[C][H][W]; # Input activations
int F[M][C][H][W]; # Filter weights
int o[M]; # Output activations

for m in [0, M): Should be bias, which
o[m] = @-, we will ignore for
’ simplicity

for c in [0, C):
e ThSiniLossh)
for w in [0, W):
o[m] += i[c][h][w]*f[m][c][h][w]

4

Loop nest of FC computation
(enforces some processing order)

L02-89

Sze and Emer

L02-90

Convert FC Compute to Matrix-Vector Multiply

Flatten C, H, W ranks to CHW

int i[C][H][W]; # Input activations
int f[M][C][H][W]; # Filter weights
int o[M]; # Output activations

for m in [0, M):
o[m] = ©;
for c in [0, C):
for h in [0, H):
for w in [0, W):
o[m] += i[c]J[h][w]*f[m][cI[h]I

]

7

int i[CHW]; # Input activations
int f[M][CHW]; # Filter weights
int o[M]; # Output activations

for m in [0, M):
o[m] = ©;
for in [0, CHW):
o[m] += i[chw]*f[CHW*m +]

Illil- Sze and Emer

L02-91

Convert FC Compute to Matrix-Vector Multiply

int i[C][H][W];

int F[MJ[C][H][W];

int o[M];

for m in [0, M):

Input activations
Filter weights
Output activations

int i[CHW];

int f[M][CHW];

int o[M];

for m in [0, M):

Input activations
Filter weights
Output activations

7

o[m] = ©; o[m] = @;
for c in [0, C): For in [0, CHW):
ORI IN0% el = o[m] += i[chw]*f[m][
for w in [0, W):
o[m] += i[c]J[h][w]*f[m][c][h][w |7
filters input fmaps output fmaps Filters Input fmaps Output fmaps
— CHW—— 1

—— L —>
2

—

Sze and Emer

FC Compute as Matrix-Vector Multiply

Multiply all inputs in all channels by a weight and sum

Filters

<— CHW—>

Input fmaps

CHW

«1~>

Output fmaps

«~1—

L02-92

Sze and Emer

L02-93

FC Compute as Matrix-Vector Multiply

Multiply all inputs in all channels by a weight and sum

Filters

<— CHW—>

X

(increment

Input fmaps

N

CHW

«1~>

)

Output fmaps
«~1—
27

partial sum

Sze and Emer

L02-94

FC Compute as Matrix-Vector Multiply

Multiply all inputs in all channels by a weight and sum

Filters

<— CHW—>

EH

X

(increment

Input fmaps

N

CHW

«1~>

)

Output fmaps
«~1—
27

partial sum

Sze and Emer

L02-95

FC Compute as Matrix-Vector Multiply

Multiply all inputs in all channels by a weight and sum
(increment)

Filters

<— CHW—>

X

Input fmaps Output fmaps
«~1—
—] completed sum
«~1~>
CHW — M

Illil- Sze and Emer

L02-96

FC Compute as Matrix-Vector Multiply

Multiply all inputs in all channels by a weight and sum

Filters

<— CHW—>

X

Input fmaps Output fmaps
«~1—
—]
«~1~>
CHW — M

Illil- Sze and Emer

L02-97

FC Compute as Matrix-Vector Multiply

Multiply all inputs in all channels by a weight and sum
(increment m)

Filters Input fmaps Output fmaps

«— CHW —> 1

] <1 —

N

X cHw M

v

Illil- Sze and Emer

L02-98

Einsum for Flattened FC

Original Flattened

Ic,h,w - IH><W><C+W><h+W - Ichw

— —

m,c,h,w MHXWXc+W Xh+w m,chw

Om = Ic,h,w X M'mechw Om = lcpw X m,chw

Illil- Sze and Emer

Einsum for FC as Matrix Vector

Om = Ichw X

Filters

<— CHW—

Input fmaps

CHW

1>

m,chw

Output fmaps

«~1—

L02-99

Sze and Emer

L02-100

FC Layer — Batch (N)

filters input fmaps
output fmaps
C»z"
Nt M
M
! E
)11 ik

Illil- Sze and Emer

FC Compute > Matrix-Matrix Multiply

On,m = In,chw X F m,chw
Filters Input fmaps Output fmaps
<— CHW —> < N N < N >
CHW
M X M

After flattening, having a batch size of N turns the
matrix-vector multiply into a matrix-matrix multiply

L02-101

Illil- Sze and Emer

L02-102

FC Compute > Matrix-Matrix Multiply

On,m — In,chw X F m,chw

reduction on rank chw

Typical matrix multiplication notation

Cm,n — Am,k X Bk,n

reduction on rank k

Note: for Einsum, the order of ranks does not matter

Illil- Sze and Emer

	Default Section
	Slide 1: 6.5930/1 Hardware Architectures for Deep Learning Overview of Deep Neural Network Components
	Slide 2: Outline of Today’s Lecture

	Overview of Workload to Hardware
	Slide 3
	Slide 4: Accelerator Design Methodology
	Slide 5: Describing the Hardware Architecture
	Slide 6: Architecture for the Simple End-to-End Example
	Slide 7: Developing the Workload
	Slide 8: Separation of Concerns
	Slide 9: Tensor Algebra
	Slide 10: Tensor Terminology
	Slide 11: Matrix Multiplication
	Slide 12: Einstein Summation Notation (Einsums)
	Slide 13: Einstein Summation Notation (Einsums)
	Slide 14: Einstein Summation Notation (Einsums)
	Slide 15: Operational Definition of an Einsum (ODE)
	Slide 16: Operational Definition of an Einsum (ODE)
	Slide 17: Operational Definition of an Einsum (ODE)
	Slide 18: Operational Definition of an Einsum (ODE)
	Slide 19: Operational Definition of an Einsum (ODE)
	Slide 20: Operational Definition of an Einsum (ODE)
	Slide 21: Evaluating the Workload
	Slide 22: Analysis: What Compute is Required?
	Slide 23: Analysis: What is the Best-Case Compute Intensity?
	Slide 24: Defining Compute Intensity (CI)
	Slide 25: Analysis: What is the Best-Case CI?
	Slide 26: Analysis: What is the Best-Case CI?
	Slide 27: Developing the Workload
	Slide 28: Separation of Concerns
	Slide 29: Traversing the Iteration Space
	Slide 30: Traverse with Loop Nests
	Slide 31: Evaluating the Workload
	Slide 32: Analysis: What is the Achieved Traffic?
	Slide 33: Analysis: What is the Achieved Traffic?
	Slide 34: Analysis: What is the Achieved Traffic?
	Slide 35: Analysis: What is the Achieved Traffic?
	Slide 36: Exploit Stationarity
	Slide 37: Exploit Stationarity
	Slide 38: Analysis: What is the Achieved Traffic?
	Slide 39: Analysis: What is the Achieved Traffic?
	Slide 40: Analysis: What is the Achieved CI?
	Slide 41: Example: Best Case vs Achieved CI
	Slide 42: Roofline Model
	Slide 43: Roofline Model
	Slide 44: Accelerator Design Methodology

	Overview of DNNs
	Slide 45
	Slide 46: Applications of CNN
	Slide 47: Convolutional Neural Networks
	Slide 48: Depth of Network
	Slide 49: Convolutional Neural Networks
	Slide 50: Convolutional Neural Networks
	Slide 51: Convolutional Neural Networks
	Slide 52: Convolutional Neural Networks
	Slide 53: Convolution (CONV) Layer
	Slide 54: Convolution (CONV) Layer
	Slide 55: Convolution (CONV) Layer
	Slide 56: Convolution (CONV) Layer
	Slide 57: 2D Convolution Example
	Slide 58: 2D Convolution Example
	Slide 59: 2D Convolution Example
	Slide 60: 2D Convolution Example
	Slide 61: 2D Convolution Example
	Slide 62: 2D Convolution Example
	Slide 63: 2D Convolution Example
	Slide 64: 2D Convolution Example
	Slide 65: 2D Convolution Example
	Slide 66: 2D Convolution Example
	Slide 67: 2D Convolution Example
	Slide 68: 2D Convolution Example
	Slide 69: 2D Convolution Example
	Slide 70: 2D Convolution Example
	Slide 71: Impact of Stride on Convolution
	Slide 72: Zero Padding
	Slide 73: 2D Convolution Example
	Slide 74: Zero Padding in PyTorch
	Slide 75: Depth of Network: Convolution
	Slide 76: Convolution (CONV) Layer
	Slide 77: Convolution (CONV) Layer
	Slide 78: Convolution (CONV) Layer
	Slide 79: CNN Decoder Ring
	Slide 80: Input Feature Map (fmap) Tensor
	Slide 81: CONV Layer Tensor Computation
	Slide 82: Einstein Notation (Einsum)
	Slide 83: CONV Layer Implementation

	Other Operations
	Slide 84: Fully Connected Layer
	Slide 85: Fully-Connected (FC) Layer
	Slide 86: FC Layer – from CONV Layer POV
	Slide 87: Fully Connected Computation
	Slide 88: Fully Connected Computation
	Slide 89: Fully Connected Computation
	Slide 90: Convert FC Compute to Matrix-Vector Multiply
	Slide 91: Convert FC Compute to Matrix-Vector Multiply
	Slide 92: FC Compute as Matrix-Vector Multiply
	Slide 93: FC Compute as Matrix-Vector Multiply
	Slide 94: FC Compute as Matrix-Vector Multiply
	Slide 95: FC Compute as Matrix-Vector Multiply
	Slide 96: FC Compute as Matrix-Vector Multiply
	Slide 97: FC Compute as Matrix-Vector Multiply
	Slide 98: Einsum for Flattened FC
	Slide 99: Einsum for FC as Matrix Vector
	Slide 100: FC Layer – Batch (N)
	Slide 101: FC Compute  Matrix-Matrix Multiply
	Slide 102: FC Compute  Matrix-Matrix Multiply

