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Outline of Today’s Lecture

• Accelerator Design Methodology: From Workload to Hardware

– Einsums

– Roofline Models

• DNN Workloads
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From Workload to Hardware

Slides from “TeAAL and HiFiber: Precise and Concise Descriptions of (Sparse) Tensor Algebra Accelerators”  

https://teaal.csail.mit.edu/ 

https://teaal.csail.mit.edu/
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Accelerator Design Methodology

(1) Describe the architecture (2) Develop the workload

(3) Evaluate the 

workload

(4) Compare 

implementations
(5) Optimize the design

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators

(described in TeAAL [Nayak, MICRO 2023])
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Describing the Hardware Architecture

(1) Describe the architecture

Select from a library of components 

and organize them by writing an 

accelerator specification

(2) Develop the workload

(3) Evaluate the 

workload

(4) Compare 

implementations
(5) Optimize the design

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators
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Architecture for the Simple End-to-End Example

DRAM

× +

REG PE

Basic hardware architecture for 

tensor algebra operations:

 PE: ALU and local register files

 Memory: DRAM for global 

storage

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators
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Developing the Workload

(1) Describe the architecture

Select from a library of components 

and organize them by writing an 

accelerator specification

(2) Develop the workload

Write the cascade, mapping, format, 

and binding specifications

(3) Evaluate the 

workload

(4) Compare 

implementations
(5) Optimize the design

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators
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Separation of Concerns

Cascade

of Einsums

Mapping

Format

Binding

Fi
ner-g

ra
in

 d
ecisi

o
ns

M
ore concise
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Tensor Algebra

Tensors are multi-dimensional arrays of data

Many applications can be framed as tensor algebra

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators

9

0D Tensor / Scalar

2 0 0

1 8 -4

-5 0 -1

2D Tensor/ Matrix

2 0 0

1 8 -4

-5 0 -1

2 0 0

1 8 -4

-5 0 -1

2 0 0

1 8 -4

-5 0 -1

3D Tensor / Cube 4D Tensor 5D Tensor

1D Tensor / Vector

1 0 -5 3 2

6

Deep Learning
Internet &

Social media
Circuit 

Simulation
Problems in 

Statistics

Computational 
Chemistry

Recommendation 
systems

Graphics courtesy of Hadi Asghari-Moghaddam
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Tensor Terminology

Scalar: 0 ranks Vector: 1 rank

Matrix: 2 ranks Cube: 3 ranks

In this class, we used the term “rank” to denote 

the dimension

Properties of a Tensor:

Number of Ranks = Number of dimensions 

Rank Shape = Number of elements in each rank

Size of Tensor = Total number of elements in 

tensor (product of the shape of each rank)
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Matrix Multiplication

A Z

B

M

N

K

K

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators

Properties of B tensor:

Number of Ranks = 2

Rank names: N and K

Rank shape: N and K

Size of Tensor = N x K

Shape of Tensor = [N,K]

Properties of Z tensor:

Number of Ranks = 2

Rank names: M and N

Rank shape: M and N

Size of Tensor = M x N

Shape of Tensor = [M,N]

Properties of A tensor:

Number of Ranks = 2

Rank names: M and K

Rank shape*: M and K

Size of Tensor = M x K

Shape of Tensor = [M,K]

*In general shape and name same, but 

there are some exceptions we will see 
later (e.g., in attention of transformer)
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Einstein Summation Notation (Einsums)

We can represent matrix multiplication with:

  𝑍𝑚,𝑛 = 𝐴𝑘,𝑚  ×  𝐵𝑘,𝑛

With implicit reduction (sum) 

over K A Z

B

M

N

K

K

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators
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Einstein Summation Notation (Einsums)

We can represent matrix multiplication with:

  𝑍𝑚,𝑛 = σ𝑘 𝐴𝑘,𝑚  ×  𝐵𝑘,𝑛

Explicit reduction is not

necessary A Z

B

M

N

K

K

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators
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Einstein Summation Notation (Einsums)

We can represent matrix multiplication with:

  𝑍𝑚,𝑛 = 𝐴𝑘,𝑚  ×  𝐵𝑘,𝑛

A Z

B

M

N

K

K

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators
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Operational Definition of an Einsum (ODE)

Simplifying to matrix-vector multiplication:

  𝑍𝑚 = 𝐴𝑘,𝑚  ×  𝐵𝑘

A Z

B

M

K

K

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators
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Operational Definition of an Einsum (ODE)

Einsum: 𝑍𝑚 = 𝐴𝑘,𝑚  ×  𝐵𝑘

Iteration Space: Cartesian product 

of all legal coordinates in the Einsum

A Z

B

M

K

K

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators
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Operational Definition of an Einsum (ODE)

Einsum: 𝑍𝑚 = 𝐴𝑘,𝑚  ×  𝐵𝑘

Iteration Space: 0, 𝐾 ×  [0, 𝑀)

A Z

B

M

K

K

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators
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Operational Definition of an Einsum (ODE)

Einsum: 𝑍𝑚 = 𝐴𝑘,𝑚  ×  𝐵𝑘

Iteration Space: 𝐾 ×  𝑀

A Z

B

M

K

K

M

K
Iteration Space Point: (4, 2)

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators

Many ways to traverse iteration space 

(processing order)
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Operational Definition of an Einsum (ODE)

Einsum: 𝑍𝑚 = 𝐴𝑘,𝑚  ×  𝐵𝑘

Iteration Space: 𝐾 ×  𝑀

For each point 𝑘, 𝑚  in the iteration space:

• Select the input values 𝐴𝑘,𝑚 and 𝐵𝑘

• Multiply (×) them together

• Update the output value 𝑍𝑚

• Reduce (+) if necessary

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators
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Operational Definition of an Einsum (ODE)

• Einsum defines 

– an iteration space over tensors 

– what computation is done on and between tensors at each point in the iteration space

• Traverse all points in space of all legal index values (iteration space) 

– The size of space is the Cartesian product of number of values of the unique indices 

(e.g., K*M) → amount of work that needs to be done!

• At each point in iteration space: 

– Calculate value on right hand side at specified indices for each operand (tensor)

– Assign value to operand at specified indices on left hand side 

– Perform reduction across indices that appear on right-hand side but not left-hand side

• Note: Einsum will be the input format of the workload to the modeling tools for this class

𝑍𝑚 = 𝐴𝑘,𝑚  ×  𝐵𝑘
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Evaluating the Workload

(1) Describe the architecture

Select from a library of components 

and organize them by writing an 

accelerator specification

(2) Develop the workload

Write the cascade, mapping, format, 

and binding specifications

(3) Evaluate the 

workload

Model the workload and 

analyze with metrics like 

number of computes, 

memory traffic, and 

compute intensity

(4) Compare 

implementations
(5) Optimize the design

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators
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Analysis: What Compute is Required?

Einsum: 𝑍𝑚 = 𝐴𝑘,𝑚  ×  𝐵𝑘

Iteration Space: 𝐾 ×  𝑀

One multiply (×) and reduce (+) per point in

the iteration space (excluding edge effects)

• 𝐾 ×  M multiplies

• 𝐾 − 1  ×  M adds

M

K

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators
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Analysis: What is the Best-Case Compute Intensity?

• Compute Intensity is a measure of how much data reuse is 

theoretically possible

– Higher compute intensity implies more data reuse feasible → potentially 

less data movement required

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators

DRAM 
Global 
Buffer 

PE 

PE PE 

ALU fetch data to run  

a MAC here 

ALU 

Buffer ALU 

RF ALU 

Normalized Energy Cost* 

200× 

6× 

PE ALU 2× 

1× 

1× (Reference) 

DRAM ALU 

0.5 – 1.0 kB 

100 – 500 kB 

NoC: 200 – 1000 PEs 

* measured from a commercial 65nm process 
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Defining Compute Intensity (CI)

(Standard) Compute Intensity: FLOPs / byte

However, this definition introduces questions:

• Is the multiply-accumulate (MAC) one operation or two?

• What is the bitwidth of our values?

Compute Intensity: Multiplications / value

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators
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Analysis: What is the Best-Case CI?

Compute Intensity: Multiplications / value

Multiplications : 𝐾 ×  𝑀

Best-case memory traffic:

• 𝐾 ×  𝑀 loads of 𝐴𝑘,𝑚

• 𝐾 loads of 𝐵𝑘

• 𝑀 stores of 𝑍𝑚

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators
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Analysis: What is the Best-Case CI?

Compute Intensity: Multiplications / value

Multiplications : 𝐾 ×  𝑀

Best-case memory traffic: 𝐾 ×  𝑀 + K + M values

Best-case compute intensity:   
𝐾 × 𝑀

𝐾 × 𝑀 + K + M

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators

Lab 1 focuses on this 

type of analysis of 

workloads (Einsum)
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Developing the Workload

(1) Describe the architecture

Select from a library of components 

and organize them by writing an 

accelerator specification

(2) Develop the workload

Write the cascade, mapping, format, 

and binding specifications

(3) Evaluate the 

workload

Model the workload and 

analyze with metrics like 

number of computes, 

memory traffic, and AI

(4) Compare 

implementations
(5) Optimize the design

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators
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Separation of Concerns

Cascade

of Einsums

Mapping

Format

Binding

Fi
ner-g

ra
in

 d
ecisi

o
ns

M
ore concise

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators
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Traversing the Iteration Space

Can do so in any order

M

K

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators
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Traverse with Loop Nests

for k in range(K):

    for m in range(M):

        Z[m] += A[k, m] * B[k]

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators

Lab 2 & 3 focuses 

on traverse order 

of iteration space 

(mapping)
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Evaluating the Workload

(1) Describe the architecture

Select from a library of components 

and organize them by writing an 

accelerator specification

(2) Develop the workload

Write the cascade, mapping, format, 

and binding specifications

(3) Evaluate the 

workload

Model the workload and 

analyze with metrics like 

number of computes, 

memory traffic, and 

compute intensity

(4) Compare 

implementations
(5) Optimize the design

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators
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Analysis: What is the Achieved Traffic?

for k in range(K):

    for m in range(M):

        a_reg = A[k, m]

        b_reg = B[k]

        z_reg = Z[m]

        Z[m] += A[k, m] * B[k]

        Z[m] = z_reg

DRAM

× +

REG PE

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators
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Analysis: What is the Achieved Traffic?

for k in range(K):

    for m in range(M):

        a_reg = A[k, m]

        b_reg = B[k]

        z_reg = Z[m]

        Z[m] += a_reg * B[k]

        Z[m] = z_reg

DRAM

REG PE

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators

× +
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Analysis: What is the Achieved Traffic?

for k in range(K):

    for m in range(M):

        a_reg = A[k, m]

        b_reg = B[k]

        z_reg = Z[m]

        Z[m] += a_reg * b_reg

        Z[m] = z_reg

DRAM

× +
REG PE

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators
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Analysis: What is the Achieved Traffic?

for k in range(K):

    for m in range(M):

        a_reg = A[k, m]

        b_reg = B[k]

        z_reg = Z[m]

        z_reg += a_reg * b_reg

        Z[m] = z_reg

DRAM

× +
REG PE

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators
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Exploit Stationarity

for k in range(K):

    for m in range(M):

        a_reg = A[k, m]

        b_reg = B[k]

        z_reg = Z[m]

        z_reg += a_reg * b_reg

        Z[m] = z_reg

DRAM

× +
REG PE

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators
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Exploit Stationarity

for k in range(K):

    b_reg = B[k]

    for m in range(M):

        a_reg = A[k, m]

        b_reg = B[k]

        z_reg = Z[m]

        z_reg += a_reg * b_reg

        Z[m] = z_reg

DRAM

× +
REG PE

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators
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Analysis: What is the Achieved Traffic?

for k in range(K):

  b_reg = B[k]

  for m in range(M):

    a_reg = A[k, m]

    z_reg = Z[m]

    z_reg += a_reg * b_reg

    Z[m] = z_reg

Achieved memory traffic:

 𝐾 ×  M loads of 𝐴𝑘,𝑚

 𝐾 loads of 𝐵𝑘

 𝐾 − 1  ×  𝑀 loads of 𝑍𝑚

 𝐾 × 𝑀 stores of 𝑍𝑚

DRAM

× +

REG PE

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators
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Analysis: What is the Achieved Traffic?

for k in range(K):

  for m in range(M):

    Z[m] += A[k,m] * B[k]

Achieved memory traffic:

 𝐾 ×  M loads of 𝐴𝑘,𝑚

 𝐾 loads of 𝐵𝑘

 𝐾 − 1  ×  𝑀 loads of 𝑍𝑚

 𝐾 × 𝑀 stores of 𝑍𝑚

Loads and stores are always 

derivable from the loop order 

DRAM

× +

REG PE

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators
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Analysis: What is the Achieved CI?

Multiplications: 𝐾 ×  M

Achieved memory traffic: 3 ×  𝐾 ×  𝑀 − 𝑀 + 𝐾

Achieved compute intensity:   
𝐾 × M

3 × 𝐾 × 𝑀 −𝑀+𝐾 

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators
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Example: Best Case vs Achieved CI

 Best Case CI

𝐾 ×  M

𝐾 ×  M +  K +  M
=

250 ×  100

250 ×  100 + 250 + 100
=

𝟎. 𝟗𝟗 𝑴𝒖𝒍𝒕𝒊𝒑𝒍𝒊𝒄𝒂𝒕𝒊𝒐𝒏𝒔/𝒗𝒂𝒍𝒖𝒆

 Achieved CI

𝐾 ×  M 

3 ×  𝐾 ×  𝑀 − 𝑀 + 𝐾 
=

250 ×  100

3 ×  250 ×  100 − 100 + 250
=

𝟎. 𝟑𝟑 𝑴𝒖𝒍𝒕𝒊𝒑𝒍𝒊𝒄𝒂𝒕𝒊𝒐𝒏𝒔/𝒗𝒂𝒍𝒖𝒆

𝐾 = 250;  𝑀 = 100

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators
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Roofline Model

0

1

2

3

4

5

6

7

8

9

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

M
u

lt
i/
C

y
c
le

Compute Intensity (multi/value)

Multi/cycle limited by 

amount of compute 
(parallelism)

Multi/cycle 

limited by 
memory 

bandwidth

Williams, Samuel, Andrew Waterman, and David Patterson. "Roofline: an insightful visual performance model for multicore archi tectures." 

Communications of the ACM 52.4 (2009): 65-76.

L=8

(8 MACs/cycle)
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Roofline Model

• Roofline Model is a way to visualize throughput given 

– Memory bandwidth, amount of parallelism, and computational intensity 

– Tells you if more parallelism would help, or more memory bandwidth

• When memory bound, increasing number of lanes will not increase throughput → parallelism does not always 

equal speed up in throughput

– Tells you how far you are from limit 

• Away from limit due to overhead (e.g., stalls, instruction overhead, mapping limitations)

• Compute intensity

– Theoretical upper bound [max reuse] (best-case compute intensity) (computed in Lab 1)

– Actual implementation depends on processing order (amount of reuse exploited by hardware)

• Roofline model can be draw for each level of the memory hierarchy (though 

typically for DRAM)
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Accelerator Design Methodology

(1) Describe the architecture

Select from a library of components 

and organize them by writing an 

accelerator specification

(2) Develop the workload

Write the cascade, mapping, format, 

and binding specifications

(3) Evaluate the 

workload

Model the workload and 

analyze with metrics like 

number of computes, 

memory traffic, and 

compute intensity

(4) Compare 

implementations

Write corresponding 

specifications, normalize 

hardware parameters, 

and reevaluate

(5) Optimize the design

Incrementally modify one 

or more specifications

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators
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Convolutional Neural Networks (CNNs)
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Applications of CNN
Computer Vision Speech Recognition

Game Play Medical

Spectrogram
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Convolutional Neural Networks

Modern Deep CNN: 5 – 1000 Layers

Classes
FC

Layer

CONV

Layer

Low-Level 

Features
CONV

Layer

High-Level 

Features…

1 – 3 Layers
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Depth of Network

Input:
Image

Output:
“Volvo XC90”

Modified Image Source: [Lee, CACM 2011]

Low Level Features High Level Features
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Convolutional Neural Networks

Classes
FC

Layer

CONV

Layer

Low-Level 

Features
CONV

Layer

High-Level 

Features…

Convolution Activation

×
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Convolutional Neural Networks

Classes
FC

Layer

CONV

Layer

Low-Level 

Features
CONV

Layer

High-Level 

Features…

Fully

Connected

Activation

×
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Convolutional Neural Networks

Classes
FC

Layer

CONV

Layer

CONV

Layer

High-Level 

Features

Optional layers in between 

CONV and/or FC layers

NORM 

Layer

POOL 

Layer

Normalization Pooling
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Convolutional Neural Networks

Classes

High-Level 

Features
FC

Layer

CONV

Layer

CONV

Layer

NORM 

Layer

POOL 

Layer

Convolutions account for more 

than 90% of overall computation, 

dominating runtime and energy 

consumption
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Convolution (CONV) Layer

R

S

H

a plane of input activations

a.k.a. input feature map (fmap)

filter* (weights)

W

* also referred to as kernel
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R

filter (weights)

Convolution (CONV) Layer

input fmap

S

Element-wise
Multiplication

H

W
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R

filter (weights)

S

Convolution (CONV) Layer

P

Q

Partial Sum (psum)
Accumulation

input fmap output fmap

Element-wise
Multiplication

H

W

an output 

activation
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H
R

filter (weights)

S

Convolution (CONV) Layer

P

Sliding Window Processing

input fmap

an output 

activation

output fmap

W Q
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2D Convolution Example

0 1 0

1 1 1

0 1 0

Filter

(3x3)

Input

Feature 

Map

(5x5)

Output

Feature 

Map

0 1 2 3 2

1 2 2 2 0

0 1 0 1 3

1 2 2 1 0

0 1 0 3 1

Convolution (Stride 1)

Filter support: 3x3

Also referred to as the receptive field

(each output requires 9 multiplications*)

*assume no optimization for zeros
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2D Convolution Example

0 1 0

1 1 1

0 1 0

0 1 2 3 2

1 2 2 2 0

0 1 0 1 3

1 2 2 1 0

0 1 0 3 1

Filter

(3x3)

Input

Feature 

Map

(5x5)

Output

Feature 

Map

7

Convolution (Stride 1)
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2D Convolution Example

0 1 0

1 1 1

0 1 0

Filter

(3x3)

Input

Feature 

Map

(5x5)

Output

Feature 

Map

7 80 1 2 3 2

1 2 2 2 0

0 1 0 1 3

1 2 2 1 0

0 1 0 3 1

Convolution (Stride 1)
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2D Convolution Example

0 1 0

1 1 1

0 1 0

0 1 2 3 2

1 2 2 2 0

0 1 0 1 3

1 2 2 1 0

0 1 0 3 1

Filter

(3x3)

Input

Feature 

Map

(5x5)

Output

Feature 

Map

7 8 8

Convolution (Stride 1)
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2D Convolution Example

0 1 0

1 1 1

0 1 0

Filter

(3x3)

Input

Feature 

Map

(5x5)

Output

Feature 

Map

7 8 8

5 6 7

0 1 2 3 2

1 2 2 2 0

0 1 0 1 3

1 2 2 1 0

0 1 0 3 1

Convolution (Stride 1)
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2D Convolution Example

0 1 0

1 1 1

0 1 0

Filter

(3x3)

Input

Feature 

Map

(5x5)

Output

Feature 

Map

7 8 8

5 6 7

0 1 2 3 2

1 2 2 2 0

0 1 0 1 3

1 2 2 1 0

0 1 0 3 1

Convolution (Stride 1)
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2D Convolution Example

0 1 0

1 1 1

0 1 0

Filter

(3x3)

Input

Feature 

Map

(5x5)

Output

Feature 

Map

7 8 8

5 6 7

0 1 2 3 2

1 2 2 2 0

0 1 0 1 3

1 2 2 1 0

0 1 0 3 1

Convolution (Stride 1)
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2D Convolution Example

0 1 0

1 1 1

0 1 0

Filter

(3x3)

Input

Feature 

Map

(5x5)

Output

Feature 

Map

(3x3)

7 8 8

5 6 7

6 5 7

0 1 2 3 2

1 2 2 2 0

0 1 0 1 3

1 2 2 1 0

0 1 0 3 1

Convolution (Stride 1)

Output Feature Map = (Input Feature Map – Filter + Stride) / Stride

# of multiplications?

Size of Size of Size of
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2D Convolution Example

0 1 0

1 1 1

0 1 0

Filter

(3x3)

Input

Feature 

Map

(5x5)

Output

Feature 

Map

0 1 2 3 2

1 2 2 2 0

0 1 0 1 3

1 2 2 1 0

0 1 0 3 1

Convolution (Stride 2)

7
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2D Convolution Example

0 1 0

1 1 1

0 1 0

Filter

(3x3)

Input

Feature 

Map

(5x5)

Output

Feature 

Map

0 1 2 3 2

1 2 2 2 0

0 1 0 1 3

1 2 2 1 0

0 1 0 3 1

Convolution (Stride 2)

7 8
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2D Convolution Example

0 1 0

1 1 1

0 1 0

Filter

(3x3)

Input

Feature 

Map

(5x5)

Output

Feature 

Map

0 1 2 3 2

1 2 2 2 0

0 1 0 1 3

1 2 2 1 0

0 1 0 3 1

Convolution (Stride 2)

7 8

6 6
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2D Convolution Example

0 1 0

1 1 1

0 1 0

Filter

(3x3)

Input

Feature 

Map

(5x5)

Output

Feature 

Map

0 1 2 3 2

1 2 2 2 0

0 1 0 1 3

1 2 2 1 0

0 1 0 3 1

Convolution (Stride 2)

7 8

6 7
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2D Convolution Example

0 1 0

1 1 1

0 1 0

Filter

(3x3)

Input

Feature 

Map

(5x5)

Output

Feature 

Map

(2x2)

0 1 2 3 2

1 2 2 2 0

0 1 0 1 3

1 2 2 1 0

0 1 0 3 1

Convolution (Stride 2)

7 8

6 7

Output Feature Map = (Input Feature Map – Filter + Stride) / Stride

# of multiplications?

Size of Size of Size of
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2D Convolution Example

0 1 0

1 1 1

0 1 0

Filter

(3x3)

Input

Feature 

Map

(5x5)

Output

Feature 

Map

(1x1)

0 1 2 3 2

1 2 2 2 0

0 1 0 1 3

1 2 2 1 0

0 1 0 3 1

Convolution (Stride 3)

7

Output Feature Map = (Input Feature Map – Filter + Stride) / Stride

# of multiplications?

Size of Size of Size of
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Impact of Stride on Convolution

Stride 2

Output

Feature 

Map

(2x2)

7 8

6 7Output

Feature 

Map

(3x3)

7 8 8

5 6 7

6 5 7

Stride 1

Stride > 1 is equivalent to downsampling the 

output feature map when Stride =1

Stride 3

Output

Feature 

Map

(1x1)

7
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Zero Padding

• The size of the output shrinks relative to the input

• Use zero padding to control the size of the output

• Can set padding based on filter size such that the output size is equal to 

original the input size

0 1 2 3 2

1 2 2 2 0

0 1 0 1 3

1 2 2 1 0

0 1 0 3 1

0 0 0 0 0 0 0

0 0 1 2 3 2 0

0 1 2 2 2 0 0

0 0 1 0 1 3 0

0 1 2 2 1 0 0

0 0 1 0 3 1 0

0 0 0 0 0 0 0
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2D Convolution Example

0 1 0

1 1 1

0 1 0

Filter

(3x3)

Input

Feature 

Map

(7x7)

Output

Feature 

Map

(5x5)

Convolution (Stride 1) + zero padding

0 0 0 0 0 0 0

0 0 1 2 3 2 0

0 1 2 2 2 0 0

0 0 1 0 1 3 0

0 1 2 2 1 0 0

0 0 1 0 3 1 0

0 0 0 0 0 0 0

2 5 8 9 5

3 7 8 8 4

3 5 6 7 4

3 6 5 7 5

2 3 6 5 4
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Zero Padding in PyTorch

• padding (python:int or tuple, optional) added to input. Default: 0

– https://pytorch.org/docs/stable/nn.html#padding-layers 

– Ex: padding=1, pad 1 to the top, bottom, right, and left.

– Ex. padding=[1,2], pad 1 to the top and bottom, pad 2 to the right and left

• Default: No zero padding

– filter is RxS and input is HxW, and stride U

– output is (H-R+U)/U x (W-S+U)/U

• Padding=[(R-1)/2, (S-1)/2]: zero padding so that output remains the same for U=1

– filter is RxS and input is HxW, and stride U

– output is ceil(H/U) x ceil(W/U)

• Padding is not always explicitly defined, but can be inferred from the size of the feature map

– Deep networks use padding to prevent feature maps from shrinking

• Different frameworks can use different types of padding

https://pytorch.org/docs/stable/nn.html#padding-layers
https://pytorch.org/docs/stable/nn.html#padding-layers
https://pytorch.org/docs/stable/nn.html#padding-layers
https://pytorch.org/docs/stable/nn.html#padding-layers
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Depth of Network: Convolution

As you go deeper into the network, more pixels contribute to each activation.

0 0 0 0 0 0 0

0 0 1 2 3 2 0

0 1 2 2 2 0 0

0 0 1 0 1 3 0

0 1 2 2 1 0 0

0 0 1 0 3 1 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 1 2 3 2 0

0 1 7 8 8 0 0

0 0 5 6 7 3 0

0 1 6 5 7 0 0

0 0 1 0 3 1 0

0 0 0 0 0 0 0

Example: 3x3 filter

0 0 0 0 0 0 0

0 0 1 2 3 2 0

0 1 2 2 2 0 0

0 0 1 31 1 3 0

0 1 2 2 1 0 0

0 0 1 0 3 1 0

0 0 0 0 0 0 0

Input to Layer 1 Layer 2 Layer 3

Feature maps of deep layers typically give higher level features
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H

Convolution (CONV) Layer

R

S

C

input fmap

output fmap
Cfilter

Many Input Channels (C)

P

W Q

e.g., For Layer 1, C=3 for the red, green, and blue components of an image
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Convolution (CONV) Layer

P

output fmapmany

filters (M)

Many

Output Channels (M)*

M
…

R

S

1

R

S

C

M

H

input fmap

C

C

W Q

e.g., # of output channels (M1) of Layer 1 becomes # of 

input channels (C2) of Layer 2

Note: # of filters often referred to as width of network

*some works use K rather than M
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Convolution (CONV) Layer

Batch Size (N)

…

M

…

Many

Input fmaps (N) Many

Output fmaps (N)

…
R

S

R

S

C

C

filters

P

Q

H

C

H

W

C

P

1 1

N
N

W Q

1

M
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CNN Decoder Ring

• N – Number of input fmaps/output fmaps (batch size)

• C – Number of channels in input fmaps (activations) & filters (weights)

• H – Height of input fmap (activations) 

• W – Width of input fmap (activations)

• R – Height of filter (weights)

• S – Width of filter (weights)

• M – Number of channels in output fmaps (activations)

• P – Height of output fmap (activations)

• Q – Width of output fmap (activations)

• U – Stride of convolution

These variables define the rank and shape of the various tensors (input fmap, filter, output fmap)
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Input Feature Map (fmap) Tensor

I[C][H][W]

H=3

Input fmap (activations)

C=3

W=3

In this example, the input feature map has 

three ranks* named C, H and W 

The rank shapes are C=3, H=3, and W=3

*technically also has fourth rank N, with shape of N=1
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CONV Layer Tensor Computation

Input fmap (I) 

Filter weights (W)

Output fmap (O)

Biases (B)
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Einstein Notation (Einsum)

𝑂𝑛,𝑚,𝑝,𝑞

= 𝐵𝑚 + 𝐼𝑛,𝑐,𝑈×𝑝+𝑟,𝑈×𝑞+𝑠× 𝐹𝑚,𝑐,𝑟,𝑠 

[Einstein, Annalen der Physike 1916], [Kjolstad, TACO, OOPSLA 2017], [Parashar, Timeloop, ISPASS 2019] 

Einsum Notation 

Algebraic Notation 

Einsum does not enforce any computational order

(function in Numpy, Pytorch and Tensorflow)
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CONV Layer Implementation

Naïve 7-layer for-loop implementation:

for n in [0..N):
for m in [0..M):

        for q in [0..Q):
            for p in [0..P):

                O[n][m][p][q] = B[m];
                for c in [0..C):
                    for r in [0..R):
                        for s in [0..S):
                            O[n][m][p][q] += I[n][c][Up+r][Uq+s] 
                                           × F[m][c][r][s];
          
                O[n][m][p][q] = Activation(O[n][m][p][q]);

for each output fmap value

convolve 

a window 

and apply 

activation

Note that loop nest enforces an order → Einsum is more general!
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Fully-Connected (FC) Layer

Input

Layer
Hidden

Layer

Output

Layer

Fully-Connected
Sparsely-Connected

Fully-Connected: all i/p neurons connected to all o/p neurons
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H

W

C

N

FC Layer – from CONV Layer POV

… …

input fmaps
output fmaps

…

H

W

C

H

C

1
W

M

1
1

1

H

C

filters

W

1

1

N

1

M
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input fmaps

H

W

C

1

Fully Connected Computation

output fmaps

…

filters

1

1

1
H

C

1
W

H

W

C

M

Variant of CONV layer with:

 R == H

 S == W

M



L02-88

Sze and Emer

input fmaps

H

W

C

1

Fully Connected Computation

output fmaps

…

filters

1

1

1
H

C

1
W

H

W

C

M

𝑂𝑚 = 𝐼𝑐,ℎ,𝑤 × 𝐹𝑚,𝑐,ℎ,𝑤  
Einsum of FC computation

 (does not enforce processing order)

M



L02-89

Sze and Emer

Fully Connected Computation

int i[C][H][W];     # Input activations
int f[M][C][H][W];  # Filter weights
int o[M];           # Output activations

for m in [0, M):
  o[m] = 0;
  for c in [0, C):
    for h in [0, H):
       for w in [0, W):
          o[m] += i[c][h][w]*f[m][c][h][w]

Should be bias, which 

we will ignore for 
simplicity

Loop nest of FC computation 

(enforces some processing order) 
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Convert FC Compute to Matrix-Vector Multiply

int i[C][H][W];     # Input activations
int f[M][C][H][W];  # Filter weights
int o[M];           # Output activations

for m in [0, M):
  o[m] = 0;
  for c in [0, C):
    for h in [0, H):
       for w in [0, W):
          o[m] += i[c][h][w]*f[m][c][h][w]

Flatten C, H, W ranks to CHW

int i[CHW];       # Input activations
int f[M][CHW];        # Filter weights
int o[M];             # Output activations

for m in [0, M):
  o[m] = 0;
    for chw in [0, CHW):
 o[m] += i[chw]*f[CHW*m + chw]
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Convert FC Compute to Matrix-Vector Multiply

int i[C][H][W];     # Input activations
int f[M][C][H][W];  # Filter weights
int o[M];           # Output activations

for m in [0, M):
  o[m] = 0;
  for c in [0, C):
    for h in [0, H):
       for w in [0, W):
          o[m] += i[c][h][w]*f[m][c][h][w]

int i[CHW];       # Input activations
int f[M][CHW];        # Filter weights
int o[M];             # Output activations

for m in [0, M):
  o[m] = 0;
    for chw in [0, CHW):
 o[m] += i[chw]*f[m][chw]
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FC Compute as Matrix-Vector Multiply

M

CHW

CHW

1

Filters Input fmaps

×

1

Output fmaps

M=

Multiply all inputs in all channels by a weight and sum
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FC Compute as Matrix-Vector Multiply

M

CHW

CHW

1

Filters Input fmaps

×

1

Output fmaps

M=

Multiply all inputs in all channels by a weight and sum

(increment chw)

partial sum
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FC Compute as Matrix-Vector Multiply

M

CHW

CHW

1

Filters Input fmaps

×

1

Output fmaps

M=

Multiply all inputs in all channels by a weight and sum

(increment chw)

partial sum
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FC Compute as Matrix-Vector Multiply

M

CHW

CHW

1

Filters Input fmaps

×

1

Output fmaps

M=

Multiply all inputs in all channels by a weight and sum

(increment chw)

completed sum
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FC Compute as Matrix-Vector Multiply

M

CHW

CHW

1

Filters Input fmaps

×

1

Output fmaps

M=

Multiply all inputs in all channels by a weight and sum
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FC Compute as Matrix-Vector Multiply

M

CHW

CHW

1

Filters Input fmaps

×

1

Output fmaps

M=

Multiply all inputs in all channels by a weight and sum

(increment m)
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Einsum for Flattened FC

𝑂𝑚 = 𝐼𝑐,ℎ,𝑤 × 𝐹𝑚,𝑐,ℎ,𝑤 → 𝑂𝑚 = 𝐼𝑐ℎ𝑤 ×  𝐹𝑚,𝑐ℎ𝑤

𝐼𝑐,ℎ,𝑤  →  𝐼𝐻×𝑊×𝑐+𝑊×ℎ+𝑤 → 𝐼𝑐ℎ𝑤

𝐹𝑚,𝑐,ℎ,𝑤  → 𝐹𝑚,𝐻×𝑊×𝑐+𝑊×ℎ+𝑤 → 𝐹𝑚,𝑐ℎ𝑤  

Original Flattened
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Einsum for FC as Matrix Vector

𝑂𝑚 = 𝐼𝑐ℎ𝑤 × 𝐹𝑚,𝑐ℎ𝑤 

M

CHW

CHW

1

Filters Input fmaps

×

1

Output fmaps

M
=
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H

W

C

N

FC Layer – Batch (N)

…

M

…

input fmaps
output fmaps

…

filters

H

C

1

1 1

1

1

N

W 1

H

C

1
W

H

W

C

M
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M

CHW

CHW

N

Filters Input fmaps

×

N

Output fmaps

M
=

After flattening, having a batch size of N turns the 

matrix-vector multiply into a matrix-matrix multiply

𝑂𝒏,𝑚 = 𝐼𝒏,𝑐ℎ𝑤 ×  𝐹𝑚,𝑐ℎ𝑤

FC Compute → Matrix-Matrix Multiply
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FC Compute → Matrix-Matrix Multiply

𝑂𝑛,𝑚 = 𝐼𝑛,𝑐ℎ𝑤 ×  𝐹𝑚,𝑐ℎ𝑤

𝐶𝑚,𝑛 = 𝐴𝑚,𝑘 ×  𝐵𝑘,𝑛

Typical matrix multiplication notation

Note: for Einsum, the order of ranks does not matter

reduction on rank chw

reduction on rank k
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