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Outline of Today’s Lecture

* Accelerator Design Methodology: From Workload to Hardware
— Einsums

— Roofline Models

« DNN Workloads
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From Workload to Hardware

Slides from “TeAAL and HiFiber: Precise and Concise Descriptions of (Sparse) Tensor Algebra Accelerators”
https://teaal.csail.mit.edu/
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Accelerator Design Methodology
(described in TeAAL [Nayak, MICRO 2023])

(1) Describe the architecture (2) Develop the workload

(3) Evaluate the (4) Compare

workload implementations (5) Optimize the design

I L
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Describing the Hardware Architecture

(1) Describe the architecture

Select from a library of components (2) Develop the workload
and organize them by writing an

accelerator specification

(3) Evaluate the (4) Compare

workload implementations (5) Optimize the design
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Architecture for the Simple End-to-End Example

Basic hardware architecture for

tensor algebra operations: ° ° |
» PE:ALU and local register files |-I PE

» Memory: DRAM for global
DRAM

storage

I
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Developing the Workload

(1) Describe the architecture (2) Develop the workload

Select from a library of components
and organize them by writing an
accelerator specification

Write the cascade, mapping, format,
and binding specifications

(3) Evaluate the (4) Compare

workload implementations (5) Optimize the design

I L
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Separation of Concerns

Cascade
of Einsums

Mapping
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Tensor Algebra

Tensors are multi-dimensional arrays of data

O

0D Tensor / Scalar 1D Tensor / Vector

2D Tensor/ Matrix 3D Tensor/ Cube 4D Tensor 5D Tensor
Many applications can be framed as tensor algebra

Internet & Recommendation Circuit Computational Problems in
Social media systems Simulation Chemistry Statistics Deep Learning
Graphics courtesy of Hadi Asghari-Moghaddam III._
i Sze and Emer
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Tensor Terminology

. Scalar: 0 ranks Vector: 1 rank
In this class, we used the term “rank” to denote

Properties of a Tensor:

_ _ Matrix: 2 ranks Cube: 3 ranks
Number of Ranks = Number of dimensions

Rank Shape = Number of elements in each rank

Size of Tensor = Total number of elements in
tensor (product of the shape of each rank)
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Matrix Multiplication

Properties of B tensor:

Number of Ranks = 2
Rank names: N and K
Rank shape: N and K
Size of Tensor = N x K
Shape of Tensor = [N,K]

N
K
K
Properties of A tensor: Propertles of Z tensor:
Rank names: M and K Number of Ranks = 2
Rank shape*.: M and K M A Z Ea":: n:meS:l\I/\l/l anddl\ll\l
. . ank shape: M an
Size of Tensor = M x K Sire ot e T2

Shape of Tensor = [M,K] Shape of Tensor = [M,N]

*In general shape and name same, but
there are some exceptions we will see
later (e.g., in attention of transformer)
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Einstein Summation Notation (Einsums)

We can represent matrix multiplication with:

!
N
Zm,n ) Ak’ml >< Bk’n l K -
K
Z
1

<=

With implicit reduction (sum)

over K ) M A -
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TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators I I" Sze and Emer



L02-13

Einstein Summation Notation (Einsums)

We can represent matrix multiplication with:
N

e on [
K

Explicit reduction is not
necessary M
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Einstein Summation Notation (Einsums)

We can represent matrix multiplication with:
N

Zm,n ) Ak’m X Bk’n K -
K
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Operational Definition of an Einsum (ODE)

Simplifying to matrix-vector multiplication:

L = Ak,m X By
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Operational Definition of an Einsum (ODE)

Einsum: Z,,, = A m| X B

Iteration Space: Cartesian product
of all legal coordinates in the Einsum
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Operational Definition of an Einsum (ODE)

Einsum: Z,,, = Ay, X By

Iteration Space: [0,K) X [0, M)

I L
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Operational Definition of an Einsum (ODE)

Einsum: Z,,, = Ay, X By

Iteration Space: K x M

K
lteration Space Point: (4, 2)
000000
©o0o00o00 M
©ooo0oo0@o
000000
M ooco0o0o0o0

000000
000000
000000
Many ways to traverse iteration space

(processing order)
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Operational Definition of an Einsum (ODE)

Einsum: Z,, = A, X By

Iteration Space: K X M

For each point (k,m) in the iteration space:
- Select the input values 4, ,, and By,

* Multiply (x) them together

« Update the output value 7.,

 Reduce (+) if necessary
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Operational Definition of an Einsum (ODE)

Einsum defines Lm = Axm X By

— an iteration space over tensors

— what computation is done on and between tensors at each point in the iteration space
Traverse all points in space of all legal index values (iteration space)

— The size of space is the Cartesian product of number of values of the unique indices

(e.g., K*M) = amount of work that needs to be done!

At each point in iteration space:

— Calculate value on right hand side at specified indices for each operand (tensor)

— Assign value to operand at specified indices on left hand side

— Perform reduction across indices that appear on right-hand side but not left-hand side

Note: Einsum will be the input format of the workload to the modeling tools for this class
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Evaluating the Workload

(1) Describe the architecture (2) Develop the workload

Select from a library of components
and organize them by writing an
accelerator specification

Write the cascade, mapping, format,
and binding specifications

(3) Evaluate the
workload
Model the workload and
analyze with metrics like
number of computes,
memory traffic, and
compute intensity

(4) Compare

implementations (5) Optimize the design

I L
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Analysis: What Compute is Required?

Einsum: Z,,, = Ay, X By

Iteration Space: K x M

A

One multiply (x) and reduce (+) per point in
the iteration space (excluding edge effects)

« K X M multiplies
« (K—1) x M adds

TeAAL and HiFiber: Precise and Conci

ise Descr|

iptions

of Tensor Algebra Accelerators
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Analysis: What is the Best-Case Compute Intensity?

« Compute Intensity is a measure of how much data reuse is

theoretically possible

— Higher compute intensity implies more data reuse feasible - potentially

less data movement required

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators

Global g ikl L2
Buffer
PE P ALU == fetch data to run

a MAC here

Normalized Enerqy Cost’

L02-23

ALU 1x (Reference)
0.5-10kB
NoC: 200 - 1000 PEs | PE | ALU
100 - 500 kB
DRAM ALU N 200%
eeeeeeee d from a commercial 65nm process
Illil- Sze and Emer
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Defining Compute Intensity (Cl)

(Standard) Compute Intensity: FLOPs / byte

However, this definition introduces questions:
* Is the multiply-accumulate (MAC) one operation or two?

 What is the bitwidth of our values?

Compute Intensity: Multiplications / value

I L
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Analysis: What is the Best-Case CI?

Compute Intensity: Multiplications / value

Multiplications : K X M

Best-case memory traffic:
K X M loads of A ,,,
* K loads of By,

« M stores of Z,,

I L
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Analysis: What is the Best-Case CI?

Compute Intensity: Multiplications / value

Lab 1 focuses on this
type of analysis of

Multiplications : K x M workloads (Einsum)

Best-case memory traffic. K x M + K+ M values

KXM
KXM+K+M

Best-case compute intensity:

I L
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Developing the Workload

(1) Describe the architecture (2) Develop the workload

Select from a library of components
and organize them by writing an
accelerator specification

Write the cascade, mapping, format,
and binding specifications

(3) Evaluate the

workload
Model thelworklogd a.nd _ (4) Compa_re (5) Optimize the design
analyze with metrics like implementations

number of computes,
memory traffic, and Al
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Separation of Concerns

Cascade
of Einsums

/ Mapping \

I L
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Traversing the lteration Space

Can do so in any order

I L
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Traverse with Loop Nests

for k in range(K):
for m 1n range (M) :

TeAAL and HiFiber: Precise and Concise Descriptions of Tensor Algebra Accelerators

Zmlll+=l ALk, m]| *|IB[k
O 99999
00 00O0O0
© 0 0000
© 00 0 0 o
00000
© 0 0 0 0 0
000000
(OB © B O )

Lab 2 & 3 focuses
on traverse order
of iteration space

(mapping)
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Evaluating the Workload

(1) Describe the architecture (2) Develop the workload

Select from a library of components
and organize them by writing an
accelerator specification

Write the cascade, mapping, format,
and binding specifications

(3) Evaluate the
workload
Model the workload and
analyze with metrics like
number of computes,
memory traffic, and
compute intensity

(4) Compare

implementations (5) Optimize the design
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Analysis: What is the Achieved Traffic?

for k in range(K):

for m 1in range (M) :

a reg = Alk, m]
b reg = B[k]
z reg = Z[m]
Z[m] += Al[k, m] * B[k]

Z[m] = z reg

I L
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Analysis: What is the Achieved Traffic?

for k in range(K):

for m 1in range (M) :

Ii=reg = Alk, m]
b reg = B[k]

z reg = Z[m]

Zz[m] +=|a reg|* Bl[k]

N
=
I

Z reg
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Analysis: What is the Achieved Traffic?

for k in range(K):

for m 1in range (M) :

a reg = Alk, m]

b reg = B[k]

z reg = Z[m]

Zz[m] += a reg *|b reg

Z[m] = z reg
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Analysis: What is the Achieved Traffic?

for k in range(K):

for m 1in range (M) :

a reg = Alk, m]
b reg = B[k]

z reg = Z[m]

z_reg|+= a reg * b reg

I L
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Exploit Stationarity

for k in range(K):

for m 1in range (M) :

a reg = Alk, m]

b reg = B[k]

z reg = Z[m]
z reg += a reg * b reg

Z[m] = z reg

I L
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Exploit Stationarity

for k in range(K):

b reg = B[k]
for m 1in range (M) :

a reg = Alk, m]
b—reg—=DB{kt
z reg = Z[m]
z reg += a reg * b reg

Z[m] = z reg
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Analysis: What is the Achieved Traffic?

for k in range (K) :

Achieved memory traffic:

b reg = B[k]
for m in range (M) : » K X M loads of Akm

= Ak, m]

— - » K loads of B

z reg = Z[m]

z reg += a reg * b reg > (K - 1) X M loads of Zm
» K X M stores of Z,,

I L
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Analysis: What is the Achieved Traffic?

for k in range (X): Achieved memory traffic:
for m in range (M) :
Z[m] += A[k,m] * B[k] » K x M loads of Ay,

» K loads of By,

» (K—1) x M loads of Z,,
» K X M stores of Z,,

Loads and stores are always
derivable from the loop order

I L
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Analysis: What is the Achieved CI?

Multiplications: K X M

Achieved memory traffic: 3 X K x M — M + K

K XM
3XKXM-M+K

Achieved compute intensity:

I L
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Example: Best Case vs Achieved CI

K = 250; M =100

» Best Case CI » Achieved CI
K X M K X M B
KXM+K+M_ 3XKXM-M+K
250 x 100 250 x 100 B
250 x 100 + 250 + 100 3 x 250 x 100 — 100 + 250

0.99 Multiplications/value 0.33 Multiplications/value

I L
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Roofline Model

L=8
9 _ (8 MACs/cycle)
8 Multi/cycle
7 limited by
6 memory
3 bandwidth
30 Multi/cycle limited by
= 4 amount of compute
S 3 (parallelism)
2
1
0

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
Compute Intensity (multi/value)

Williams, Samuel, Andrew Waterman, and David Patterson. "Roofline: an insightful visual performance model for multicore architectures."
Communications of the ACM 52.4 (2009): 65-76.
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Roofline Model

» Roofline Model is a way to visualize throughput given
— Memory bandwidth, amount of parallelism, and computational intensity

— Tells you if more parallelism would help, or more memory bandwidth

» When memory bound, increasing number of lanes will not increase throughput - parallelism does not always
equal speed up in throughput

— Tells you how far you are from limit
» Away from limit due to overhead (e.g., stalls, instruction overhead, mapping limitations)

« Compute intensity

— Theoretical upper bound [max reuse] (best-case compute intensity) (computed in Lab 1)
— Actual implementation depends on processing order (amount of reuse exploited by hardware)

* Roofline model can be draw for each level of the memory hierarchy (though
typically for DRAM)
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Accelerator Design Methodology

(1) Describe the architecture (2) Develop the workload

Select from a library of components
and organize them by writing an
accelerator specification

Write the cascade, mapping, format,
and binding specifications

(3) Evaluate the

workload (4) Compare

implementations . :
Model the workload and (5) Optimize the design
analyze with metrics like
number of computes,
memory traffic, and

compute intensity

Write corresponding
specifications, normalize
hardware parameters,
and reevaluate

Incrementally modify one
or more specifications

I L
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Convolutional Neural Networks (CNNs)
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Applications of CNN

Computer Vision

I Speech Recognition

0+4 045 0+6 0+7 0+8 ] 1
]

Spectrogram l

LEE SEDOL
.. 00:01:00
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Convolutional Neural Networks

Modern Deep CNN: 5-1000 Layers

Low-Level High- Level
> Features > - % Features &Classes

1-3 Layers

Illil- Sze and Emer
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Depth of Network

Output:
“Volvo XC90”

Modified Image Source: [Lee, CACM 2011]
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Convolutional Neural Networks

f-—"’ Low-Level High-Level
N, > Features > -)m Features &Classes

/ \
I’ \\
4 S

Convolution| | Activation

A

|E-‘—-.i !
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Convolutional Neural Networks

Classes

Low-Level High-Level
> Features > - )m Features

Fully Activation
Connected N |:| I

Illil- Sze and Emer
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Convolutional Neural Networks

Optional layers in between
CONV and/or FC layers

ngh -Level
NORM g POOL Features Classes
Layer § Layer
’ “

/
/ \

4 Y

Normalization Pooling
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Convolutional Neural Networks

FC
Layer

CONV B NORM @ POOL @ CONV
Layer Layer | Layer @ Layer

Convolutions account for more
than 90% of overall computation,
dominating runtime and energy
consumption

Illil- Sze and Emer



filter* (weights)

Convolution (CONV) Layer

a plane of input activations
a.k.a. input feature map (fmap)

!

R|

l

«~ S —>

* also referred to as kernel

L02-53
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Convolution (CONV) Layer

input fmap

filter (weights) ==

< S < W >
Element-wise
Multiplication

L02-54
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Convolution (CONV) Layer

input fmap output fmap

an output
| activation

filter (weights)

i ® |IN@

< S —> <€ W > <« Q_>
Element-wise Partial Sum (psum)
Multiplication Accumulation
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Convolution (CONV) Layer

input fmap output fmap

filter (weights) an output

Sliding Window Processing

Illil- Sze and Emer



Filter
(3x3)

Input
Feature
Map
(5x5)

2D Convolution Example

o -~ O -~ O

= N =N -

—

O N O N DN

Convolution (Stride 1)

W = =2 N W

- O W O N

Feature

Filter support: 3x3
Also referred to as the receptive field
(each output requires 9 multiplications™)

Output

Map

*assume no optimization for zeros

L02-57
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Filter
(3x3)

Input
Feature
Map
(5x5)

2D Convolution Example

0O 1 0
1 1 1
0O 1 O
0 1 2
1 2 2
0 1 0
1 2 2
0O 1 0

W = =2 N W

- O W O N

Feature

Convolution (Stride 1)

Output

Map

L02-58
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2D Convolution Example

Convolution (Stride 1)

0 1 0

Filter 1 1 1

(3x3) 0 1 0

o1 2 3|2 7 8

Input 112 2 2fo0 Output
Feature Of1 0 1) 3 Feature

Map 1.2 2 10 Map

(5x5) 01 0 3 1
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2D Convolution Example

Convolution (Stride 1)

0 1 0
Filter 1 1 1
(3x3) 0 1 0
0 12 3 2 7 8 8
Input 1 212 2 0 Output
Feature 0O 1710 1 3 Feature
Map 1.2 2 10 Map
(5x5) 01 0 3 1
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Filter
(3x3)

Input
Feature
Map
(5x5)

2D Convolution Example

0O 1 O
1 1 1
0O 1 O
0O 1 2
1 2 2
0O 1 0
1 2 2
0O 1 0

W = =2 N W

- O W O N

Feature

Convolution (Stride 1)

Output

Map

7 8 8
5

L02-61
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2D Convolution Example

Convolution (Stride 1)

0 1 0

Filter 1 1 1

(3x3) 0 1 0

01 2 3 2 7 8

Input 112 2 2|0 Output 5 6
Feature 01 0 1} 3 Feature

Map 112 2 1]0 Map

(5x5) 01 0 3 1

Illil- Sze and Emer
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2D Convolution Example

Convolution (Stride 1)

0 1 0
Filter 1 1 1
(3x3) 0 1 0
01 2 3 2 7 8
Input 1 2|2 2 0 Output 5 6 7
Feature O 110 1 3 Feature
Map 1 212 1 0 Map
(5x5) 01 0 3 1
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2D Convolution Example

Convolution (Stride 1)

010
Filter T 1 1
(3x3) 0 1 0

01 2 3 2 7 8 8
Input 1.2 2 20 Output 5 6 7
Feature o1 0 1 3 Feature 6 5 7
Map 1 2 2 1 0 Map
(5x5) 0 1 0 3 1 (3x3)

Size of Size of Size of

Output Feature Map = (Input Feature Map — Filter + Stride) / Stride
# of multiplications?

L02-64
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Filter
(3x3)

Input
Feature
Map
(5x5)

2D Convolution Example

0O 1 0
1 1 1
0O 1 O
0 1 2
1 2 2
0 1 0
1 2 2
0O 1 0

W = =2 N W

- O W O N

Feature

Convolution (Stride 2)

Output

Map

L02-65
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2D Convolution Example

Convolution (Stride 2)

0 1 0

Filter 1 1 1

(3x3) 0 1 0

0 12 3 2 7 8

Input 1 212 2 0 Output
Feature 0O 1710 1 3 Feature

Map 1.2 2 10 Map

(5x5) 01 0 3 1

Illil- Sze and Emer



Filter
(3x3)

Input
Feature
Map
(5x5)

2D Convolution Example

0O 1 O
1 1 1
0O 1 O
0O 1 2
1 2 2
0O 1 0
1 2 2
0 1 0

W = =2 N W

- O W O N

Feature

Convolution (Stride 2)

Output

Map

7
6

8

L02-67
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2D Convolution Example

Convolution (Stride 2)

0 1 0
Filter 1 1 1
(3x3) 0 1 0
01 2 3 2 7 8
Input 1.2 2 2 0 Output 6 7
Feature O 110 1 3 Feature
Map 1 212 1 0 Map
(5x5) 0 100 3 1
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2D Convolution Example

Convolution (Stride 2)

0 1 0
Filter 1 1 1
(3x3) 0 1 0
01 2 3 2 7 8
Input 1.2 2 20 Output 6 7
Feature o1 0 1 3 Feature
Map 1 2 2 1 0 Map
(5x5) 0 1 0 3 f (2x2)
Size of Size of Size of

Output Feature Map = (Input Feature Map — Filter + Stride) / Stride
# of multiplications?

L02-69
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2D Convolution Example

Convolution (Stride 3)

0 1 0
Filter 1 1 1
(3x3) 0 1 0

0 1 2|3 2 7
Input 1.2 2[2 0 Output
Feature 01 01 3 Feature
Map 1 2 2 1 0 Map
(5x5) 0 1.0 3 1 (1x1)

Size of Size of Size of

Output Feature Map = (Input Feature Map — Filter + Stride) / Stride
# of multiplications?

L02-70
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Impact of Stride on Convolution

Stride > 1 is equivalent to downsampling the
output feature map when Stride =1

Stride 1 Stride 2 Stride 3
7 8 8 7 8 7
Output 5 6 7 Output 6 7 Output
Feature 6 5 7 Feature Feature
Map Map Map

(3x3) (2x2) (1x1)
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Zero Padding

» The size of the output shrinks relative to the input
« Use zero padding to control the size of the output

« Can set padding based on filter size such that the output size is equal to
original the input size

000 00O 0O
PN R e e o123 2B
12121213 01 22200
01013~0010130
12121110 0122100
Sl lolals o103 1B

000 00O 00O
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Filter
(3x3)

Input
Feature
Map
(7X7)

2D Convolution Example

Convolution (Stride 1) + zero padding

0
1
0

o O O O O o o
c O -~ O »~ O O

1
1
1

S =~ N =~ N =~ O

o - O

S O N O N N O

S W = =~ N W O

S -~ O W O N O

O O O O o o o

Output

Feature

Map
(5x5)

N WO W W DN

W o o1 N O

S o1 O 0

OO N N o ©

A~ o0 A B O

L02-73
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Zero Padding in PyTorch

padding (python:int or tuple, optional) added to input. Default: 0

— https://pytorch.org/docs/stable/nn.htmi#padding-layers
— Ex: padding=1, pad 1 to the top, bottom, right, and left.

—  Ex. padding=[1,2], pad 1 to the top and bottom, pad 2 to the right and left
Default: No zero padding

— filter is RxS and input is HxW, and stride U

— output is (H-R+U)/U x (W-S+U)/U

Padding=[(R-1)/2, (S-1)/2]: zero padding so that output remains the same for U=1
— filter is RxS and input is HXW, and stride U

— output is ceil(H/U) x ceil(W/U)

Padding is not always explicitly defined, but can be inferred from the size of the feature map
— Deep networks use padding to prevent feature maps from shrinking

Different frameworks can use different types of padding
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Depth of Network: Convolution

As you go deeper into the network, more pixels contribute to each activation.

Example: 3x3 filter

o[1]12]3]2
1122210 7|88
ol1]0]|1]3 5|6 |7 31
112(2|1]0 6|57
o[1]0]3]|1

Input to Layer 1 Layer 2 Layer 3

Feature maps of deep layers typically give higher level features
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Convolution (CONV) Layer

input fmap

filter output fmap

<—S—> < W > <_Q_>

Many Input Channels (C)

e.g., For Layer 1, C=3 for the red, green, and blue components of an image
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Convolution (CONV) Layer

input fma

~many P P output fmap
filters (M) ¢’
i | ® | o’
Rl A
| 1s | B

«~ § — < W > «— Q—

® Many
& Output Channels (M)*

e.g., # of output channels (M,) of Layer 1 becomes # of
UM B input channels (C,) of Layer 2
<8 Note: # of filters often referred to as width of network

I | 8]
I'ii *some works use K rather than M Sze and Emer
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Convolution (CONV) Layer

Many
Input fmaps (N) Many
flters e OUtp“;t fmaps (N)
)
R|
|1
«~ S —

Illil- Batch Size (N) Sze and Emer
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CNN Decoder Ring

* N — Number of input fmaps/output fmaps (batch size)

 C — Number of channels in input fmaps (activations) & filters (weights)
* H - Height of input fmap (activations)

W — Width of input fmap (activations)

R - Height of filter (weights)

« S — Width of filter (weights)

* M — Number of channels in output fmaps (activations)

* P — Height of output fmap (activations)

* Q - Width of output fmap (activations)

« U - Stride of convolution

These variables define the rank and shape of the various tensors (input fmap, filter, output fmap)
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Input Feature Map (fmap) Tensor

Input fmap (activations)

C53
d In this example, the input feature map has

three ranks* named C, H and W

H=3

The rank shapes are C=3, H=3, and W=3

|[C][H][W] *technically also has fourth rank N, with shape of N=1
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CONV Layer Tensor Computation

Output fmap (O)
Biases (B) Filter weights (W)

¢C'1R15’1 v

o[n][m][p][q

b[m+TT i[n)[d][Up + r][Uq + 5] x £[m][d][r][s]

Input fmap (I)

c=0 r=0 s=0
Og-n.<N,Ogm<A-I,ng<P=0<_:q<Q,
P=(H-R+U)/UQ=W-5+U)/U.

Shape Parameter | Description
N batch size of 3-D fmaps
M # of 3-D filters / # of ofmap channels
C # of ifmap/filter channels
H/W ifmap plane height/width
R/S filter plane height/width (= H or W in FC)

p/q

ofmap plane height/width (=1 in FC)

L02-81
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Einstein Notation (Einsum)

Algebraic Notation

o[n|[m][p]lq] = blm] + i[n][c][Up +7][Uq + s] x £[m][c][r][s]

Einsum Notation

On,m,p,q

=By + I‘n,C,UXp+T,UXq+SX m,c,r,s
Einsum does not enforce any computational order
(function in Numpy, Pytorch and Tensorflow)

[Einstein, Annalen der Physike 1916], [Kjolstad, TACO, OOPSLA 2017], [Parashar, Timeloop, ISPASS 2019]
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CONYV Layer Implementation

Many

Naive 7-layer for-loop implementation: Input fmaps (N) Many

filters & Outph:;t frnaps’ (N)
Fid O
for n in [0..N): i EE e 5 Tl IF

f i 0..M):
o 2oinq[in [%. .0): for each output fmap value

convolve
a window
and apply
activation

-8 — W — Q—

for p in [@..P):

o[n][m]lpllal = B[m];
for ¢ in [0..C):
for r in [@..R):
for s in [0..S):

o[n](m1(p1la] += I[n][c][Up+r][Uq+s]
< F[n][c][r]0s];
L o[nln][p][a] = Activation(0[n][n][p][a]);

Note that loop nest enforces an order - Einsum is more general!
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Fully Connected Layer
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Fully-Connected (FC) Layer

Fully-Connected: all i/p neurons connected to all o/p neurons

Sparsely-Connected

Fully-Connected
v Lol

Hidden
i Layer
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FC Layer — from CONV Layer POV

filters

c/

input fmaps

output fmaps

M-,
A
1

Sze and Emer
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Fully Connected Computation

filters input fmaps output fmaps
st

1
< w >
e — Variant of CONV layer with:
R ==
H == \\V
M B
< W >
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Fully Connected Computation

filters input fmaps output fmaps

Om = Ic,h,w X Fmechw

Einsum of FC computation
(does not enforce processing order)
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Fully Connected Computation

int i[C][H][W]; # Input activations
int F[M][C][H][W]; # Filter weights
int o[M]; # Output activations

for m in [0, M): Should be bias, which
o[m] = @-, we will ignore for
’ simplicity

for c in [0, C):
e ThSiniLossh )
for w in [0, W):
o[m] += i[c][h][w]*f[m][c][h][w]

4

Loop nest of FC computation
(enforces some processing order)
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Convert FC Compute to Matrix-Vector Multiply

Flatten C, H, W ranks to CHW

int i[C][H][W]; # Input activations
int f[M][C][H][W]; # Filter weights
int o[M]; # Output activations

for m in [0, M):
o[m] = ©;
for c in [0, C):
for h in [0, H):
for w in [0, W):
o[m] += i[c]J[h][w]*f[m][cI[h]I

]

7

int i[CHW]; # Input activations
int f[M][CHW]; # Filter weights
int o[M]; # Output activations

for m in [0, M):
o[m] = ©;
for in [0, CHW):
o[m] += i[chw]*f[CHW*m + ]
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Convert FC Compute to Matrix-Vector Multiply

int i[C][H][W];

int F[MJ[C][H][W];

int o[M];

for m in [0, M):

# Input activations
# Filter weights
# Output activations

int i[CHW];

int f[M][CHW];

int o[M];

for m in [0, M):

# Input activations
# Filter weights
# Output activations

7

o[m] = ©; o[m] = @;
for c in [0, C): For in [0, CHW):
ORI IN0% el = o[m] += i[chw]*f[m][
for w in [0, W):
o[m] += i[c]J[h][w]*f[m][c][h][w |7
filters input fmaps output fmaps Filters Input fmaps Output fmaps
— CHW—— 1

—— L —>
2

—

Sze and Emer



FC Compute as Matrix-Vector Multiply

Multiply all inputs in all channels by a weight and sum

Filters

<— CHW—>

Input fmaps

CHW

«1~>

Output fmaps

«~1—

L02-92
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FC Compute as Matrix-Vector Multiply

Multiply all inputs in all channels by a weight and sum

Filters

<— CHW—>

X

(increment

Input fmaps

N

CHW

«1~>

)

Output fmaps
«~1—
27

partial sum

Sze and Emer
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FC Compute as Matrix-Vector Multiply

Multiply all inputs in all channels by a weight and sum

Filters

<— CHW—>

EH

X

(increment

Input fmaps

N

CHW

«1~>

)

Output fmaps
«~1—
27

partial sum

Sze and Emer
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FC Compute as Matrix-Vector Multiply

Multiply all inputs in all channels by a weight and sum
(increment )

Filters

<— CHW—>

X

Input fmaps Output fmaps
«~1—
—] completed sum
«~1~>
CHW — M
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FC Compute as Matrix-Vector Multiply

Multiply all inputs in all channels by a weight and sum

Filters

<— CHW—>

X

Input fmaps Output fmaps
«~1—
—]
«~1~>
CHW — M
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FC Compute as Matrix-Vector Multiply

Multiply all inputs in all channels by a weight and sum
(increment m)

Filters Input fmaps Output fmaps

«— CHW —> 1

] <1 —

N

X cHw M

v
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Einsum for Flattened FC

Original Flattened

Ic,h,w - IH><W><C+W><h+W - Ichw

— —

m,c,h,w MHXWXc+W Xh+w m,chw

Om = Ic,h,w X M'mechw Om = lcpw X m,chw
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Einsum for FC as Matrix Vector

Om = Ichw X

Filters

<— CHW—

Input fmaps

CHW

1>

m,chw

Output fmaps

«~1—

L02-99
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FC Layer — Batch (N)

filters input fmaps
output fmaps
C»z"
Nt M
M
! E
)11 ik
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FC Compute > Matrix-Matrix Multiply

On,m = In,chw X F m,chw
Filters Input fmaps Output fmaps
<— CHW —> < N N < N >
CHW
M X M

After flattening, having a batch size of N turns the
matrix-vector multiply into a matrix-matrix multiply

L02-101
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FC Compute > Matrix-Matrix Multiply

On,m — In,chw X F m,chw

reduction on rank chw

Typical matrix multiplication notation

Cm,n — Am,k X Bk,n

reduction on rank k

Note: for Einsum, the order of ranks does not matter
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