

6.5930/1

Hardware Architectures for Deep Learning

Overview of Deep Neural Network Components

February 4, 2026

Joel Emer and Vivienne Sze

Massachusetts Institute of Technology
Electrical Engineering & Computer Science

Outline of Today's Lecture

- Accelerator Design Methodology: From Workload to Hardware
 - Einsums
 - Roofline Models
- DNN Workloads

From Workload to Hardware

Slides from “TeAAL and HiFiber: Precise and Concise Descriptions of (Sparse) Tensor Algebra Accelerators”
<https://teaal.csail.mit.edu/>

Accelerator Design Methodology

(described in TeAAL [Nayak, MICRO 2023])

(1) Describe the architecture

(2) Develop the workload

(3) Evaluate the workload

(4) Compare implementations

(5) Optimize the design

Describing the Hardware Architecture

(1) Describe the architecture

Select from a library of components and organize them by writing an accelerator specification

(2) Develop the workload

(3) Evaluate the workload

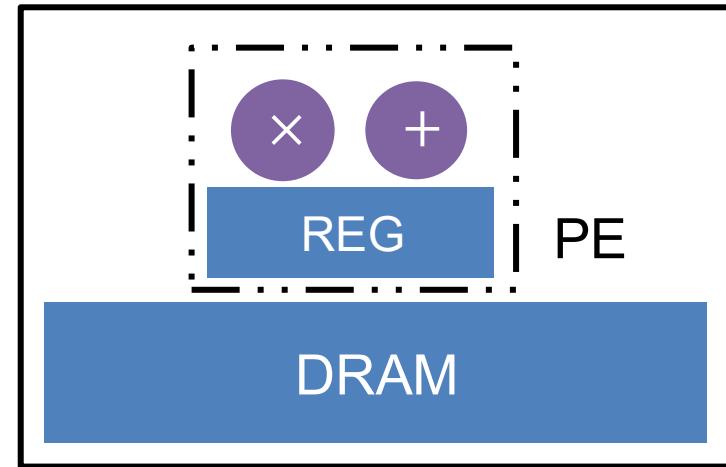
(4) Compare implementations

(5) Optimize the design

Architecture for the Simple End-to-End Example

Basic hardware architecture for tensor algebra operations:

- ▶ PE: ALU and local register files
- ▶ Memory: DRAM for global storage



Developing the Workload

(1) Describe the architecture

Select from a library of components and organize them by writing an accelerator specification

(2) Develop the workload

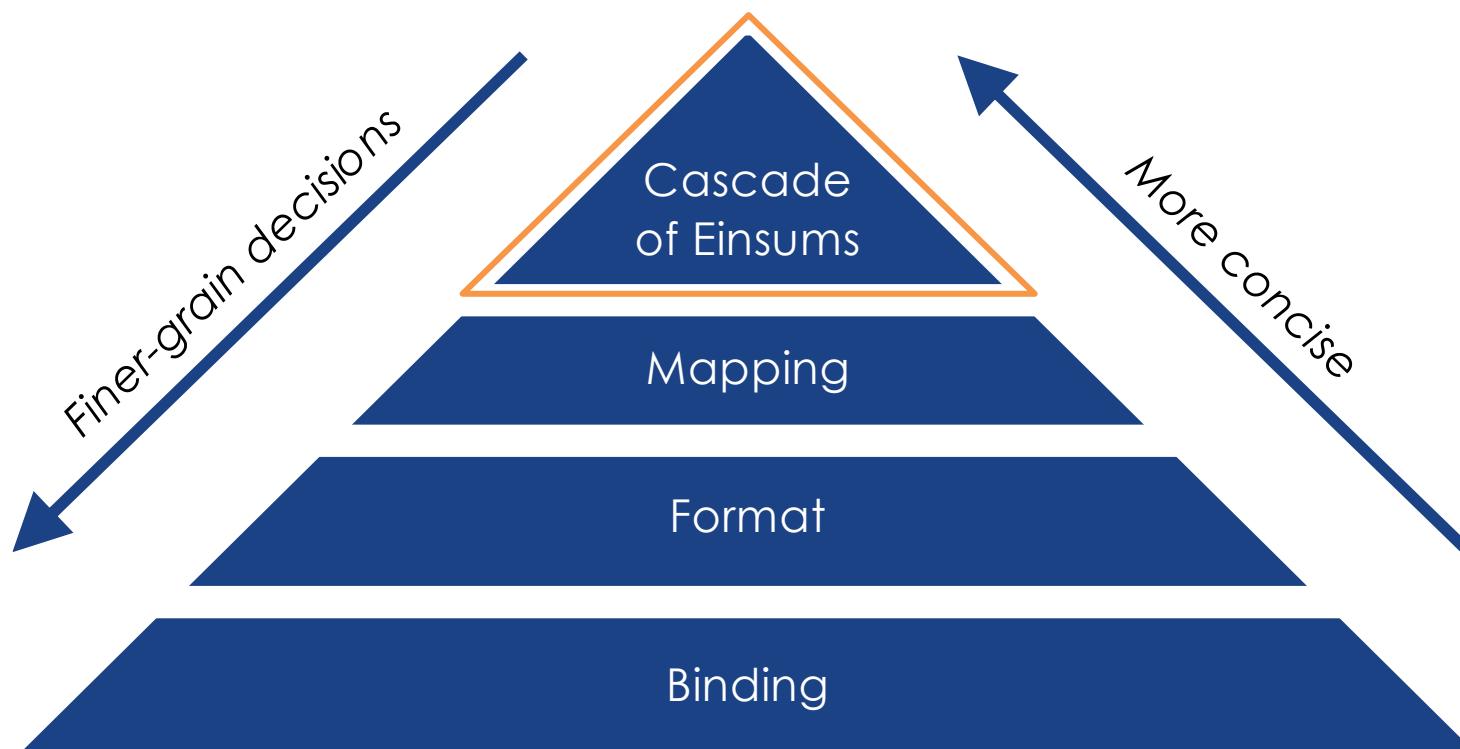
Write the cascade, mapping, format, and binding specifications

(3) Evaluate the workload

(4) Compare implementations

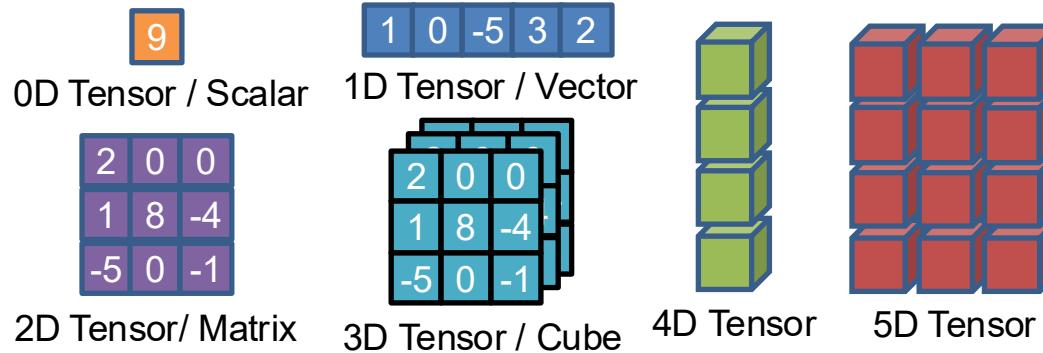
(5) Optimize the design

Separation of Concerns



Tensor Algebra

Tensors are multi-dimensional arrays of data



Many applications can be framed as **tensor algebra**

Graphics courtesy of Hadi Asghari-Moghaddam

Recommendation systems

Circuit Simulation

Computational Chemistry

Problems in Statistics

Deep Learning

Tensor Terminology

In this class, we used the term “rank” to denote the dimension

Properties of a Tensor:

Number of Ranks = Number of dimensions

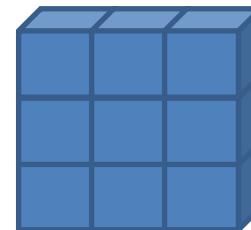
Rank Shape = Number of elements in each rank

Size of Tensor = Total number of elements in tensor (product of the shape of each rank)

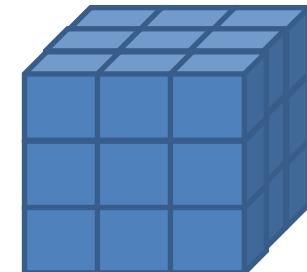
Scalar: 0 ranks

Vector: 1 rank

Matrix: 2 ranks



Cube: 3 ranks

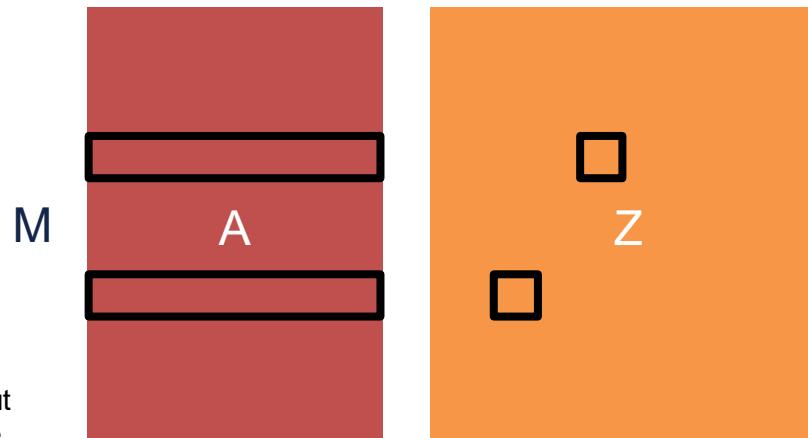


Matrix Multiplication

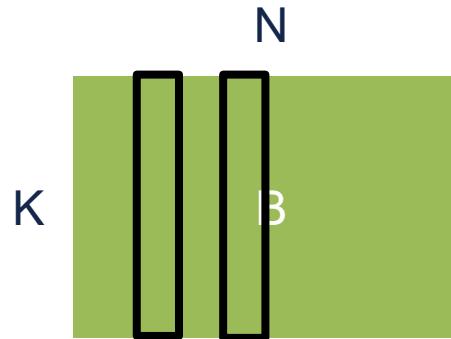
Properties of A tensor:

Number of Ranks = 2
Rank names: M and K
Rank shape*: M and K
Size of Tensor = M x K
Shape of Tensor = [M,K]

*In general shape and name same, but there are some exceptions we will see later (e.g., in attention of transformer)



Properties of B tensor:



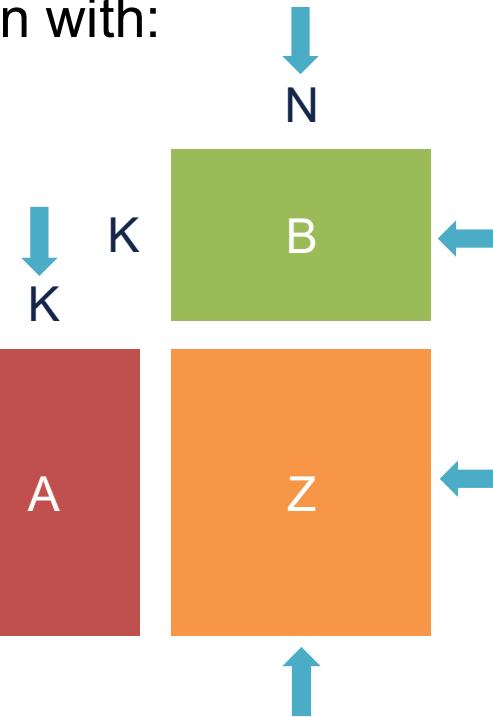
Properties of Z tensor:

Number of Ranks = 2
Rank names: M and N
Rank shape: M and N
Size of Tensor = M x N
Shape of Tensor = [M,N]

Einstein Summation Notation (Einsums)

We can represent matrix multiplication with:

$$Z_{m,n} = A_{k,m} \times B_{k,n}$$

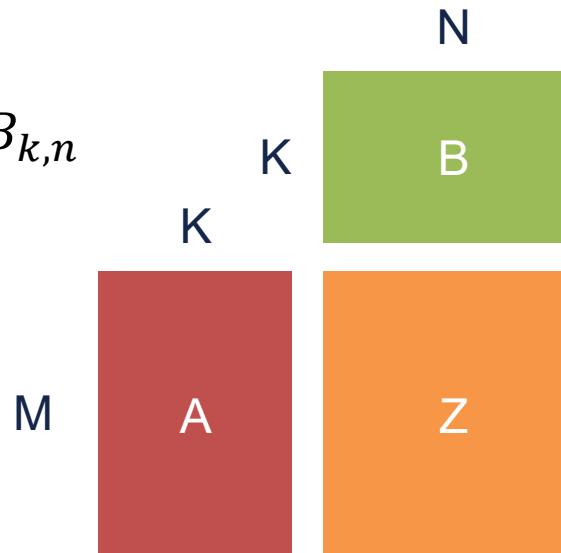


With implicit reduction (sum)
over K

Einstein Summation Notation (Einsums)

We can represent matrix multiplication with:

$$Z_{m,n} = \cancel{\sum_k} A_{k,m} \times B_{k,n}$$

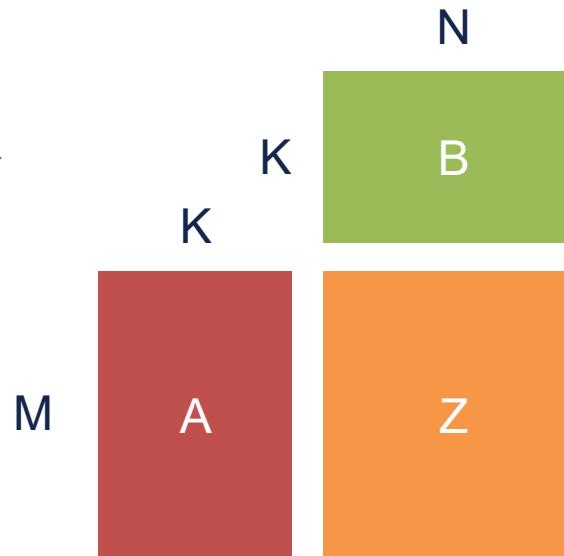


Explicit reduction is not necessary

Einstein Summation Notation (Einsums)

We can represent matrix multiplication with:

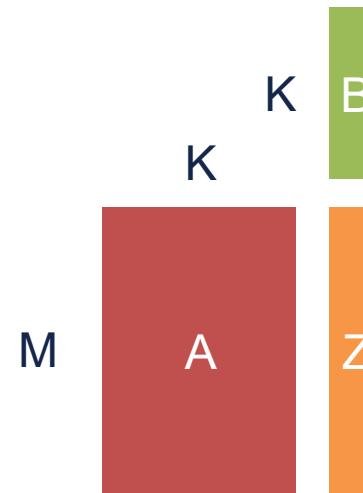
$$Z_{m,n} = A_{k,m} \times B_{k,n}$$



Operational Definition of an Einsum (ODE)

Simplifying to matrix-vector multiplication:

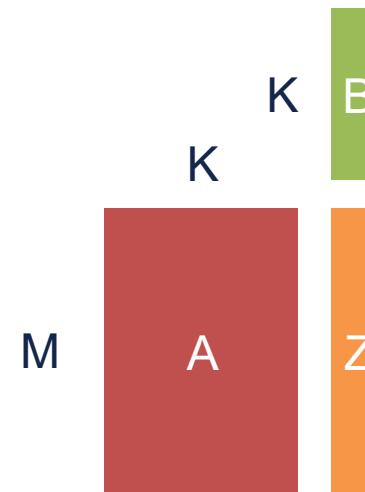
$$Z_m = A_{k,m} \times B_k$$



Operational Definition of an Einsum (ODE)

Einsum: $Z_m = A_{k,m} \times B_k$

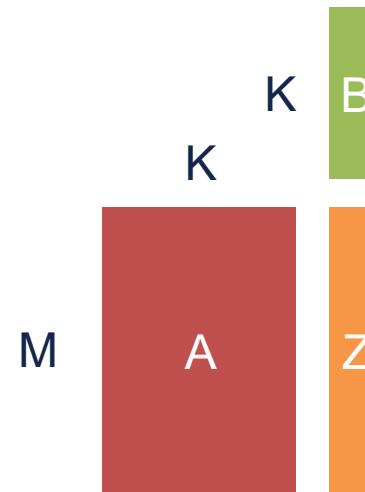
Iteration Space: Cartesian product
of all legal coordinates in the Einsum



Operational Definition of an Einsum (ODE)

Einsum: $Z_m = A_{k,m} \times B_k$

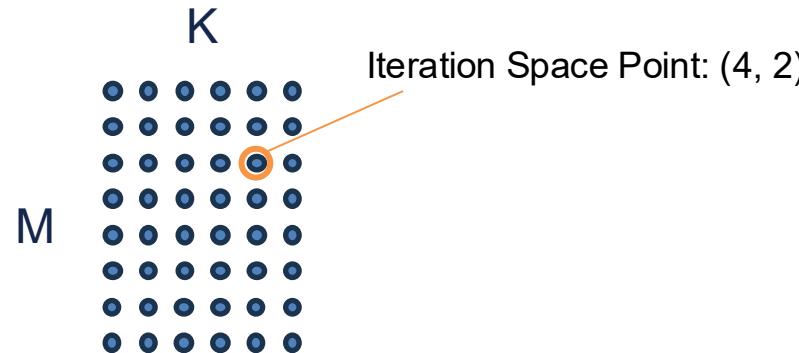
Iteration Space: $[0, K) \times [0, M)$



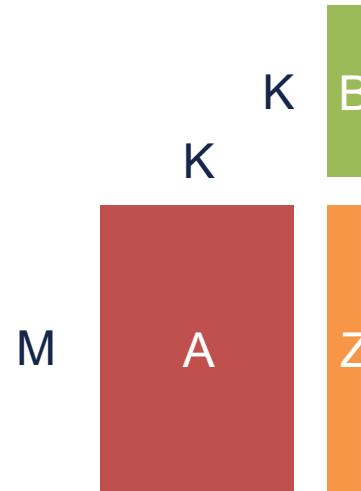
Operational Definition of an Einsum (ODE)

Einsum: $Z_m = A_{k,m} \times B_k$

Iteration Space: $K \times M$



Many ways to traverse iteration space
(processing order)



Operational Definition of an Einsum (ODE)

Einsum: $Z_m = A_{k,m} \times B_k$

Iteration Space: $K \times M$

For each point (k, m) in the iteration space:

- **Select the input values $A_{k,m}$ and B_k**
- **Multiply (\times) them together**
- **Update the output value Z_m**
- **Reduce (+) if necessary**

Operational Definition of an Einsum (ODE)

- Einsum defines
 - an iteration space over tensors
 - what computation is done on and between tensors at each point in the iteration space
- Traverse all points in space of all legal index values (iteration space)
 - The size of space is the Cartesian product of number of values of the unique indices (e.g., K^*M) → amount of work that needs to be done!
- At each point in iteration space:
 - Calculate value on right hand side at specified indices for each operand (tensor)
 - Assign value to operand at specified indices on left hand side
 - Perform reduction across indices that appear on right-hand side but not left-hand side
- ***Note: Einsum will be the input format of the workload to the modeling tools for this class***

Evaluating the Workload

(1) Describe the architecture

Select from a library of components and organize them by writing an accelerator specification

(2) Develop the workload

Write the cascade, mapping, format, and binding specifications

(3) Evaluate the workload

Model the workload and analyze with metrics like number of computes, memory traffic, and compute intensity

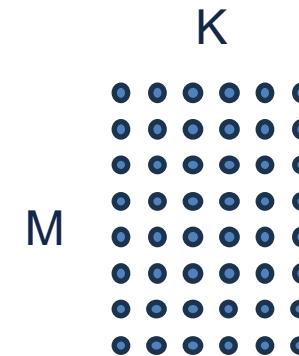
(4) Compare implementations

(5) Optimize the design

Analysis: What Compute is Required?

Einsum: $Z_m = A_{k,m} \times B_k$

Iteration Space: $K \times M$

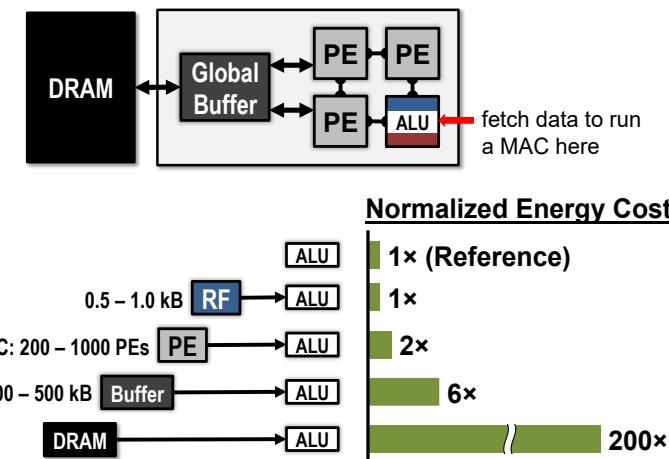


One multiply (\times) and reduce ($+$) per point in the iteration space (excluding edge effects)

- $K \times M$ multiplies
- $(K - 1) \times M$ adds

Analysis: What is the Best-Case Compute Intensity?

- **Compute Intensity** is a measure of how much **data reuse** is theoretically possible
 - Higher compute intensity implies more data reuse feasible → potentially less data movement required



Defining Compute Intensity (CI)

(Standard) Compute Intensity: FLOPs / byte

However, this definition introduces questions:

- Is the multiply-accumulate (MAC) one operation or two?
- What is the bitwidth of our values?

Compute Intensity: Multiplications / value

Analysis: What is the Best-Case CI?

Compute Intensity: Multiplications / value

Multiplications : $K \times M$

Best-case memory traffic:

- $K \times M$ loads of $A_{k,m}$
- K loads of B_k
- M stores of Z_m

Analysis: What is the Best-Case CI?

Compute Intensity: Multiplications / value

Multiplications : $K \times M$

Lab 1 focuses on this type of analysis of workloads (Einsum)

Best-case memory traffic: $K \times M + K + M$ values

Best-case compute intensity:
$$\frac{K \times M}{K \times M + K + M}$$

Developing the Workload

(1) Describe the architecture

Select from a library of components and organize them by writing an accelerator specification

(2) Develop the workload

Write the cascade, mapping, format, and binding specifications

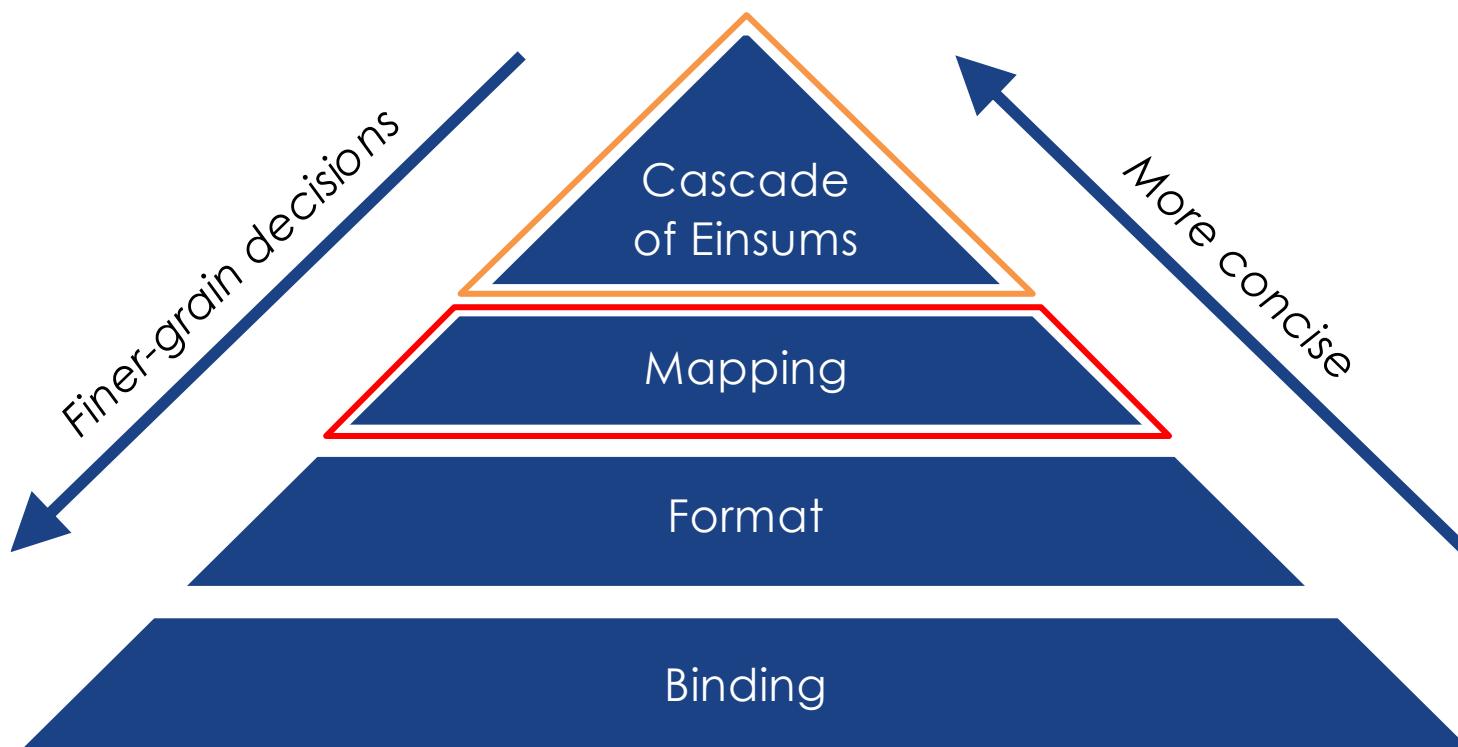
(3) Evaluate the workload

Model the workload and analyze with metrics like number of computes, memory traffic, and AI

(4) Compare implementations

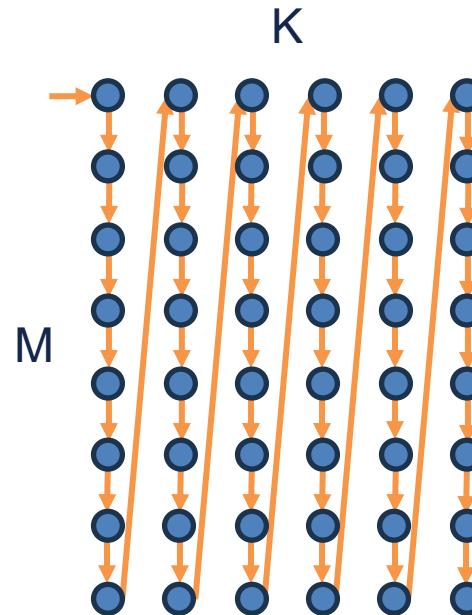
(5) Optimize the design

Separation of Concerns



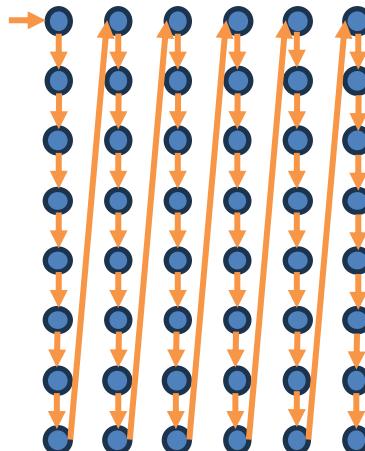
Traversing the Iteration Space

Can do so in any order



Traverse with Loop Nests

```
for k in range(K) :  
    for m in range(M) :  
        Z[m] += A[k, m] * B[k]
```



*Lab 2 & 3 focuses
on traverse order
of iteration space
(mapping)*

Evaluating the Workload

(1) Describe the architecture

Select from a library of components and organize them by writing an accelerator specification

(2) Develop the workload

Write the cascade, mapping, format, and binding specifications

(3) Evaluate the workload

Model the workload and analyze with metrics like number of computes, memory traffic, and compute intensity

(4) Compare implementations

(5) Optimize the design

Analysis: What is the Achieved Traffic?

```
for k in range(K) :
```

```
    for m in range(M) :
```

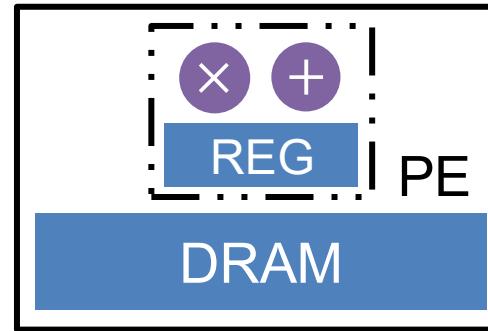
```
        a_reg = A[k, m]
```

```
        b_reg = B[k]
```

```
        z_reg = Z[m]
```

```
        Z[m] += A[k, m] * B[k]
```

```
        Z[m] = z_reg
```



Analysis: What is the Achieved Traffic?

```
for k in range(K) :
```

```
    for m in range(M) :
```

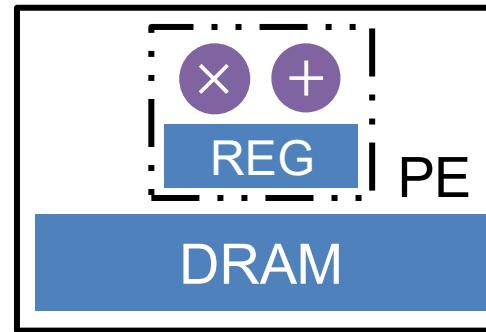
```
        a_reg = A[k, m]
```

```
        b_reg = B[k]
```

```
        z_reg = Z[m]
```

```
        Z[m] += a_reg * B[k]
```

```
        Z[m] = z_reg
```



Analysis: What is the Achieved Traffic?

```
for k in range(K) :
```

```
    for m in range(M) :
```

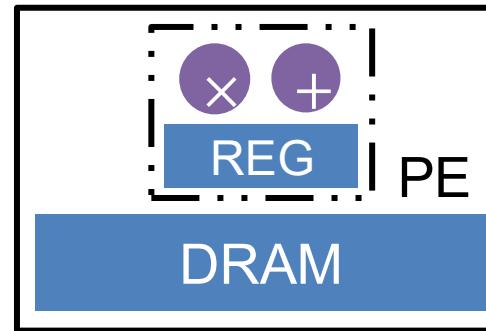
```
        a_reg = A[k, m]
```

```
        b_reg = B[k]
```

```
        z_reg = Z[m]
```

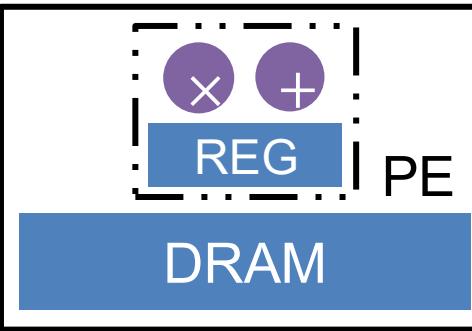
```
        Z[m] += a_reg * b_reg
```

```
        Z[m] = z_reg
```



Analysis: What is the Achieved Traffic?

```
for k in range(K) :  
    for m in range(M) :  
        a_reg = A[k, m]  
        b_reg = B[k]
```



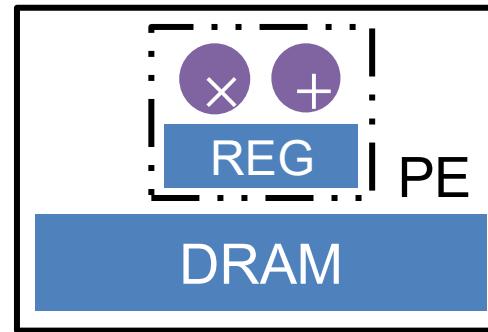
z_reg = Z[m]

z_reg += a_reg * b_reg

Z[m] = z reg

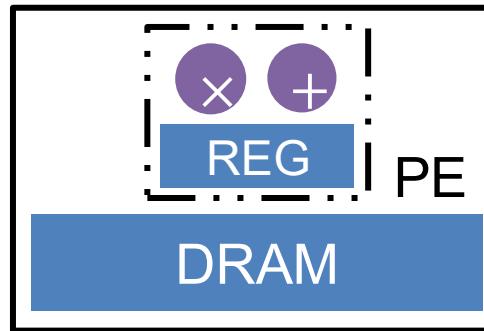
Exploit Stationarity

```
for k in range(K) :  
    for m in range(M) :  
        a_reg = A[k, m]  
        b_reg = B[k]  
        z_reg = Z[m]  
        z_reg += a_reg * b_reg  
        Z[m] = z_reg
```



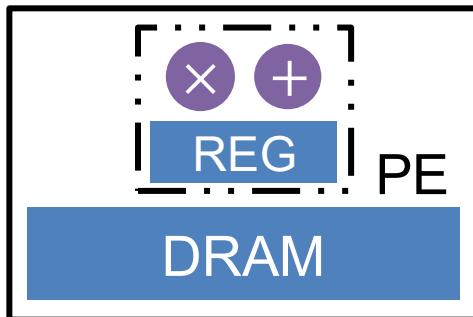
Exploit Stationarity

```
for k in range(K) :  
    b_reg = B[k]  
    for m in range(M) :  
        a_reg = A[k, m]  
        b_reg = B[k]  
        z_reg = Z[m]  
        z_reg += a_reg * b_reg  
    Z[m] = z_reg
```



Analysis: What is the Achieved Traffic?

```
for k in range(K) :
    b_reg = B[k]
    for m in range(M) :
        a_reg = A[k, m]
        z_reg = Z[m]
        z_reg += a_reg * b_reg
    Z[m] = z_reg
```



Achieved memory traffic:

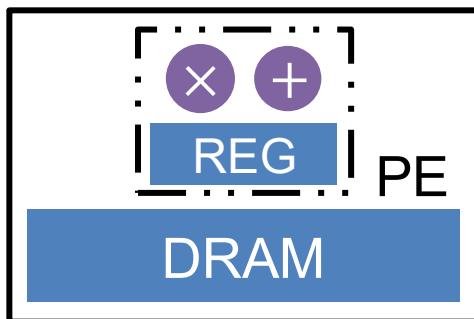
- ▶ $K \times M$ loads of $A_{k,m}$
- ▶ K loads of B_k
- ▶ $(K - 1) \times M$ loads of Z_m
- ▶ $K \times M$ stores of Z_m

Analysis: What is the Achieved Traffic?

```
for k in range(K) :  
    for m in range(M) :  
        Z[m] += A[k,m] * B[k]
```

Achieved memory traffic:

- ▶ $K \times M$ loads of $A_{k,m}$
- ▶ K loads of B_k
- ▶ $(K - 1) \times M$ loads of Z_m
- ▶ $K \times M$ stores of Z_m



Loads and stores are always derivable from the loop order

Analysis: What is the Achieved CI?

Multiplications: $K \times M$

Achieved memory traffic: $3 \times K \times M - M + K$

Achieved compute intensity:
$$\frac{K \times M}{3 \times K \times M - M + K}$$

Example: Best Case vs Achieved CI

$$K = 250; M = 100$$

► Best Case CI

$$\frac{K \times M}{K \times M + K + M} =$$

$$\frac{250 \times 100}{250 \times 100 + 250 + 100} =$$

0.99 Multiplications/value

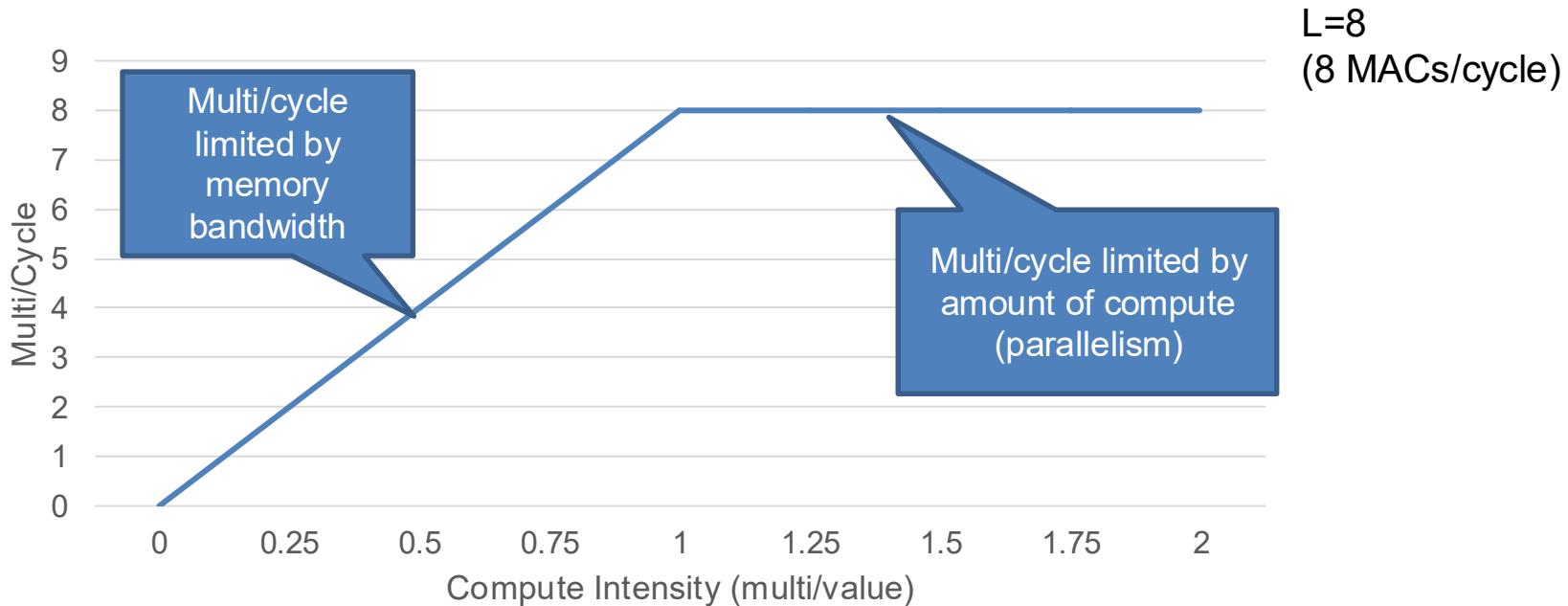
► Achieved CI

$$\frac{K \times M}{3 \times K \times M - M + K} =$$

$$\frac{250 \times 100}{3 \times 250 \times 100 - 100 + 250} =$$

0.33 Multiplications/value

Roofline Model



Williams, Samuel, Andrew Waterman, and David Patterson. "Roofline: an insightful visual performance model for multicore architectures." Communications of the ACM 52.4 (2009): 65-76.

Roofline Model

- Roofline Model is a way to visualize throughput given
 - Memory bandwidth, amount of parallelism, and computational intensity
 - Tells you if more parallelism would help, or more memory bandwidth
 - When memory bound, increasing number of lanes will not increase throughput → parallelism does not always equal speed up in throughput
 - Tells you how far you are from limit
 - Away from limit due to overhead (e.g., stalls, instruction overhead, mapping limitations)
- Compute intensity
 - Theoretical upper bound [max reuse] (best-case compute intensity) (computed in Lab 1)
 - Actual implementation depends on processing order (amount of reuse exploited by hardware)
- Roofline model can be draw for each level of the memory hierarchy (though typically for DRAM)

Accelerator Design Methodology

(1) Describe the architecture

Select from a library of components and organize them by writing an accelerator specification

(2) Develop the workload

Write the cascade, mapping, format, and binding specifications

(3) Evaluate the workload

Model the workload and analyze with metrics like number of computes, memory traffic, and compute intensity

(4) Compare implementations

Write corresponding specifications, normalize hardware parameters, and reevaluate

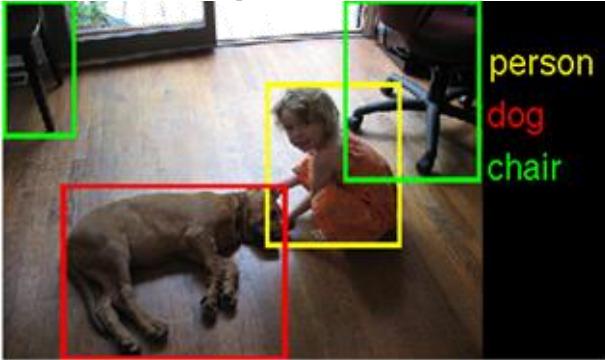
(5) Optimize the design

Incrementally modify one or more specifications

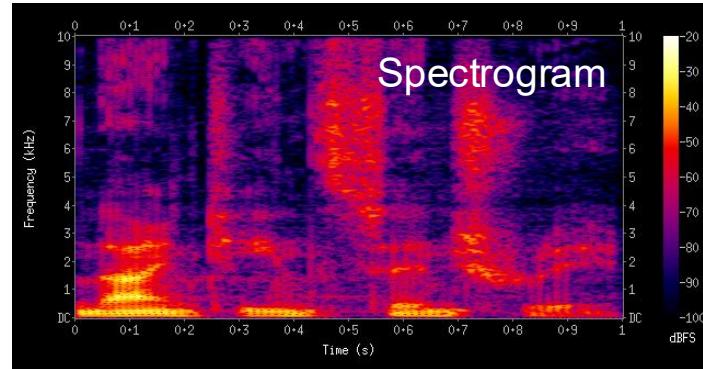
Convolutional Neural Networks (CNNs)

Applications of CNN

Computer Vision

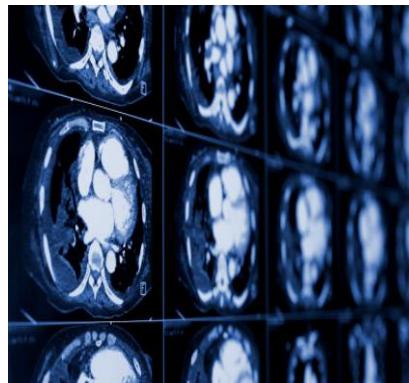


Speech Recognition

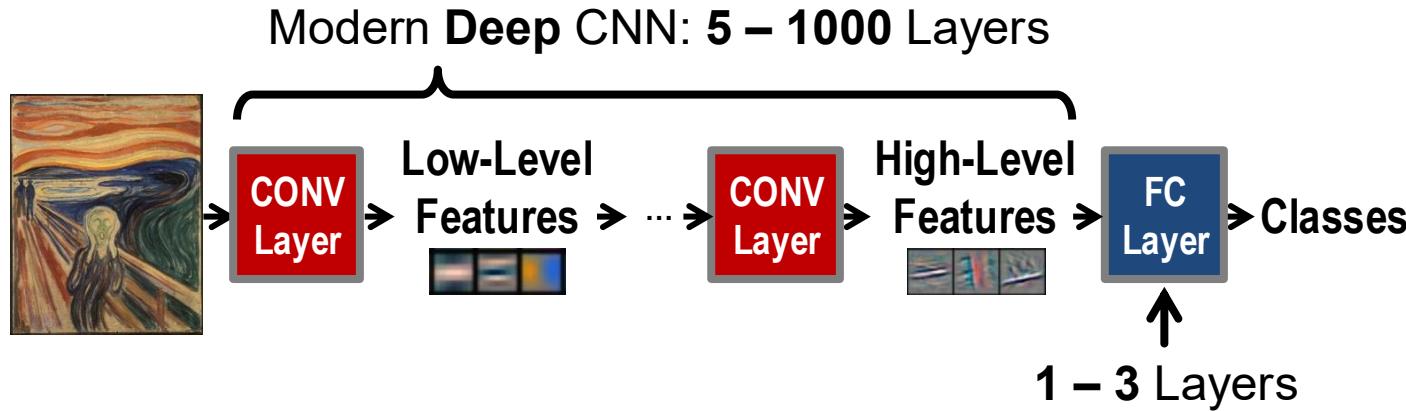


Game Play

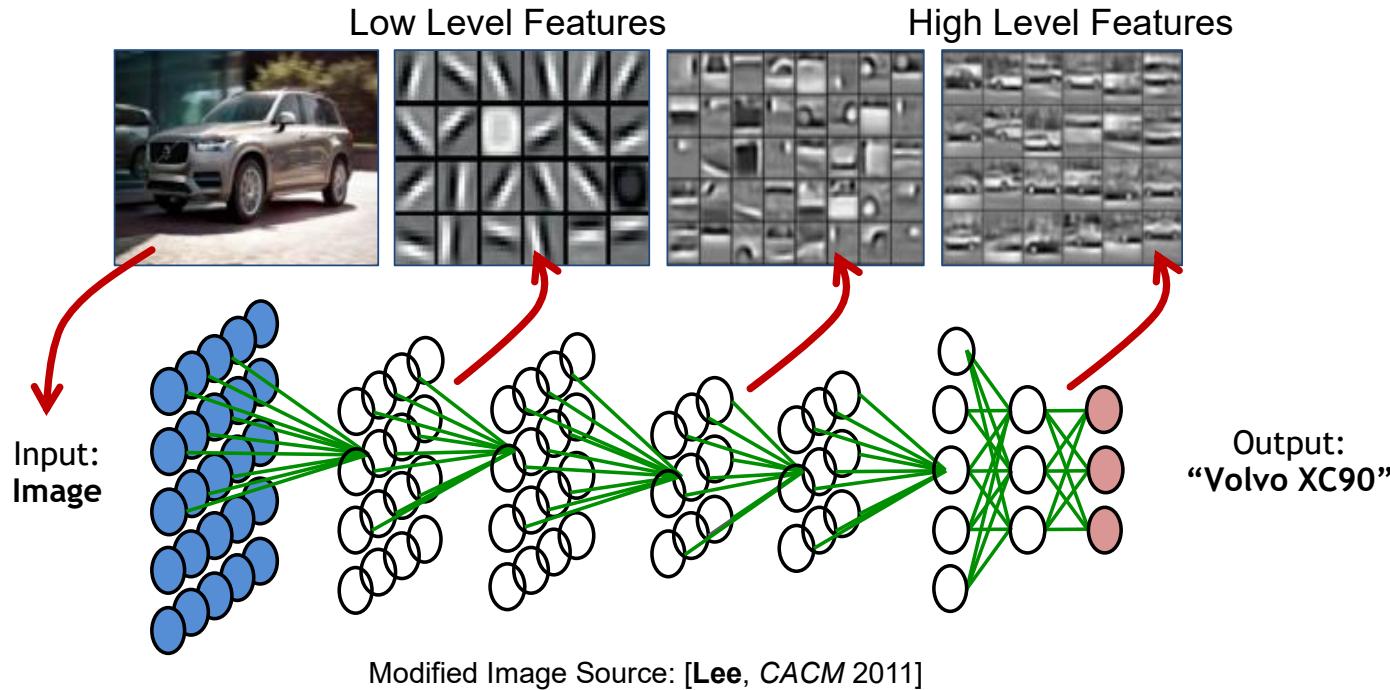
Medical



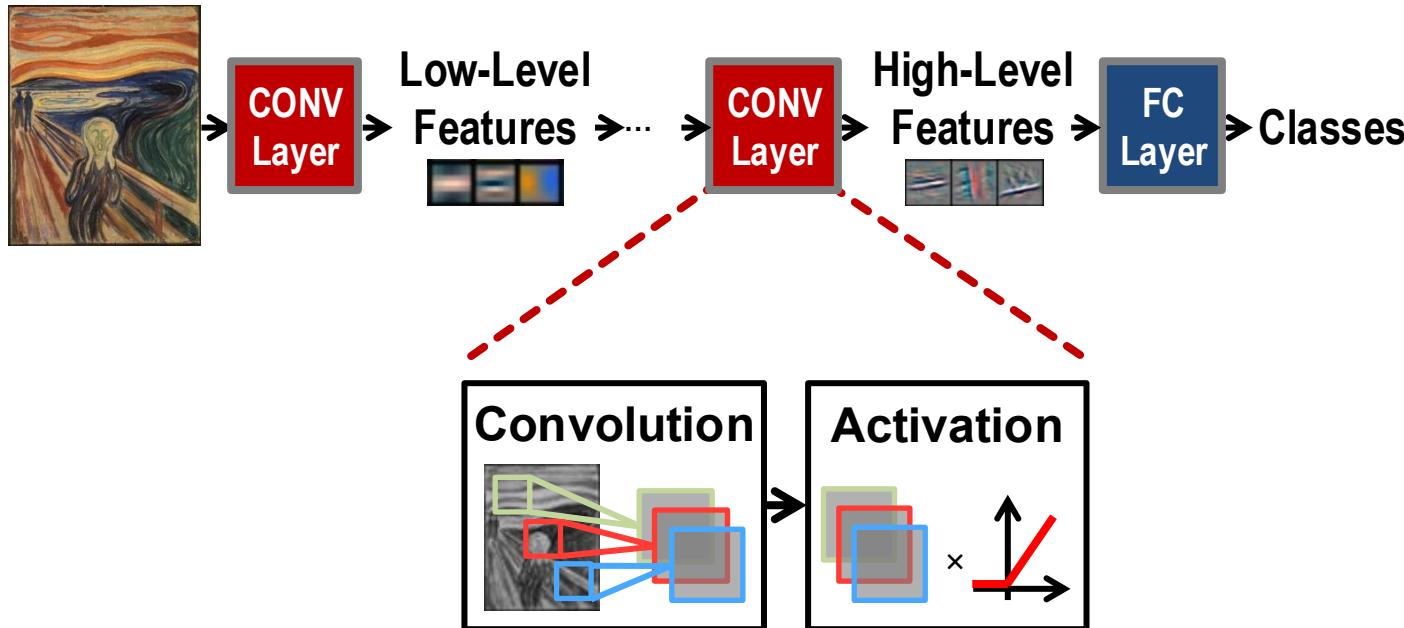
Convolutional Neural Networks



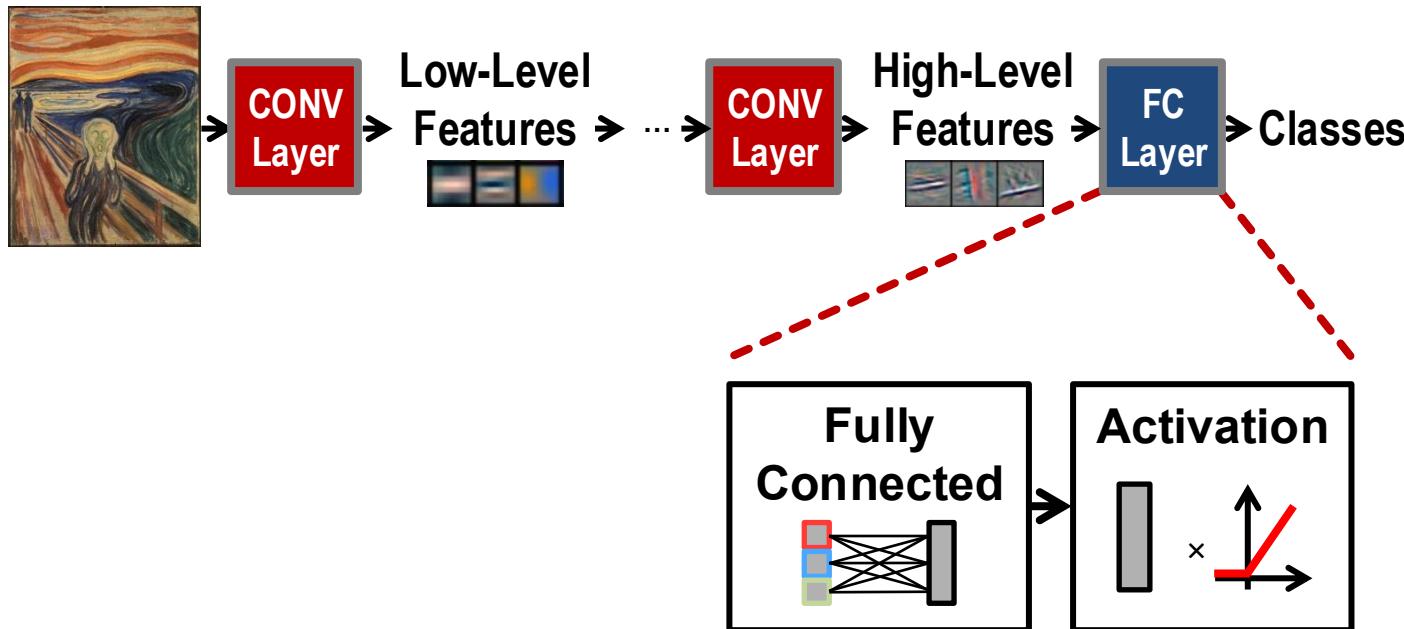
Depth of Network



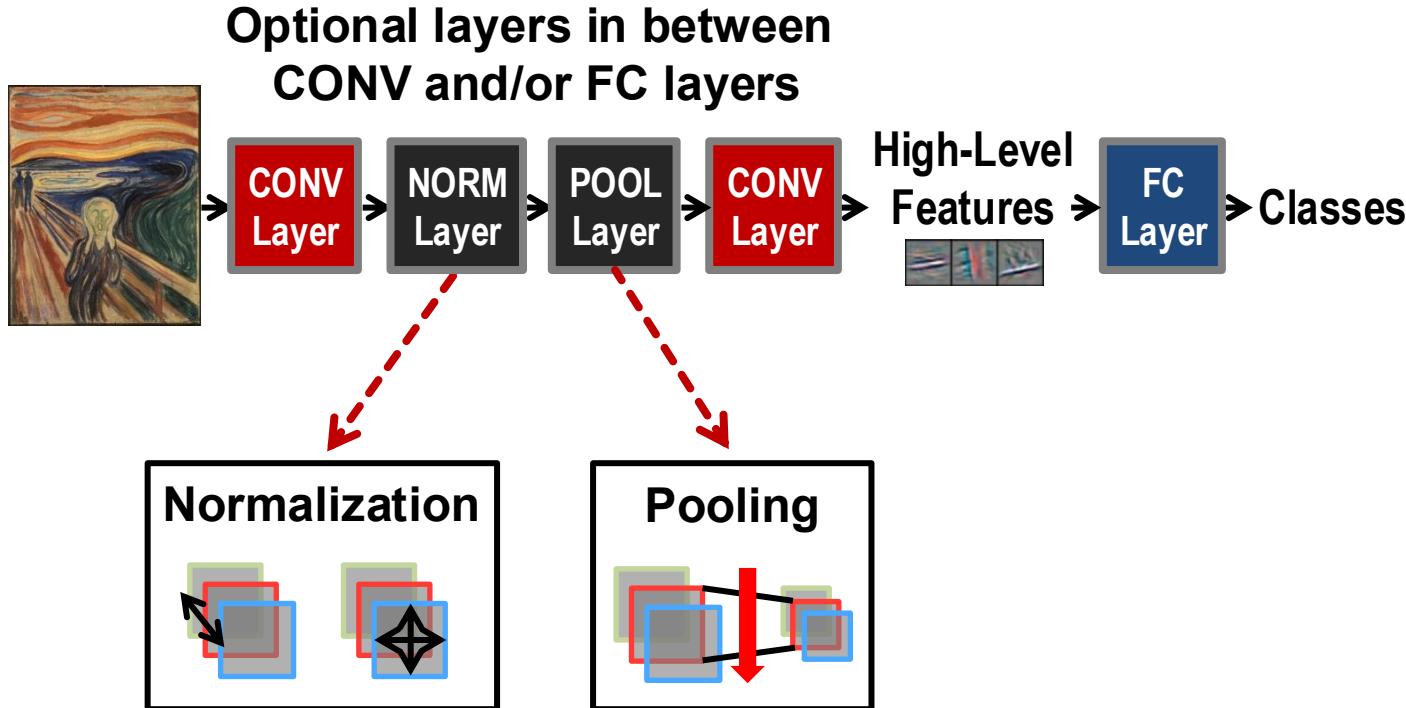
Convolutional Neural Networks



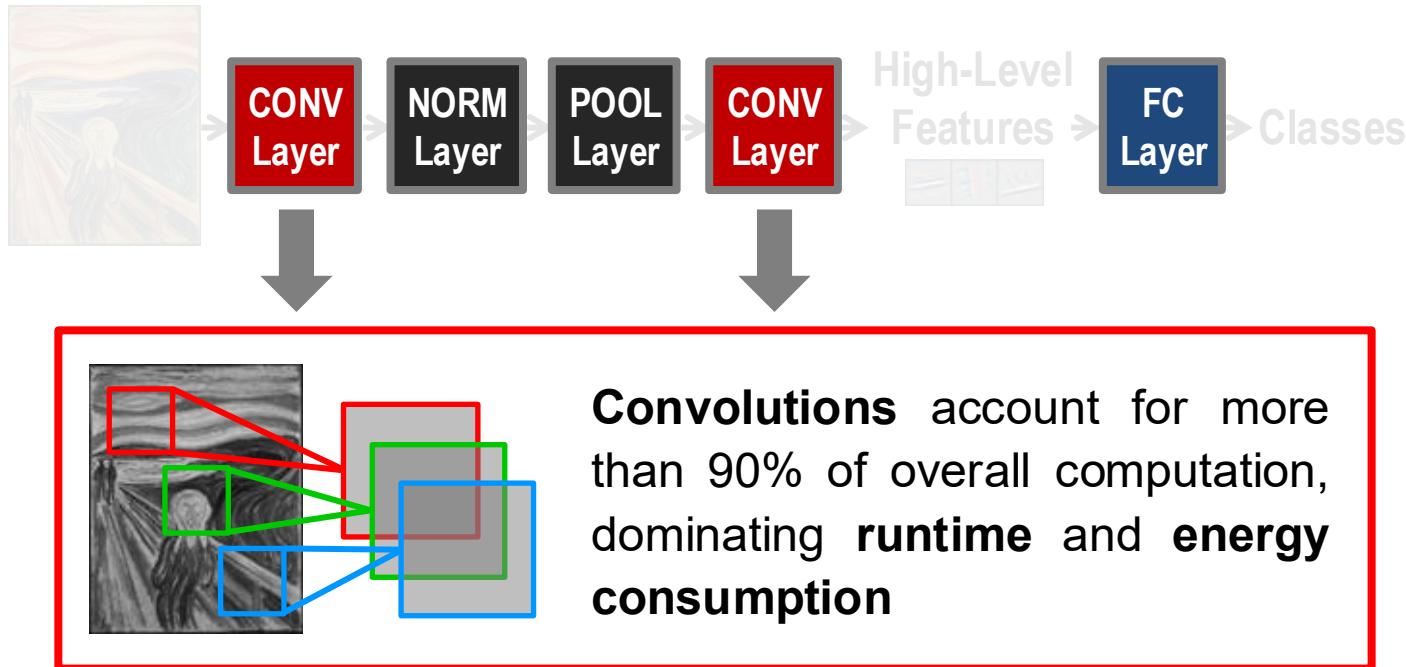
Convolutional Neural Networks



Convolutional Neural Networks



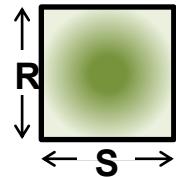
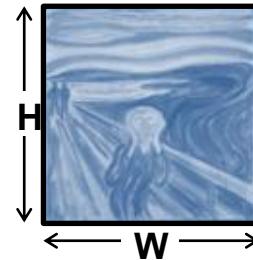
Convolutional Neural Networks



Convolution (CONV) Layer

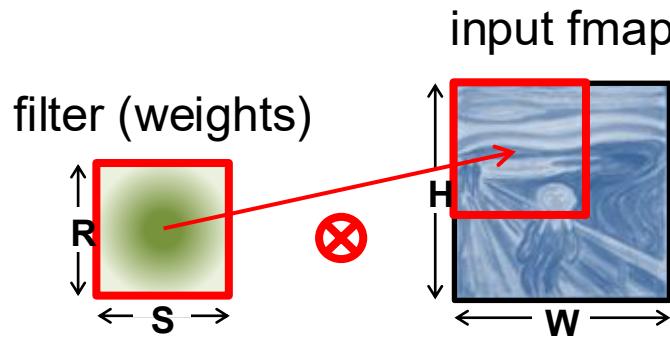
a plane of input activations
a.k.a. **input feature map (fmap)**

filter* (weights)



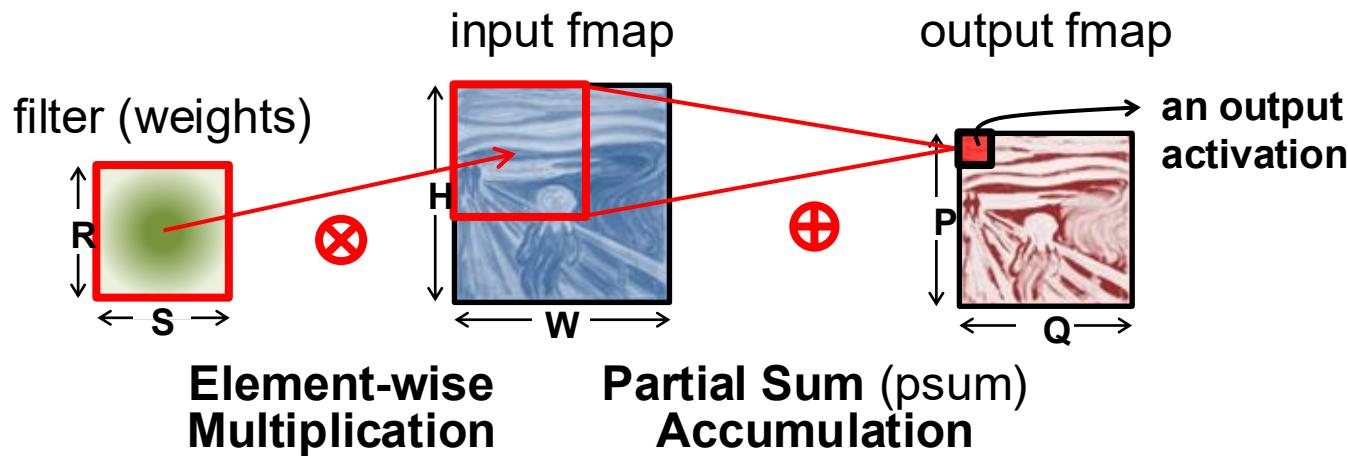
* also referred to as **kernel**

Convolution (CONV) Layer

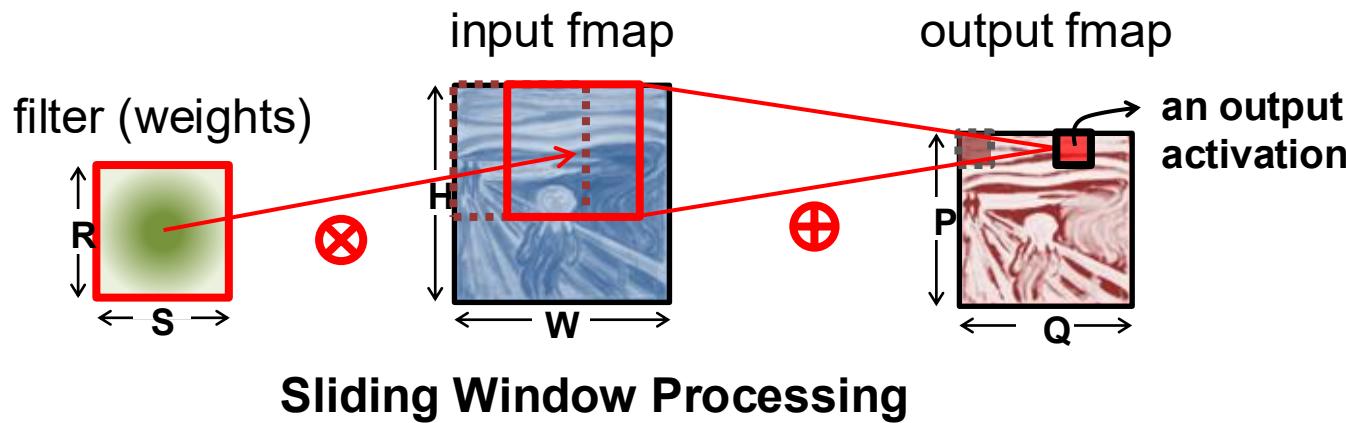


**Element-wise
Multiplication**

Convolution (CONV) Layer



Convolution (CONV) Layer



2D Convolution Example

Convolution (Stride 1)

Filter (3x3)	0	1	0
	1	1	1
	0	1	0

Filter support: 3x3

Also referred to as the **receptive field**
(each output requires 9 multiplications*)

Input Feature Map (5x5)	0	1	2	3	2
	1	2	2	2	0
	0	1	0	1	3
	1	2	2	1	0
	0	1	0	3	1

Output
Feature
Map

*assume no optimization for zeros

2D Convolution Example

Convolution (Stride 1)

Filter
(3x3)

0	1	0
1	1	1
0	1	0

Input
Feature
Map
(5x5)

0	1	2	3	2
1	2	2	2	0
0	1	0	1	3
1	2	2	1	0
0	1	0	3	1

7

Output
Feature
Map

2D Convolution Example

Convolution (Stride 1)

Filter
(3x3)

0	1	0
1	1	1
0	1	0

Input
Feature
Map
(5x5)

0	1	2	3	2
1	2	2	2	0
0	1	0	1	3
1	2	2	1	0
0	1	0	3	1

Output
Feature
Map

7	8
---	---

2D Convolution Example

Convolution (Stride 1)

Filter
(3x3)

0	1	0
1	1	1
0	1	0

Input
Feature
Map
(5x5)

0	1	2	3	2
1	2	2	2	0
0	1	0	1	3
1	2	2	1	0
0	1	0	3	1

Output
Feature
Map

7	8	8
---	---	---

2D Convolution Example

Convolution (Stride 1)

Filter
(3x3)

0	1	0
1	1	1
0	1	0

Input
Feature
Map
(5x5)

0	1	2	3	2
1	2	2	2	0
0	1	0	1	3
1	2	2	1	0
0	1	0	3	1

Output
Feature
Map

7	8	8
5		

2D Convolution Example

Convolution (Stride 1)

Filter
(3x3)

0	1	0
1	1	1
0	1	0

Input
Feature
Map
(5x5)

0	1	2	3	2
1	2	2	2	0
0	1	0	1	3
1	2	2	1	0
0	1	0	3	1

Output
Feature
Map

7	8	8
5	6	

2D Convolution Example

Convolution (Stride 1)

Filter
(3x3)

0	1	0
1	1	1
0	1	0

Input
Feature
Map
(5x5)

0	1	2	3	2
1	2	2	2	0
0	1	0	1	3
1	2	2	1	0
0	1	0	3	1

Output
Feature
Map

7	8	8
5	6	7

2D Convolution Example

Convolution (Stride 1)

Filter	0	1	0
	1	1	1
(3x3)	0	1	0

Input Feature Map (5x5)	0	1	2	3	2	7	8	8
	1	2	2	2	0	5	6	7
	0	1	0	1	3	6	5	7
	1	2	2	1	0			
	0	1	0	3	1			

Size of Output Feature Map = (Input Feature Map – Filter + Stride) / Stride
of multiplications?

2D Convolution Example

Convolution (Stride 2)

Filter
(3x3)

0	1	0
1	1	1
0	1	0

Input
Feature
Map
(5x5)

0	1	2	3	2
1	2	2	2	0
0	1	0	1	3
1	2	2	1	0
0	1	0	3	1

7

Output
Feature
Map

2D Convolution Example

Convolution (Stride 2)

Filter
(3x3)

0	1	0
1	1	1
0	1	0

Input
Feature
Map
(5x5)

0	1	2	3	2
1	2	2	2	0
0	1	0	1	3
1	2	2	1	0
0	1	0	3	1

Output
Feature
Map

7	8
---	---

2D Convolution Example

Convolution (Stride 2)

Filter
(3x3)

0	1	0
1	1	1
0	1	0

Input
Feature
Map
(5x5)

0	1	2	3	2
1	2	2	2	0
0	1	0	1	3
1	2	2	1	0
0	1	0	3	1

Output
Feature
Map

7	8
6	

2D Convolution Example

Convolution (Stride 2)

Filter
(3x3)

0	1	0
1	1	1
0	1	0

Input
Feature
Map
(5x5)

0	1	2	3	2
1	2	2	2	0
0	1	0	1	3
1	2	2	1	0
0	1	0	3	1

Output
Feature
Map

7	8
6	7

2D Convolution Example

Convolution (Stride 2)

Filter	0	1	0
	1	1	1
(3x3)	0	1	0

Input Feature Map (5x5)	0	1	2	3	2	7	8
	1	2	2	2	0	6	7
	0	1	0	1	3		
	1	2	2	1	0		
	0	1	0	3	1		

Size of Output Feature Map = (Input Feature Map – Filter + Stride) / Stride
of multiplications?

2D Convolution Example

Convolution (Stride 3)

Filter	0	1	0
(3x3)	1	1	1
	0	1	0

Input Feature Map (5x5)	<table border="1"> <tr><td>0</td><td>1</td><td>2</td><td>3</td><td>2</td></tr> <tr><td>1</td><td>2</td><td>2</td><td>2</td><td>0</td></tr> <tr><td>0</td><td>1</td><td>0</td><td>1</td><td>3</td></tr> <tr><td>1</td><td>2</td><td>2</td><td>1</td><td>0</td></tr> <tr><td>0</td><td>1</td><td>0</td><td>3</td><td>1</td></tr> </table>	0	1	2	3	2	1	2	2	2	0	0	1	0	1	3	1	2	2	1	0	0	1	0	3	1	Output Feature Map (1x1)	7
0	1	2	3	2																								
1	2	2	2	0																								
0	1	0	1	3																								
1	2	2	1	0																								
0	1	0	3	1																								

Size of Output Feature Map = (Input Feature Map – Filter + Stride) / Stride
of multiplications?

Impact of Stride on Convolution

Stride > 1 is equivalent to **downsampling** the output feature map when Stride =1

	Stride 1	Stride 2	Stride 3													
Output Feature Map (3x3)	<table border="1"><tr><td>7</td><td>8</td><td>8</td></tr><tr><td>5</td><td>6</td><td>7</td></tr><tr><td>6</td><td>5</td><td>7</td></tr></table>	7	8	8	5	6	7	6	5	7	<table border="1"><tr><td>7</td><td>8</td></tr><tr><td>6</td><td>7</td></tr></table>	7	8	6	7	7
7	8	8														
5	6	7														
6	5	7														
7	8															
6	7															
Output Feature Map (2x2)																

Zero Padding

- The size of the output shrinks relative to the input
- Use **zero padding** to control the size of the output
- Can set padding based on filter size such that the output size is equal to original the input size

0	1	2	3	2
1	2	2	2	0
0	1	0	1	3
1	2	2	1	0
0	1	0	3	1

0	0	0	0	0	0	0
0	0	1	2	3	2	0
0	1	2	2	2	0	0
0	0	1	0	1	3	0
0	1	2	2	1	0	0
0	0	1	0	3	1	0
0	0	0	0	0	0	0

2D Convolution Example

Convolution (Stride 1) + zero padding

Filter	0	1	0
	1	1	1
(3x3)	0	1	0

Input Feature Map (7x7)	0	0	0	0	0	0	0	0	5
	0	0	1	2	3	2	0	3	7
	0	1	2	2	2	0	0	5	6
	0	0	1	0	1	3	0	6	7
	0	1	2	2	1	0	0	7	5
	0	0	1	0	3	1	0	2	3
	0	0	0	0	0	0	0	3	4

Output Feature Map (5x5)

Zero Padding in PyTorch

- **padding** (*python:int or tuple, optional*) added to input. Default: 0
 - <https://pytorch.org/docs/stable/nn.html#padding-layers>
 - Ex: padding=1, pad 1 to the top, bottom, right, and left.
 - Ex. padding=[1,2], pad 1 to the top and bottom, pad 2 to the right and left
- Default: No zero padding
 - filter is RxS and input is HxW, and stride U
 - output is $(H-R+U)/U \times (W-S+U)/U$
- Padding=[(R-1)/2, (S-1)/2]: zero padding so that output remains the same for U=1
 - filter is RxS and input is HxW, and stride U
 - output is $\text{ceil}(H/U) \times \text{ceil}(W/U)$
- Padding is not always explicitly defined, but can be inferred from the size of the feature map
 - Deep networks use padding to prevent feature maps from shrinking
- Different frameworks can use different types of padding

Depth of Network: Convolution

As you go deeper into the network, more pixels contribute to each activation.

Example: 3x3 filter

0	0	0	0	0	0	0	0
0	0	1	2	3	2	0	0
0	1	2	2	2	0	0	0
0	0	1	0	1	3	0	0
0	1	2	2	1	0	0	0
0	0	1	0	3	1	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Input to

Layer 1

0	0	0	0	0	0	0	0
0	0	1	2	3	2	0	0
0	1	7	8	8	0	0	0
0	0	5	6	7	3	0	0
0	1	6	5	7	0	0	0
0	0	1	0	3	1	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

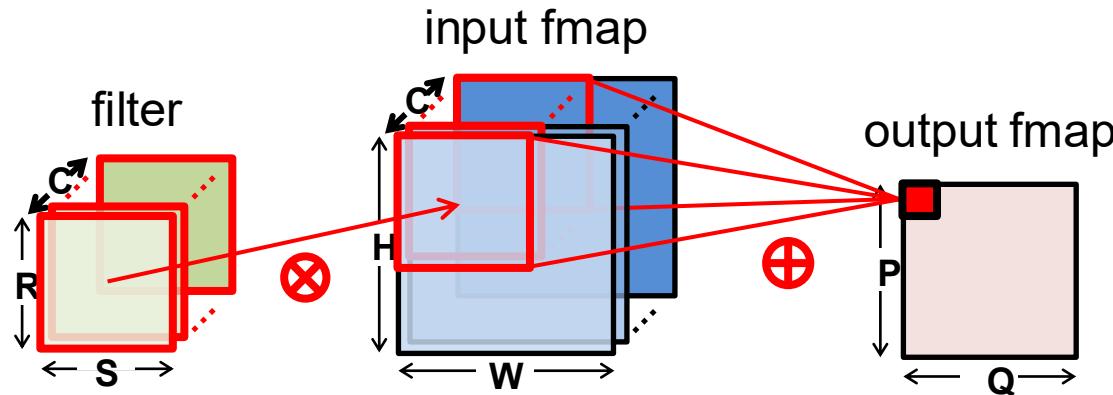
Layer 2

0	0	0	0	0	0	0	0
0	0	1	2	3	2	0	0
0	1	2	2	2	0	0	0
0	0	1	31	1	3	0	0
0	1	2	2	1	0	0	0
0	0	1	0	3	1	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Layer 3

Feature maps of deep layers typically give higher level features

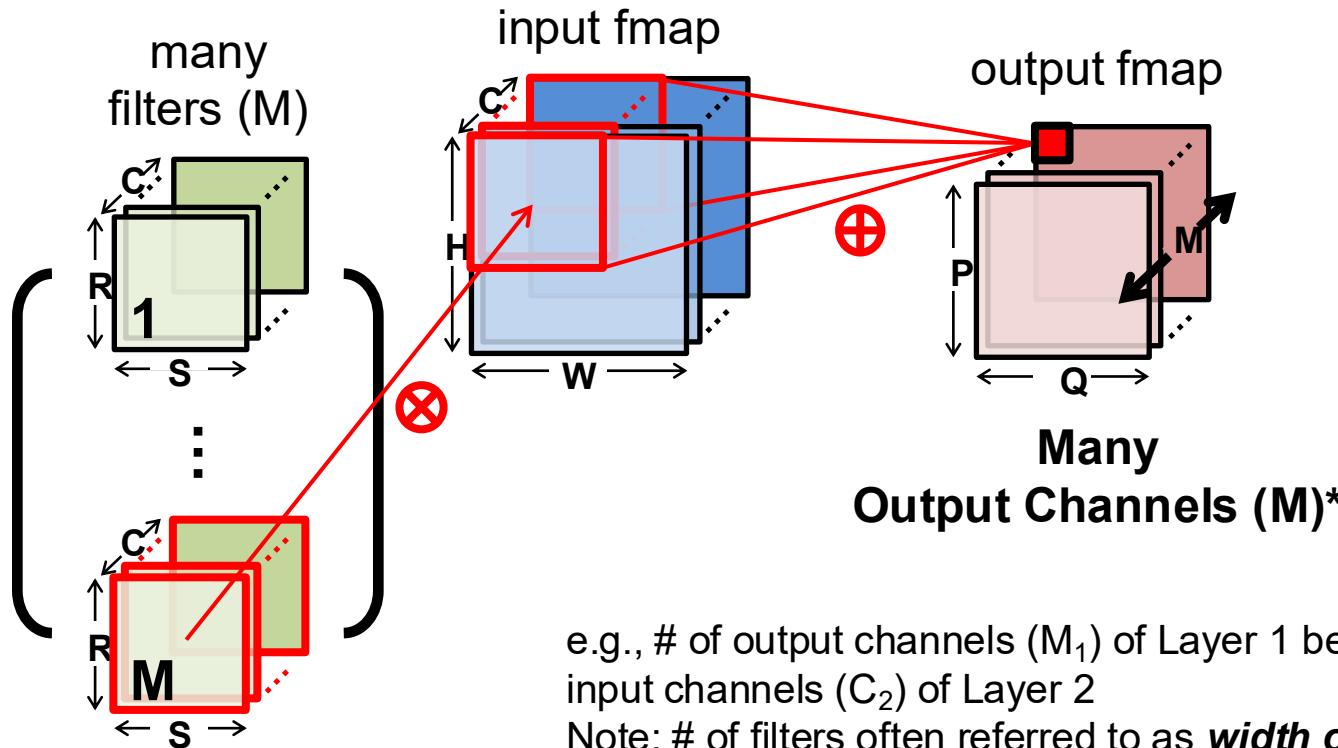
Convolution (CONV) Layer



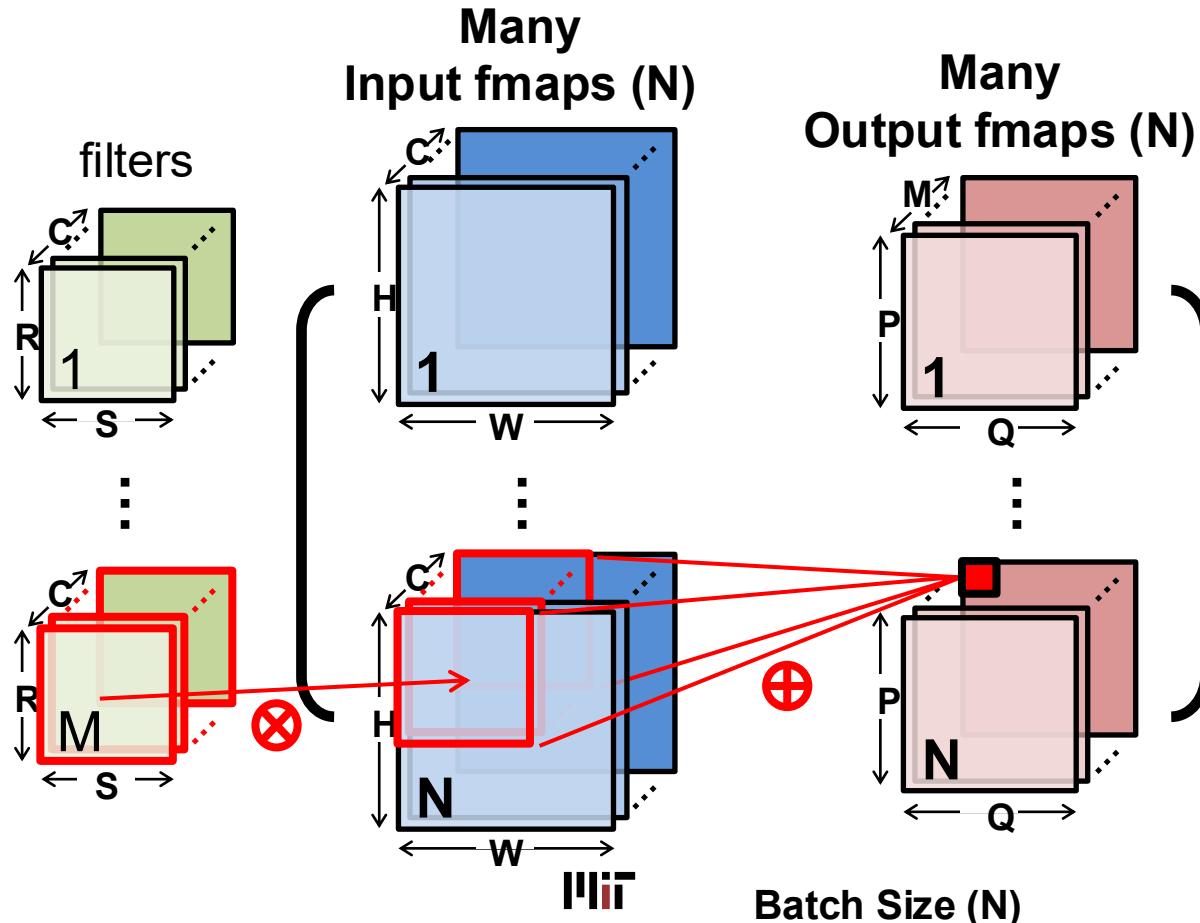
Many Input Channels (C)

e.g., For Layer 1, $C=3$ for the red, green, and blue components of an image

Convolution (CONV) Layer



Convolution (CONV) Layer



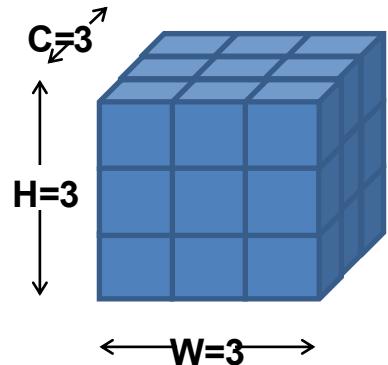
CNN Decoder Ring

- **N** – Number of **input fmmaps/output fmmaps** (batch size)
- **C** – Number of channels in **input fmmaps** (activations) & **filters** (weights)
- **H** – Height of **input fmap** (activations)
- **W** – Width of **input fmap** (activations)
- **R** – Height of **filter** (weights)
- **S** – Width of **filter** (weights)
- **M** – Number of channels in **output fmmaps** (activations)
- **P** – Height of **output fmap** (activations)
- **Q** – Width of **output fmap** (activations)
- **U** – Stride of convolution

These variables define the **rank** and **shape** of the various tensors (input fmap, filter, output fmap)

Input Feature Map (fmap) Tensor

Input fmap (activations)



In this example, the input feature map has **three ranks*** named C, H and W

The **rank shapes** are C=3, H=3, and W=3

$I[C][H][W]$

*technically also has fourth rank N, with shape of N=1

CONV Layer Tensor Computation

Output fmap (O)

Input fmap (I)

Biases (B)

Filter weights (W)

$$\underline{\mathbf{o}[n][m][p][q]} = \underline{\mathbf{b}[m]} + \sum_{c=0}^{C-1} \sum_{r=0}^{R-1} \sum_{s=0}^{S-1} \underline{\mathbf{i}[n][c][Up+r][Uq+s]} \times \underline{\mathbf{f}[m][c][r][s]}$$

$$0 \leq n < N, 0 \leq m < M, 0 \leq p < P, 0 \leq q < Q,$$

$$P = (H - R + U)/U, Q = (W - S + U)/U.$$

Shape Parameter	Description
N	batch size of 3-D fmaps
M	# of 3-D filters / # of ofmap channels
C	# of ifmap/filter channels
H/W	ifmap plane height/width
R/S	filter plane height/width (= H or W in FC)
P/Q	ofmap plane height/width (= 1 in FC)

Einstein Notation (Einsum)

Algebraic Notation

$$\mathbf{o}[n][m][p][q] = \mathbf{b}[m] + \sum_{c=0}^{C-1} \sum_{r=0}^{R-1} \sum_{s=0}^{S-1} \mathbf{i}[n][c][Up+r][Uq+s] \times \mathbf{f}[m][c][r][s]$$

Einsum Notation

$$O_{n,m,p,q}$$

$$= B_m + I_{n,c,U \times p+r, U \times q+s} \times F_{m,c,r,s}$$

Einsum does not enforce any computational order

(function in Numpy, Pytorch and Tensorflow)

[Einstein, *Annalen der Physik* 1916], [Kjolstad, TACO, OOPSLA 2017], [Parashar, Timeloop, ISPASS 2019]

CONV Layer Implementation

Naïve 7-layer for-loop implementation:

```
for n in [0..N):
    for m in [0..M):
        for q in [0..Q):
            for p in [0..P):
```

} for each output fmap value

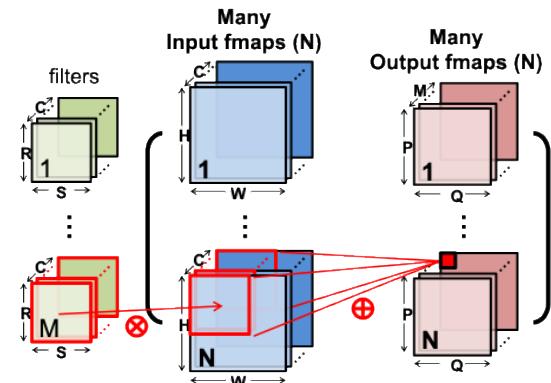
convolve
a window
and apply
activation

```


$$o[n][m][p][q] = B[m];
for c in [0..C):
    for r in [0..R):
        for s in [0..S):
            o[n][m][p][q] += I[n][c][Up+r][Uq+s]
            \times F[m][c][r][s];$$


```

$$o[n][m][p][q] = \text{Activation}(o[n][m][p][q]);$$

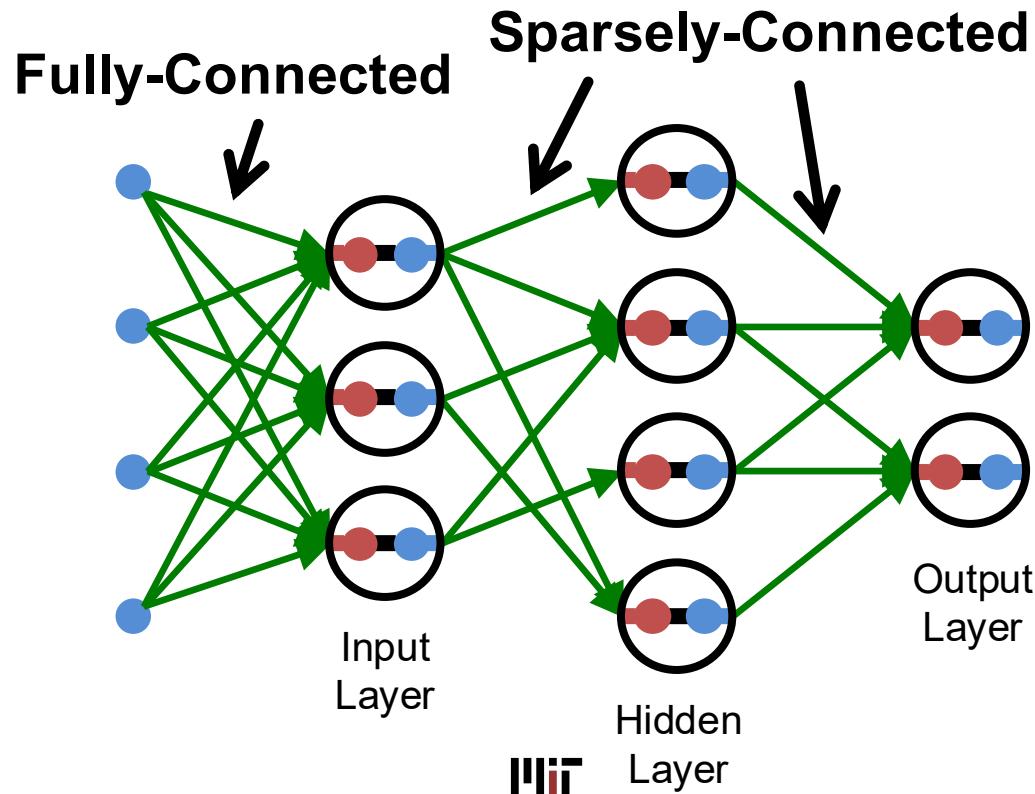


Note that loop nest enforces an order \rightarrow Einsum is more general!

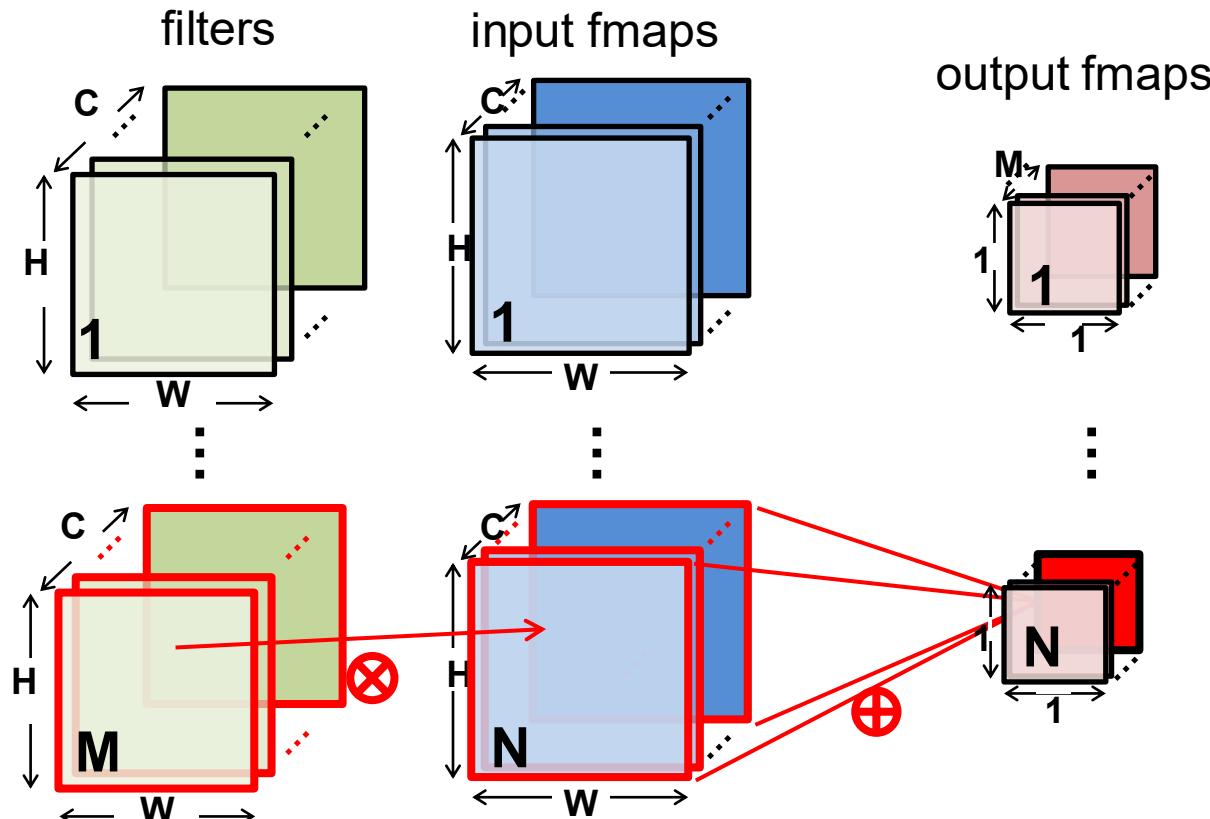
Fully Connected Layer

Fully-Connected (FC) Layer

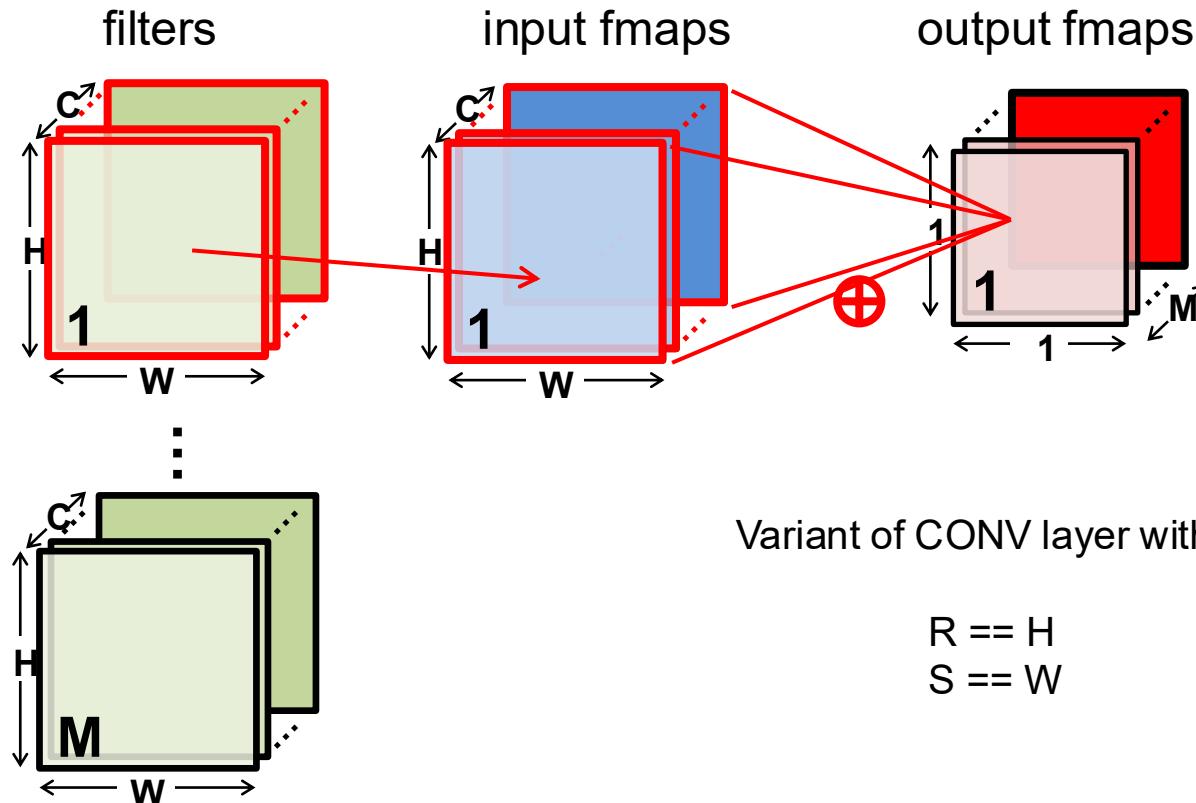
Fully-Connected: all i/p neurons connected to all o/p neurons



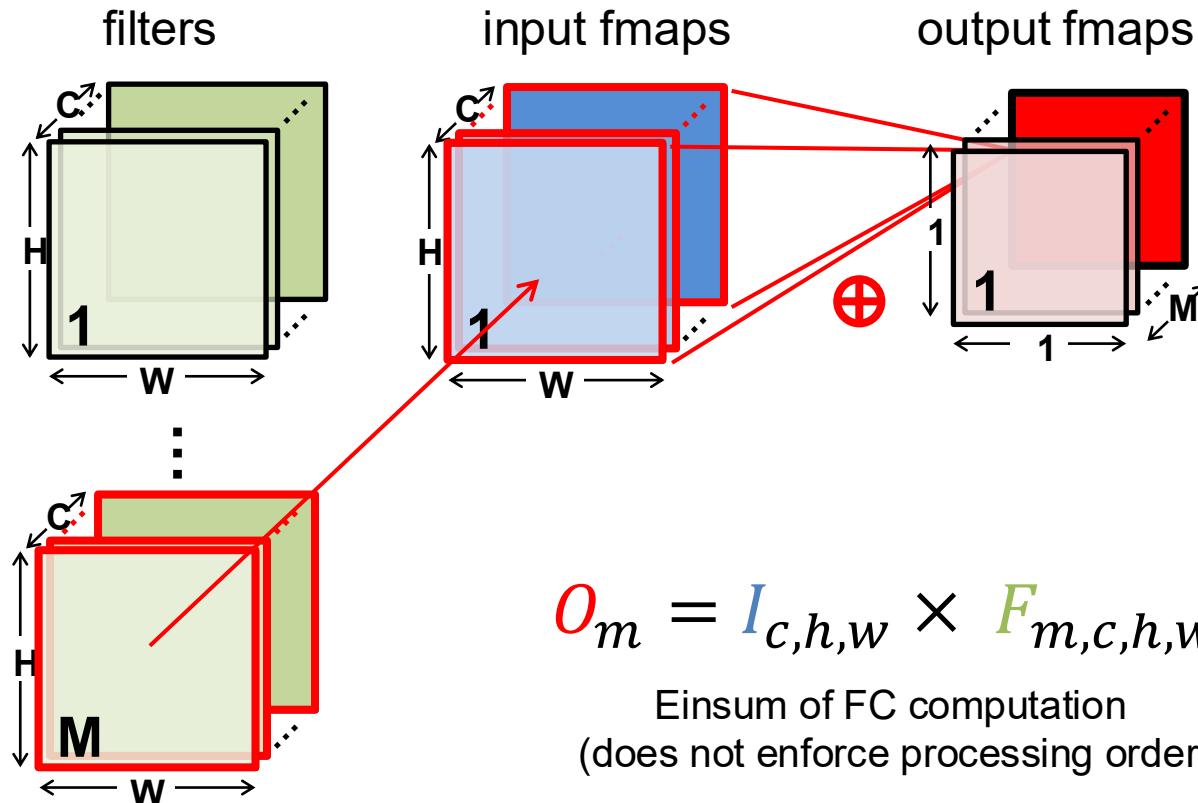
FC Layer – from CONV Layer POV



Fully Connected Computation



Fully Connected Computation



Fully Connected Computation

```
int i[C][H][W];      # Input activations
int f[M][C][H][W];  # Filter weights
int o[M];            # Output activations
```

```
for m in [0, M):
    o[m] = 0;
    for c in [0, C):
        for h in [0, H):
            for w in [0, W):
                o[m] += i[c][h][w]*f[m][c][h][w]
```

Should be bias, which
we will ignore for
simplicity

Loop nest of FC computation
(enforces some processing order)

Convert FC Compute to Matrix-Vector Multiply

```

int i[C][H][W];      # Input activations
int f[M][C][H][W];  # Filter weights
int o[M];            # Output activations

for m in [0, M):
    o[m] = 0;
    for c in [0, C):
        for h in [0, H):
            for w in [0, W):
                o[m] += i[c][h][w]*f[m][c][h][w]

```

Flatten C, H, W ranks to CHW

```

int i[CHW];          # Input activations
int f[M][CHW];       # Filter weights
int o[M];            # Output activations

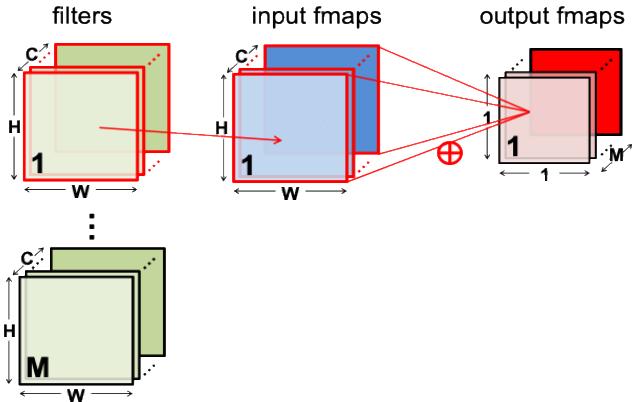
for m in [0, M):
    o[m] = 0;
    for chw in [0, CHW):
        o[m] += i[chw]*f[CHW*m + chw]

```

Convert FC Compute to Matrix-Vector Multiply

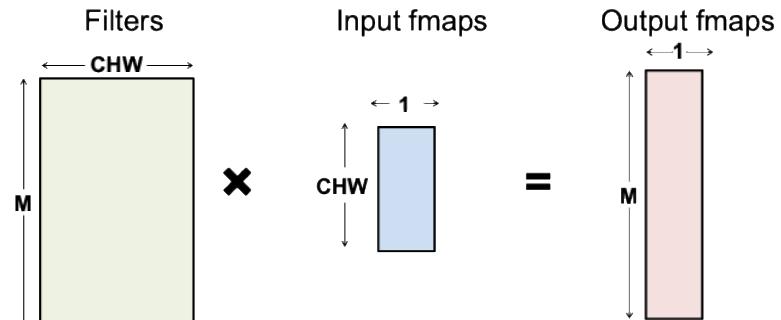
```
int i[C][H][W];      # Input activations
int f[M][C][H][W];  # Filter weights
int o[M];            # Output activations
```

```
for m in [0, M):
    o[m] = 0;
    for c in [0, C):
        for h in [0, H):
            for w in [0, W):
                o[m] += i[c][h][w]*f[m][c][h][w]
```



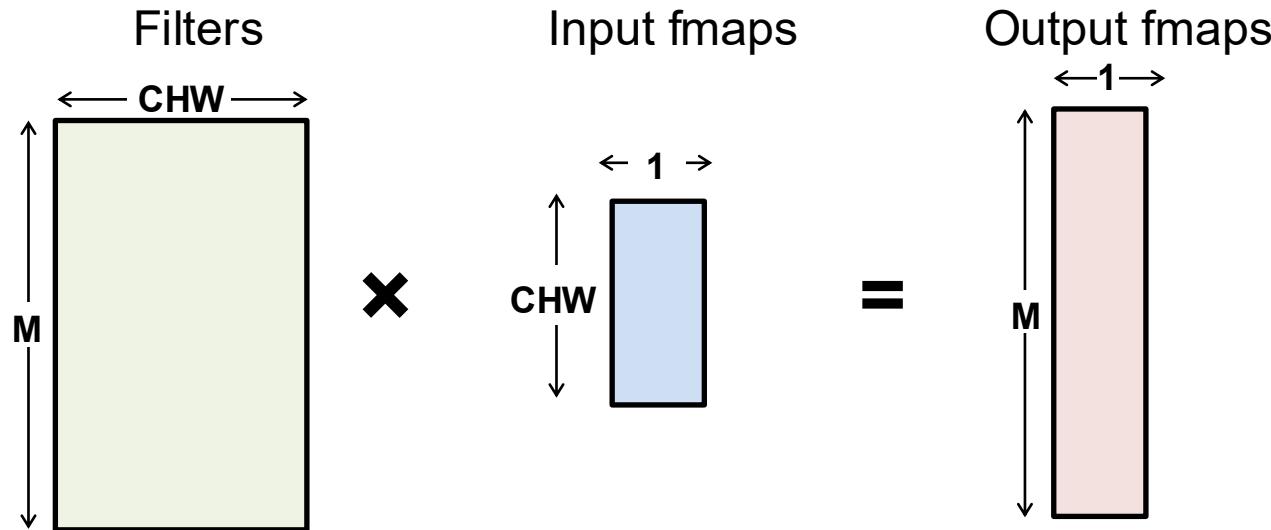
```
int i[CHW];           # Input activations
int f[M][CHW];       # Filter weights
int o[M];            # Output activations
```

```
for m in [0, M):
    o[m] = 0;
    for chw in [0, CHW):
        o[m] += i[chw]*f[m][chw]
```



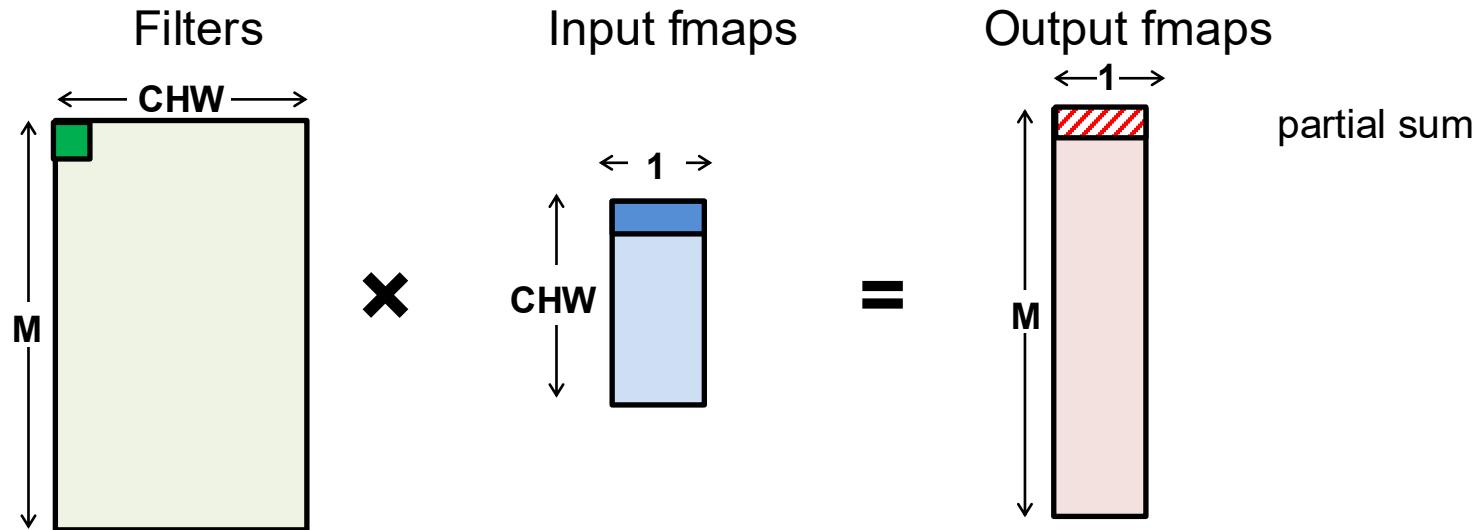
FC Compute as Matrix-Vector Multiply

Multiply all inputs in all channels by a weight and sum



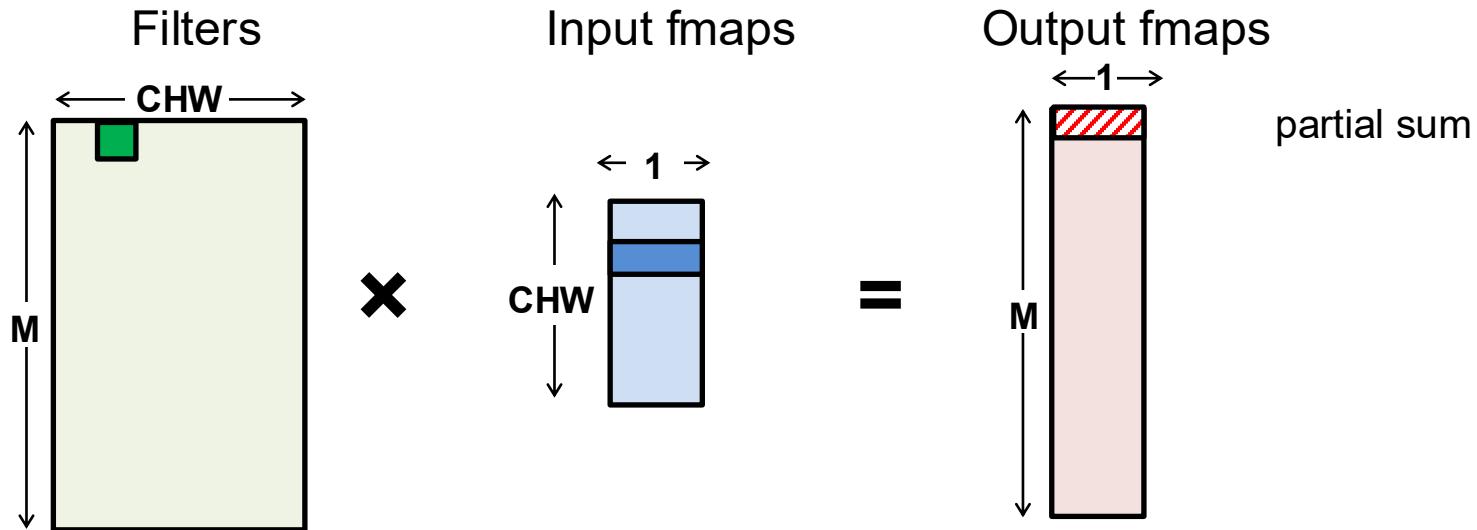
FC Compute as Matrix-Vector Multiply

Multiply all inputs in all channels by a weight and sum
(increment chw)



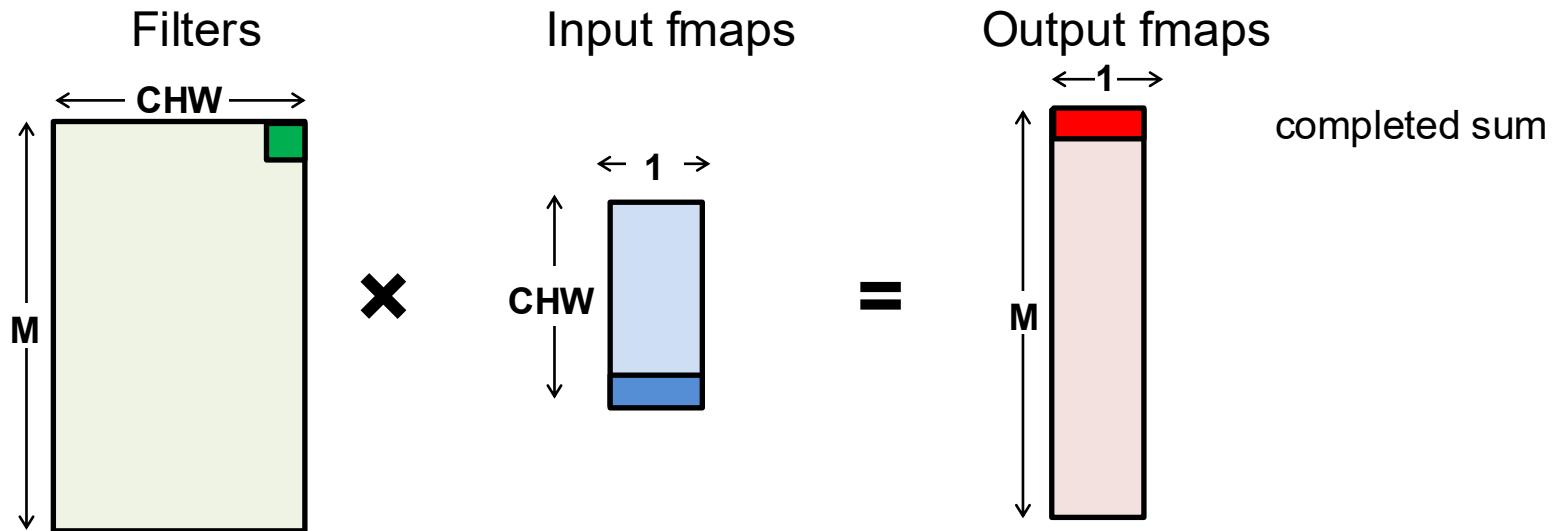
FC Compute as Matrix-Vector Multiply

Multiply all inputs in all channels by a weight and sum
(increment chw)



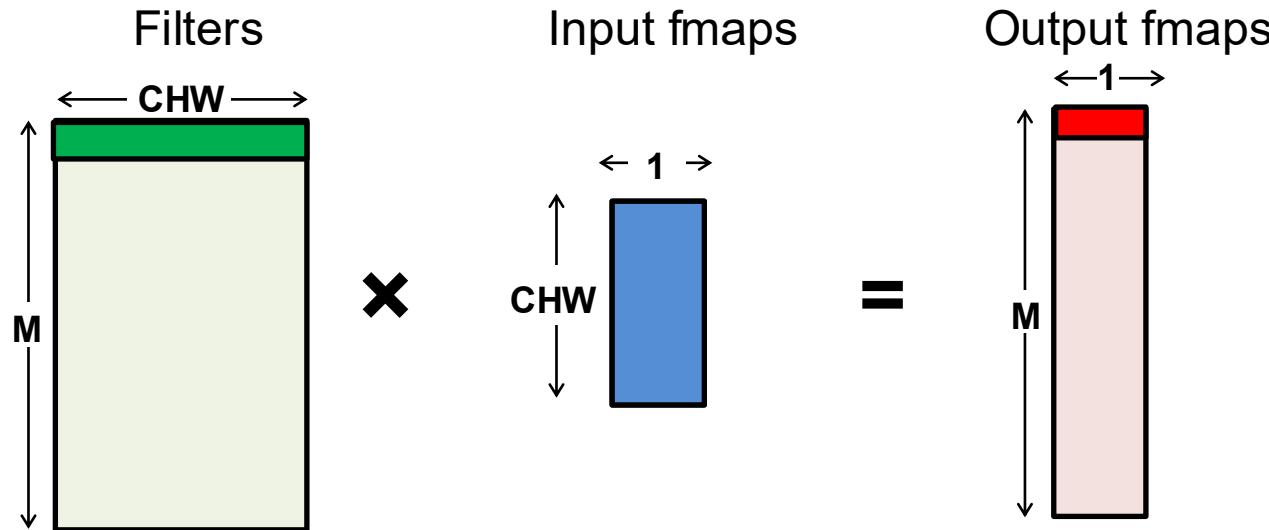
FC Compute as Matrix-Vector Multiply

Multiply all inputs in all channels by a weight and sum
(increment chw)



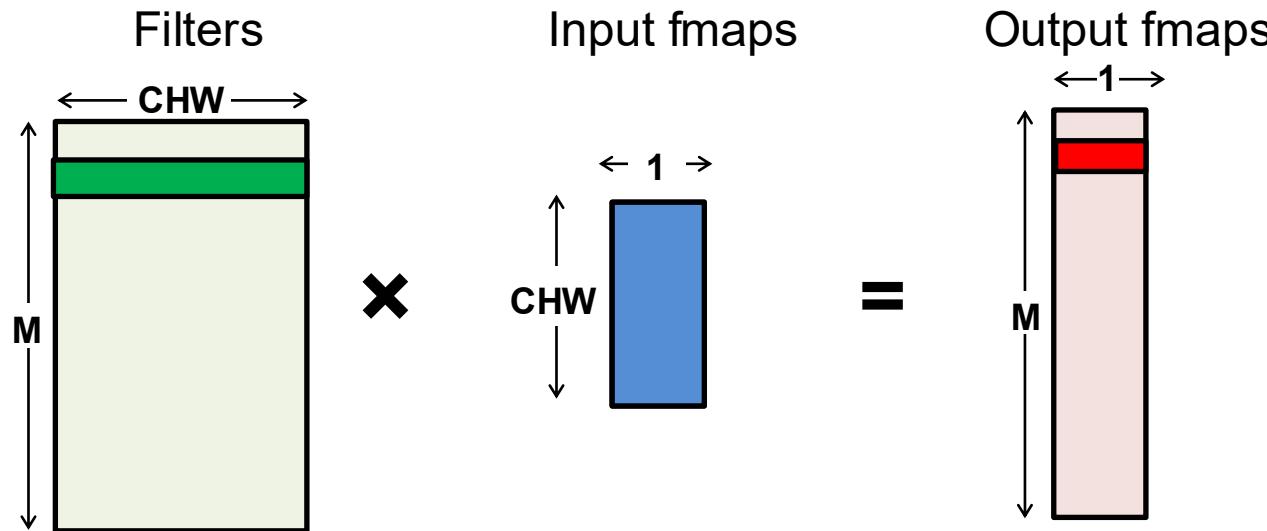
FC Compute as Matrix-Vector Multiply

Multiply all inputs in all channels by a weight and sum



FC Compute as Matrix-Vector Multiply

Multiply all inputs in all channels by a weight and sum
(increment m)



Einsum for Flattened FC

Original

Flattened

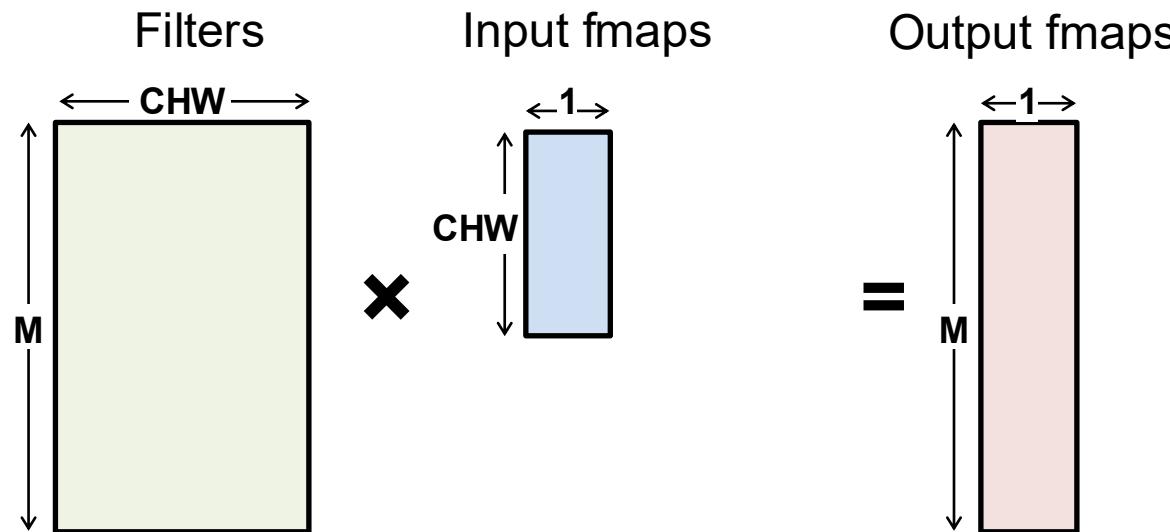
$$I_{c,h,w} \rightarrow I_{H \times W \times c + W \times h + w} \rightarrow I_{chw}$$

$$F_{m,c,h,w} \rightarrow F_{m,H \times W \times c + W \times h + w} \rightarrow F_{m,chw}$$

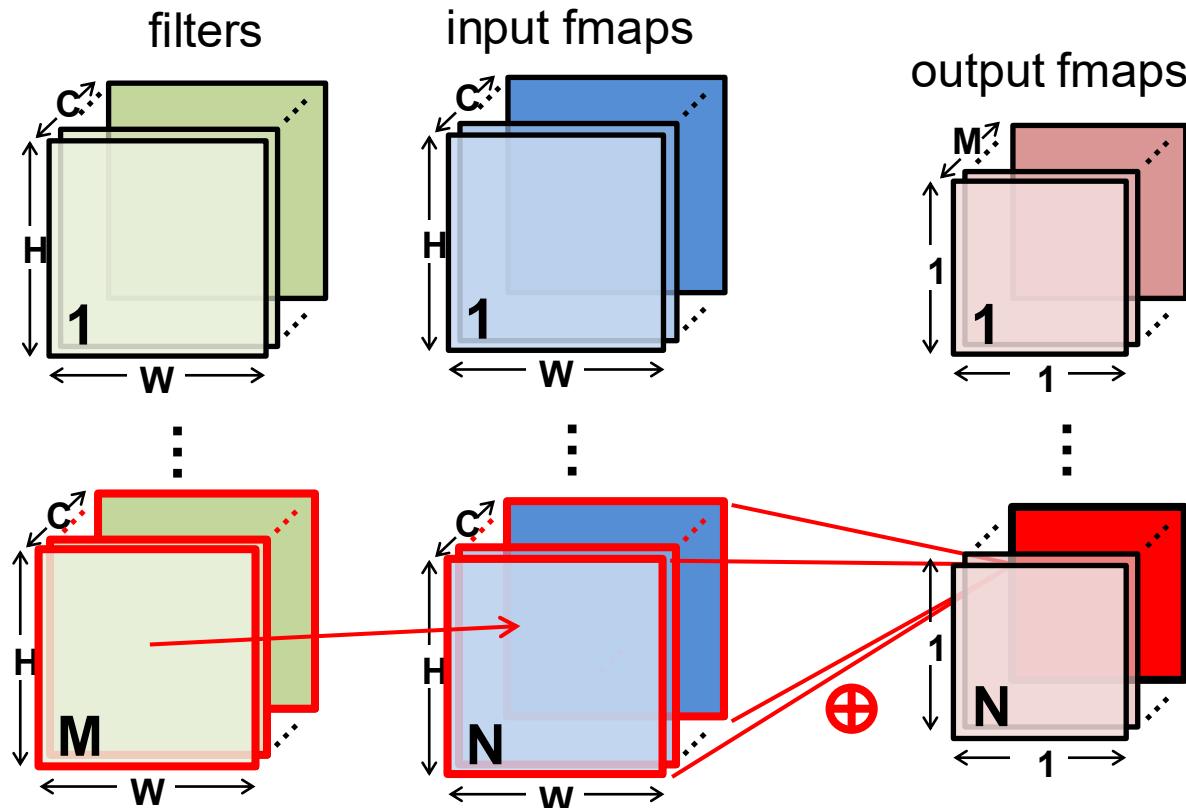
$$O_m = I_{c,h,w} \times F_{m,c,h,w} \rightarrow O_m = I_{chw} \times F_{m,chw}$$

Einsum for FC as Matrix Vector

$$O_m = I_{chw} \times F_{m,chw}$$

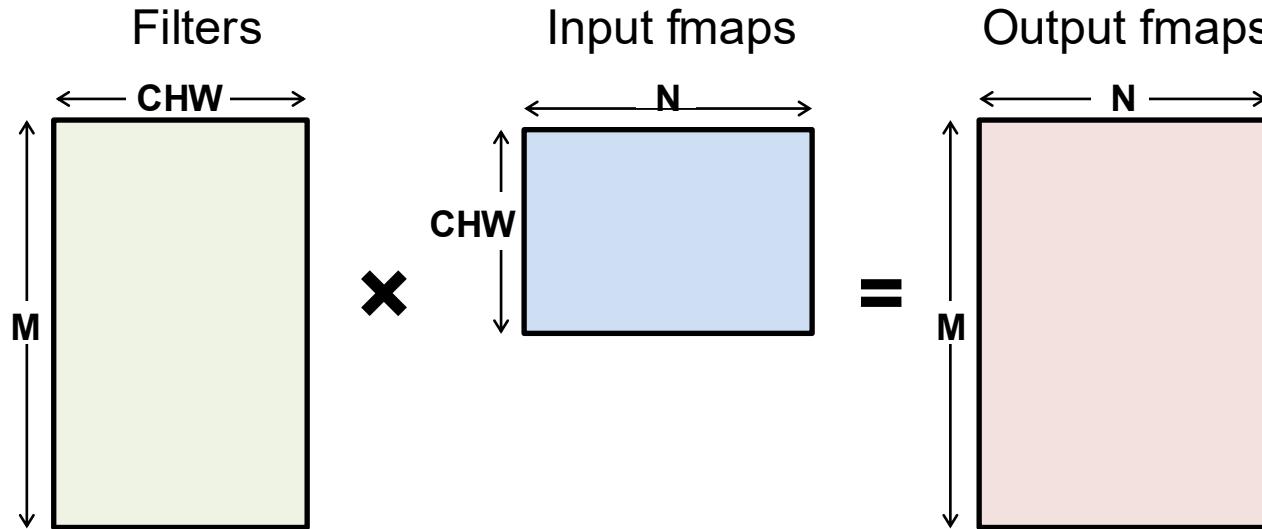


FC Layer – Batch (N)



FC Compute → Matrix-Matrix Multiply

$$O_{n,m} = I_{n,chw} \times F_{m,chw}$$



After flattening, having a batch size of N turns the **matrix-vector** multiply into a **matrix-matrix** multiply

FC Compute → Matrix-Matrix Multiply

$$O_{n,m} = I_{n,chw} \times F_{m,chw}$$

reduction on rank **chw**

Typical matrix multiplication notation

$$C_{m,n} = A_{m,k} \times B_{k,n}$$

reduction on rank **k**

Note: for Einsum, the order of ranks does not matter