Instruction Set Architecture

Mengjia Yan
Computer Science & Artificial Intelligence Lab
M.I.T.

MIT 6.5900 (ne 6.823) Fall 2022 LO2-1

Quiz Date

e Quiz 1: Oct 14 (in tutorial)
e Quiz 2: Nov 16 (in class)
e Quiz 3: Dec 14 (in class)

e Lab release and due dates are on syllabus

September 12, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO2-2

The IBM 650 (1953-4)
= |

QUTPUT
Magnetic Drum TN e
(1,00_0. or 2, _000 e T Active instruction
10-digit decimal PUNC (including next
words) program counter)
\
DISTRIBUTOR SN VALIDITY| = PROGRAM REGISTER
LI L LT] e (e e T T T LT T
ONE VALIDITY
| DIGIT - CHECK
ADDE
IR ADD__REG.

] | 1]

VALIDITY UPPER. ACCUMULATOR LOWER ACCUMULATOR N
CHECK HEERREN

S

Digit-serial
20-digit ALU

accumulator [From 650 Manual, © IBM]

September 12, 2022 LO2-3

MIT 6.5900 (ne 6.823) Fall 2022

Programmer’s view of a machine:
IBM 650

A drum machine with 44 instructions

Instruction: 60 1234 1009
“Load the contents of location 1234 into the distributor;
put it also into the upper accumulator; set lower
accumulator to zero; and then go to location 1009 for the

next instruction.”

e Programmer’s view of the machine was inseparable
from the actual hardware implementation

e Good programmers optimized the placement of
instructions on the drum to reduce latency!

September 12, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO2-4

Compatibility Problem at IBM

By early 60’s, IBM had 4 incompatible lines of

computers!
701 > 7094
650 — 7074
702 > 7080
1401 — 7010

Each system had its own
e Instruction set
e I/O system and Secondary Storage:
magnetic tapes, drums and disks
e Assemblers, compilers, libraries,...
e Market niche
business, scientific, real time, ...

= IBM 360

September 12, 2022 MIT 6.5900 (ne 6.823) Fall 2022

LO2-5

IBM 360: Design Premises
Amdahl, Blaauw, and Brooks, 1964

The design must lend itself to growth and successor
machines

e General method for connecting I/O devices

e Total performance - answers per month rather than bits per
microsecond = programming aids

e Machine must be capable of supervising itself without manual
intervention

e Built-in hardware fault checking and locating aids to reduce
down time

e Simple to assemble systems with redundant I/O devices,
memories, etc. for fault tolerance

e Some problems required floating point words larger than 36
bits

September 12, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO2-6

Processor State and Data Types

"The information held in the processor at the end of an
instruction to provide the processing context for the next

instruction.”

Program Counter, Accumulator, ...

e The information held in the processor will be interpreted as
having data types manipulated by the instructions.

e If the processing of an instruction can be interrupted then the
hardware must save and restore the state in a transparent

Manner

Programmer’s machine model is a contract
between the hardware and software

September 12, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO2-7

Instruction Set

The control for changing the information held in the

processor are specified by the instructions available in
the instruction set architecture or ISA.

Some things an ISA must specify:
e A way to reference registers and memory
e The computational operations available
e How to control the sequence of instructions

e A binary representation for all of the above

ISA must satisfy the needs of the software:
- assembler, compiler, OS, VM

September 12, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO2-8

IBM 360: A General-Purpose

Register (GPR) Machine

e Processor State
— 16 General-Purpose 32-bit Registers
- 4 Floating Point 64-bit Registers
— A Program Status Word (PSW)
e PC, Condition codes, Control flags

e Data Formats

- 8-bit bytes, 16-bit half-words, 32-bit words,
64-bit double-words

— 24-bit addresses

e A 32-bit machine with 24-bit addresses
— No instruction contains a 24-bit address!

e Precise interrupts

September 12, 2022 MIT 6.5900 (ne 6.823) Fall 2022

L02-9

IBM 360: Initial Implementations (1964)

Model 30 Ce Model 70
Memory Capacity 8K - 64 KB 256K - 512 KB
Memory Cycle 2.0us 1.0ps
Datapath 8-bit 64-bit
Circuit Delay 30 nsec/level 5 nsec/level
Registers in Main Store in Transistor
Control Store Read only 1usec Dedicated circuits

e Six implementations (Models, 30, 40, 50, 60, 62, 70)
e 50x performance difference across models

o ISA completely hid the underlying technological
differences between various models

With minor modifications, IBM 360 ISA is still in use

September 12, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO2-10

IBM 360: Fifty-five years later...
z15 Microprocessor

¢ 9.2 billion transistors, 12-core design
e Up to 190 cores (2 spare) per system
¢ 5.2 GHz, 14nm CMOS technology

e 64-bit virtual addressing
- Original 360 was 24-bit; 370 was a 31-bit extension

e Superscalar, out-of-order
- 12-wide issue

— Up to 180 instructions in flight ¢ e
e 16K-entry Branch Target Buffer i ecieGene | pelecens]
- Very large buffer to support commercial workloads
September 201
e Four Levels of caches P er _O ?
Image credit: IBM

— 128KB L1 I-cache, 128KB L1 D-cache

- 4MB L2 cache per core
- 256MB shared on-chip L3 cache
- 960MB shared off-chip L4 cache

e Up to 40TB of main memory per system

September 12, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO2-11

Summary: Instruction Set Architecture
(ISA) versus Implementation

e ISA is the hardware/software interface

Defines set of programmer visible state

Defines data types

Defines instruction semantics (operations, sequencing)

Defines instruction format (bit encoding)

Examples: MIPS, RISC-V, Alpha, x86, IBM 360, VAX, ARM, JVM

e Many possible implementations of one ISA

360 implementations: model 30 (c. 1964), z15 (c. 2019)

x86 implementations: 8086 (c. 1978), 80186, 286, 386, 486,
Pentium, Pentium Pro, Pentium-4, Core i/, AMD Athlon, AMD
Opteron, Transmeta Crusoe, SoftPC

MIPS implementations: R2000, R4000, R10000, ...
JVM: HotSpot, PicoJava, ARM Jazelle, ...

September 12, 2022 MIT 6.5900 (ne 6.823) Fall 2022

L02-12

Processor Performance

Time = Instructions Cycles Time
Program Program * Instruction * Cycle

— Instructions per program depends on source code, compiler
technology and ISA

— Cycles per instructions (CPI) depends upon the ISA and the
microarchitecture

— Time per cycle depends upon the microarchitecture and the
base technology

Microarchitecture CPI cycle time
Microcoded >1 short
Single-cycle unpipelined 1 long
Pipelined 1 short

September 12, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO2-13

Memory and Caches

Mengjia Yan
Computer Science and Artificial Intelligence Laboratory

M.I.T.

MIT 6.5900 (ne 6.823) Fall 2022 LO2-14

Memory Technology

e Early machines used a variety of memory technologies
- Manchester Mark I used CRT Memory Storage
- EDVAC used a mercury delay line

e Core memory was first large scale reliable main memory
- Invented by Forrester in late 40s at MIT for Whirlwind project

- Bits stored as magnetization polarity on small ferrite cores threaded onto 2
dimensional grid of wires

e First commercial DRAM was Intel 1103

- 1Kbit of storage on single chip
- charge on a capacitor used to hold value

e Semiconductor memory quickly replaced core in 1970s
- Intel formed to exploit market for semiconductor memory Wikipedia

BAALA BN
R

e Flash memory
- Slower, but denser than DRAM. Also non-volatile, but with wearout issues

e Phase change memory (PCM, 3D XPoint)

— Slightly slower, but much denser than DRAM and non-volatile

September 12, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO2-15

DRAM Architecture

bit lines _
Col. / Col. word lines
1 M /
Row 1 Word Line
S TR EREE T
N, | <
~Ss PR E R - |
B EERREER |
W
0?8 —é—é—é—é—é‘é\ /l Bit Line
N+M M/ .| Column Decoder & | Memory cell
Sense Amplifiers (one bit)
Data$ D

e Bits stored in 2-dimensional arrays on chip

e Modern chips have around 8 logical banks on each chip
— Each logical bank physically implemented as many smaller arrays

September 12, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L02-16

CPU-Memory Metrics

CPU =P Memory

e Latency (time for a single access)
Memory access time >> Processor cycle time

e Bandwidth (number of accesses per unit time)
if fraction m of instructions access memory,
=14+m memory references / instruction
= CPI = 1 requires 1+m memory refs / cycle

eEnergy (nJ per access)

September 12, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO2-17

Processor-DRAM Gap (latency)

100,000

Performance

I I 1
1995 2000 2005 2010

Year

I I
1980 1985 1990

Four-issue 2GHz superscalar accessing 100ns DRAM could
execute 800 instructions during time for one memory access!

September 12, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L02-18

Little’s Law

Throughput (T) = Number in Flight (N) / Latency (L)

! Table of >
CPU | laccesses in) Memory
| flight

Example:
--- Assume infinite-bandwidth memory
--- 100 cycles / memory reference
--- 1 + 0.2 memory references / instruction

— Table size = 1.2 * 100 = 120 entries

120 independent memory operations in flight!

September 12, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L02-19

Basic Static RAM Cell

6-Transistor SRAM Cell word
word

(row select)
| bl
QJ_'OE‘”J A ¢

bit bit
o Write: T—J_

1. Drive bit lines (bit=1, bit=0) Dit bit

2. Select word line
e Read:
1. Precharge bit and bit to Vdd
2. Select word line
3. Cell pulls one bit line low
4. Column sense amp detects difference between bit & bit

September 12, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L02-20

Memory Hierarchy

A Small, B .
Big, Slow
Fast
CPU Memory ~— Memory
Y DRAM)
(RF, SRAM) (
holds frequently used data
® Sjze: Register << SRAM << DRAM why?
e Jatency: Register << SRAM << DRAM why?
e bandwidth: on-chip >> off-chip why?

On a data access:

data € fast memory
data ¢ fast memory

September 12, 2022

MIT 6.5900 (ne 6.823) Fall 2022

— low latency access
— long latency access (DRAM)

Multilevel Memory

Strategy: Reduce average latency using small, fast
memories called caches.

Caches are a mechanism to reduce memory latency
based on the empirical observation that the
patterns of memory references made by a processor
are often highly predictable:

PC

96

Loop: add r2, ri, ri 100
subi r3, r3, #1 104

bnez r3, Loop 108

112

September 12, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L02-22

Typical Memory Reference Patterns

Address n loop iterations
o

Instruction
fetches

Stack
accesses

Data
accesses

o o o o o °
o o o - o o -T = ®
o o o o
o
o
° o
o
subroutine subroutine
call return
o (o]
o o o (o] (o] o o o O\
o (o]
o \ / (o) o o o) o)
° argument access © 00 o o
(o] (o]

scalar accesses
N

o o o o o o o o

Time

September 12, 2022

MIT 6.5900 (ne 6.823) Fall 2022 L02-23

Common Predictable Patterns

Two predictable properties of memory references:

— Temporal Locality: If a location is referenced, it
is likely to be referenced again in the near future

— Spatial Locality: If a location is referenced, it is
likely that locations near it will be referenced in
the near future

September 12, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L02-24

Data Orchestration Techniques

Two approaches to controlling data movement in the
memory hierarchy:

— Explicit: Manually at the direction of the
programmer using instructions

— Implicit: Automatically by the hardware in
response to a request by an instruction, but
transparent to the programmer.

September 12, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L02-25

Management of Memory Hierarchy

e Small/fast storage, e.g., registers
— Address usually specified directly in instruction
— Generally implemented using explicit data orchestration

e e.g., directly as a register file

e but hardware might do things behind software’s back, e.qg.,
stack management, register renaming

e Large/slower storage, e.g., memory
— Address usually computed from values in register
— Generally implemented using implicit data orchestration

e e.gd., as a cache hierarchy where hardware decides
what is kept in fast memory

e but software may provide “hints”, e.g., don’t cache or
prefetch

September 12, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L02-26

Inside a Cache

~\ Address Address
Processor Main
CACHE Memory
’ Data Data \
copy of main memory copy of main memory
location 100 location 101
N
100 |BB] | [— Line
— 304 |Bytel] | | |
/
6848
Address 416
Tag
[
Q > Data Block

Q: How many bits needed in tag? Enough to uniquely identify block

September 12, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L02-27

Cache Algorithm (Read)

Look at Processor Address, search cache tags to find match.

Then either
Found in cache Not in cache
a.k.a. HIT a.k.a. MISS
Return copy Read block of data from
of data from Main Memory
cache

Wait ...

Return data to processor
and update cache

Which line do we replace?

September 12, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L02-28

Direct-Mapped Cache

Block r}umber Block loffset
| Y \
Tag Index Offset
_,(_I J |
t L d L d
V, Tag K Data Block b .
~~ |lines

HIT |

Q: What is a bad reference pattern? _Strided at size of cache

Data Word or Byte

September 12, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L02-29

Direct Map Address Selection

higher-order vs. lower-order address bits

— Tog Offset
— : "
V| Tag Data Block |
== llines
HIT Data Word or Byte

Q: Why might this be undesirable? _Spatially local blocks conflict

September 12, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO2-30

Hashed Address Mapping

Address Offset
t -

V, Tag Data Block b

1 |lines

HIT |

Q: What are the tradeoffs of hashing?

Good: Regular strides don’t conflict
Bad: Hash adds latency
Tag is larger
September 12, 2022 MIT 6.5900 (ne 6.823) Fall 2022

>~ Data Word or Byte

LO2-31

2-Way Set-Associative Cache

Ta Index Block ¢
9 Offset b

Kk
V| Tag Data Block V|, Tag |Data Block

Data
Word
or Byte

HIT

September 12, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L02-32

Fully Associative Cache

V| Tag Data BIock

HIT

—| Block
o |Offset

AN

Q: Where are the index bits? Not needed

September 12, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO2-33

Placement Policy

1111111111222222222233
Block Number ;,5354567890123456789012345678901
Memory
Set Number 01234567 o 1 2 3
Cache
Direct (2-way) Set Fully
Mapped Associative Associative
only into anywhere in
anywhere

can be placed (12 mod 8) (12 mod 4)

September 12, 2022 MIT 6.5900 (ne 6.823) Fall 2022

LO2-34

Improving Cache Performance

Average memory access time (AMAT) =
Hit time + Miss rate x Miss penalty

To improve performance:
e reduce the hit time
e reduce the miss rate (e.g., larger, better policy)
e reduce the miss penalty (e.g., L2 cache)

What is the simplest design strategy?

Biggest cache that doesn’t increase hit time past 1-2 cycles
(approx. 16-64KB in modern technology)

[design issues more complex with out-of-order superscalar processors]

September 12, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO2-35

Causes for Cache Misses

e Compulsory:

First reference to a block a.k.a. cold start misses
- misses that would occur even with infinite cache

e Capacity:
cache is too small to hold all data the program needs

- misses that would occur even under perfect
placement & replacement policy

e Conflict:

misses from collisions due to block-placement strategy
- misses that would not occur with full associativity

September 12, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO2-36

Effect of Cache Parameters on Performance

Larger Higher

Larger block

capacity associativity size cache *

cache cache

Compulsory misses

Capacity misses

Conflict misses

Hit latency

o
=

(LXK N

- T3

* Assume substantial spatial locality

Miss latency

September 12, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO2-37

Block-level Optimizations

e Tags are too large, i.e., too much overhead

— Simple solution: Larger blocks, but miss penalty could be
large.

e Sub-block placement (aka sector cache)

— A valid bit added to units smaller than the full block,
called sub-blocks

— Only read a sub-block on a miss
- If a tag matches, is the sub-block in the cache?

100 1 1 1 1
300 1 1 0 0
204 0 1 0 1

September 12, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO2-38

Thank you!

Next lecture:
Virtual memory

MIT 6.5900 (ne 6.823) Fall 2022 LO2-39

