Caches (continued)

Mengjia Yan
Computer Science and Artificial Intelligence Laboratory

M.I.T.

MIT 6.5900 (ne 6.823) Fall 2022 LO3-1

Recap: Inside a Cache

~\ Address Address
Processor Main
CACHE Memory
’ Data Data \
copy of main memory copy of main memory
location 100 location 101
N
100 |BB] | [— Line
— 304 |Bytel] | | |
/
6848
Address 416
Tag
[
Q > Data Block

September 14, 2022

MIT 6.5900 (ne 6.823) Fall 2022

LO3-2

Recap: Placement Policy

1111111111222222222233
Block Number ;,5354567890123456789012345678901
Memory
Set Number 01234567 o 1 2 3
Cache
Direct (2-way) Set Fully
Mapped Associative Associative
only into anywhere in
anywhere

can be placed (12 mod 8) (12 mod 4)

September 14, 2022 MIT 6.5900 (ne 6.823) Fall 2022

LO3-3

Effect of Cache Parameters on Performance

Larger Higher

Larger block

capacity associativity size cache *

cache cache

Compulsory misses

Capacity misses

Conflict misses

Hit latency

o
=

(LXK N

- T3

* Assume substantial spatial locality

Miss latency

September 14, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO3-4

Multilevel Caches

e A memory cannot be large and fast

e Add level of cache to reduce miss penalty

— Each level can have longer latency than level above
— S0, increase sizes of cache at each level

CPU |—{ L1 }—| |2 — DRAM

Metrics:

Local miss rate = misses in cache/ accesses to cache
Global miss rate = misses in cache / CPU memory accesses

Misses per instruction (MPI) = misses in cache / number of instructions

September 14, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO3-5

Block-level Optimizations

e Tags are too large, i.e., too much overhead

— Simple solution: Larger blocks, but miss penalty could be
large.

e Sub-block placement (aka sector cache)

— A valid bit added to units smaller than the full block, called
sub-blocks

— Only read a sub-block on a miss
- If a tag matches, is the sub-block in the cache?

100 1 1 1 1
300 1 1 0 0
204 0 1 0 1

September 14, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO3-6

Victim Caches (HP 7200)

T
Unified L2
N
RF IZ L1 Data Cache
Cache >

A

Evicted data from L1

Victim Cache — where ?
Hit data (miss in L1) | FAz 4 blocks || Evicted data from VC

Victim cache is a small associative back up cache, added to a direct
mapped cache, which holds recently evicted lines

e First look up in direct mapped cache

e If miss, look in victim cache

e If hit in victim cache, swap hit line with line now evicted from L1

e If miss in victim cache, L1 victim -> VC, VC victim->?

Fast hit time of direct mapped but with reduced conflict misses

-> Nowadays, more general, L4 in Intel Haswell, L3 in IBM Power5

September 14, 2022 MIT 6.5900 (ne 6.823) Fall 2022

LO3-7

Inclusion Policy

e Inclusive multilevel cache:
— Inner cache holds copies of data in outer cache

— On miss, line inserted in inner and outer cache; replacement in
outer cache invalidates line in inner cache

— External accesses need only check outer cache
— Commonly used (e.qg., Intel CPUs up to Broadwell)

e Non-inclusive multilevel caches:

- Inner cache may hold data not in outer cache
— Replacement in outer cache doesn’t invalidate line in inner cache

— Used in Intel Skylake, ARM

e Exclusive multilevel caches:
— Inner cache and outer cache hold different data
- Swap lines between inner/outer caches on miss
— Used in AMD processors

Why choose one type or the other?

September 14, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO3-8

Replacement Policy

Which block from a set should be evicted?

® Random

e Least Recently Used (LRU)

e L RU cache state must be updated on every access
e true implementation only feasible for small sets (2-way)
e pseudo-LRU binary tree was often used for 4-8 way

e First In, First Out (FIFO) a.k.a. Round-Robin
e used in highly associative caches

e Not Least Recently Used (NLRU)
e FIFO with exception for most recently used block or blocks

e One-bit LRU
e Each way represented by a bit. Set on use, replace first unused.

September 14, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO3-9

Multiple replacement policies

Use the best replacement policy for a program
Cache

How do we decide
which policy to use?

n
)
Q

— +1 -1

Po|icy B 0: Policy A Missed _H

1: Policy B Missed
h 4
Counter

\,
0: Policy A
1: Policy B

September 14, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO3-10

Typical memory hierarchies

L1 L2 L3
C C C B Memory
o = = d bus Memory I/O bus [Disk storage
- - :
= ~ € Disk
memo
Register Level 1 Level 2 Level 3 Memory referen::ye
reference Cache Cache Cache reference
reference reference reference
Size: 1000 bytes 64 KB 256 KB 2-4MB 4-16 GB 4-16 TB
Speed: 300 ps 1ns 3-10ns 10-20ns 50-100 ns 5-10 ms

(a) Memory hierarchy for server

L1 L2
C c W§ Memory
CPU a a bus
| Registers | ﬁ ﬁ
- - FLASH
Register Level 1 Level 2 Memory mfemory
reference Cache Cache reference ISieTence
reference reference
Size: 500 bytes 64 KB 256 KB 256-512 MB 4-8 GB
Speed: 500 ps 2ns 10-20 ns 50-100 ns 25-50 us

(b) Memory hierarchy for a personal mobile device

September 14, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO3-11

Memory Management:
From Absolute Addresses
to Demand Paging

Mengjia Yan
Computer Science and Artificial Intelligence Laboratory

M.I.T.

MIT 6.5900 (ne 6.823) Fall 2022 L03-12

Memory Management

e The Fifties

- Absolute Addresses
- Dynamic address translation

e The Sixties

- Atlas and Demand Paging
- Paged memory systems and TLBs

e Modern Virtual Memory Systems

September 14, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO3-13

Names for Memory Locations

Physical
weud [SA : > Addre_ss wurd Memory
machine virtual |EsbIE physical DRAM
language address address ()
address

e Machine language address
— as specified in machine code

e \irtual address

— ISA specifies translation of machine code address into
virtual address of program variable (sometimes called
effective address)

e Physical address

— Operating system specifies mapping of virtual address into
name for a physical memory location

September 14, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO3-14

Absolute Addresses

EDSAC, early 50’s

virtual address = physical memory address

e Only one program ran at a time, with unrestricted
access to entire machine (RAM + I/0O devices)

e Addresses in a program depended upon where the
program was to be loaded in memory

e But it was more convenient for programmers to
write location-independent subroutines

How could location independence be achieved?

Linker and/or loader modify addresses of subroutines
and callers when building a program memory image

September 14, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO3-15

Multiprogramming

Motivation
In the early machines, I/O operations were slow
and each word transferred involved the CPU

Higher throughput if CPU and I/O of 2 or more
programs were overlapped. How?
= multiprogramming

Location-independent programs
Programming and storage management ease
— need for a base register

Protection
Independent programs should not affect
each other inadvertently

— need for a bound register

September 14, 2022 MIT 6.5900 (ne 6.823) Fall 2022

Physical Memory

LO3-16

Simple Base and Bound Translation

Segment Length

Bounds

Bound
Register

Effective

Program
Address
Space

Base and bounds registers are visible/accessible only

Address

Base
Register

- Violation?

Physical
Address

Base Physical Address

current

segment

when processor is running in supervisor mode

September 14, 2022

MIT 6.5900 (ne 6.823) Fall 2022

Main Memory

LO3-17

Separate Areas for Code and Data

Bounds
Violation?

Data Bound
Register

data

Effective Addr
Load X : Register segment g
: C
Data Base g
Register O
------------------------ Z
P m =
rogr ©
Adodg a Code Bound Bounds g
ress Register Violation?
Space Program code
Counter segment

Code Base
Register

What is an advantage of this separation?
(Scheme used on all Cray vector supercomputers prior to X1, 2002)

&

n
'I

September 14, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO3-18

Memory Fragmentation

Users 4 & 5 Users 2 & 5
0S arrive 0S leave

Space ::> Space ::>

user 1 user 1

user 2| // user 2

user 4

user 3 user 3

user 5

i -

As users come and go, the storage is “fragmented”.

Therefore, at some stage programs have to be moved
around to compact the storage.

September 14, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO3-19

Paged Memory Systems

NI—-|O

3

Virtual Address Space
of User-1

September 14, 2022

MIT 6.5900 (ne 6.823) Fall 2022

Physical
Address
Space

LO3-20

Paged Memory Systems

e Processor-generated address can be interpreted as

a pair <page number, offset>
page number offset

e A page table contains the physical address of the

base of each page

. ° / 0
1

1
2 2
3 3 —\ 3

Virtual Address Space Page Table :
of User-1 of User-1 5

Page tables make it possible to store the
pages of a program non-contiguously.

September 14, 2022 MIT 6.5900 (ne 6.823) Fall 2022

Physical
Address
Space

LO3-21

A Problem in Early Sixties

e There were many applications whose data could not

fit in the main memory, e.g., payroll

- Paged memory system reduced fragmentation but still required
the whole program to be resident in the main memory

e Programmers moved the data back and forth from
the secondary store by overlaying it repeatedly on
the primary store

tricky programming!

September 14, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L03-22

Manual Overlays

e Assume an instruction can address all the
storage on the drum

e Method 1: programmer keeps track of
addresses in the main memory and I
initiates an I/0 transfer when required

e Method 2: automatic initiation of 1/0O Central Store
transfers by software address translation |
Brooker’s interpretive coding, 1960 Ferra ”1t'9 246e rcury

Problems? Method1: Difficult, error prone
Method?2: Inefficient

September 14, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO3-23

Demand Paging in Atlas (1962)

“A page from secondary
storage is brought into the
primary storage whenever
it is (implicitly) demanded
by the processor.”

Tom Kilburn Primary
32 Pages

512 words/page

Primary memory as a cache

for secondarv memor Secondary
Y y Central (Drum)
1 32 6
User sees the storage size of the Memol Y X5 pages

secondary storage, since data
transfer happens automatically

September 14, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO3-24

Hardware Organization of Atlas

Address | Initial 0.4 ~1 psec (not swapped)
—1 Address R —
Decode L ZleslelEln s ceie sl system data

48-bit words 0
512-word pages

Drum (4)

8 Tape decks
88 sec/word

192 pages

1 Page Address
Register (PAR) 31

per page frame <effective PN , status>
in main memory

Compare the effective page address against all 32 PARs
match — normal access
no match = page fault
save the state of the partially executed instruction

September 14, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO3-25

Atlas Demand Paging Scheme

e On a page fault:

— Input transfer into a free page is initiated
— The Page Address Register (PAR) is updated

— If no free page is left, a page is selected to be replaced
(based on usage)

— The replaced page is written on the drum

e to minimize the drum latency effect, the first empty page on
the drum was selected

— The page table is updated to point to the new location of the
page on the drum

September 14, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO3-26

Caching vs. Demand Paging

secondary
memory

CPU primary
memory

CPU

Caching Demand paging
cache entry page frame
cache block (~32 bytes) page (~4K bytes)
cache miss rate (1% to 20%) page miss rate (<0.001%)
cache hit (~1 cycle) page hit (~100 cycles)
cache miss (~100 cycles) page miss (~5M cycles)
a miss is handled a miss is handled
in hardware mostly in software

September 14, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO3-27

Modern Virtual Memory Systems
Illusion of a large, private, uniform store

Protection & Privacy
several users, each with their private
address space and one or more
shared address spaces
page table = name space

Demand Paging
Provides the ability to run programs
larger than the primary memory

Hides differences in machine
configurations

The price is address translation on
each memory reference

September 14, 2022 MIT 6.5900 (ne 6.823) Fall 2022

Primary
Memory
13—

OS

user

Eﬂﬂéﬁuﬂlgi
Store
N—_

-/

VA

—

N—

mapping | pa
TLB

LO3-28

Private Address Space per User

- OS
User 1 3 g Dages
Page Table _:% GE)
oS o0 0

User 2 W% : ‘
o <

Page Table

User 3

Page Table

e Each user has a page table
e Page table contains an entry for each user page

September 14, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO3-29

Where Should Page Tables Reside?

e Space required by the page tables (PT) is
proportional to the address space, number of
users, ...

— Space requirement is large
— Too expensive to keep in registers

e Idea: Keep PT of the current user in special
registers

— may not be feasible for large page tables
— Increases the cost of context swap

e Idea: Keep PTs in the main memory

— needs one reference to retrieve the page base address and
another to access the data word

= doubles the number of memory references!

September 14, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO3-30

Linear Page Table

e Page Table Entry (PTE) Page Table bata fages
contains: PN
— A bit to indicate if a page gm
exists PPN
- PPN (physical page number) % Data word
for a memory-resident page

— DPN (disk page number) for Offset
a page on the disk
— Status bits for protection /

and usage Bm
e OS sets the Page Table PPN
Base Register BE“

whenever active user 77 e
process changes DPN
PPN
> PPN

PT Base Register VPN Offset

Vir |
September 14, 2022 MIT 6.5900 (ne 6.823) Fall 2022 tual address L03-31

Size of Linear Page Table

With 32-bit addresses, 4 KB pages & 4-byte PTEs:
= 220 PTEs, i.e, 4 MB page table per user

= 4 GB of swap space needed to back up the full virtual
address space

Larger pages?
e Internal fragmentation (Not all memory in a page is
used)

e Larger page fault penalty (more time to read from disk)

What about 64-bit virtual address space???
e Even 1MB pages would require 24+ 8-byte PTEs (35 TB!)

What is the "saving grace”?

September 14, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO3-32

Next lecture:

Modern Virtual Memory Systems

MIT 6.5900 (ne 6.823) Fall 2022 LO3-33

