
L03-1MIT 6.5900 (ne 6.823) Fall 2022

Mengjia Yan
Computer Science and Artificial Intelligence Laboratory

M.I.T.

Caches (continued)

MIT 6.5900 (ne 6.823) Fall 2022

Recap: Inside a Cache

September 14, 2022

CACHEProcessor Main
Memory

Address Address

DataData

Address
Tag

Data Block

Data
Byte

Data
Byte

Data
Byte

Line100

304

6848

copy of main memory
location 100

copy of main memory
location 101

416

L03-2

MIT 6.5900 (ne 6.823) Fall 2022

Recap: Placement Policy

September 14, 2022

Set Number

Cache

0 1 2 3 4 5 6 7 8 9
1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9

2 2 2 2 2 2 2 2 2 2
0 1 2 3 4 5 6 7 8 9

3 3
0 1

Memory

Block Number

block 12
can be placed

0 1 2 3 4 5 6 7

Direct
Mapped
only into
block 4

(12 mod 8)

Fully
Associative
anywhere

0 1 2 3

(2-way) Set
Associative
anywhere in

set 0
(12 mod 4)

L03-3

MIT 6.5900 (ne 6.823) Fall 2022

Effect of Cache Parameters on Performance

September 14, 2022

Larger
capacity

cache

Higher
associativity

cache

Larger block
size cache *

Compulsory misses

Capacity misses

Conflict misses

Hit latency

Miss latency

?

* Assume substantial spatial locality
L03-4

MIT 6.5900 (ne 6.823) Fall 2022

Multilevel Caches

• A memory cannot be large and fast
• Add level of cache to reduce miss penalty

– Each level can have longer latency than level above
– So, increase sizes of cache at each level

September 14, 2022

CPU L1 L2 DRAM

Metrics:

Local miss rate = misses in cache/ accesses to cache

Global miss rate = misses in cache / CPU memory accesses

Misses per instruction (MPI) = misses in cache / number of instructions

L03-5

MIT 6.5900 (ne 6.823) Fall 2022

Block-level Optimizations

• Tags are too large, i.e., too much overhead
– Simple solution: Larger blocks, but miss penalty could be

large.

• Sub-block placement (aka sector cache)
– A valid bit added to units smaller than the full block, called

sub-blocks
– Only read a sub-block on a miss
– If a tag matches, is the sub-block in the cache?

September 14, 2022

100
300
204

1 1 1 1
1 1 0 0
0 1 0 1

L03-6

MIT 6.5900 (ne 6.823) Fall 2022

Victim Caches (HP 7200)

September 14, 2022

Victim cache is a small associative back up cache, added to a direct
mapped cache, which holds recently evicted lines
• First look up in direct mapped cache
• If miss, look in victim cache
• If hit in victim cache, swap hit line with line now evicted from L1
• If miss in victim cache, L1 victim -> VC, VC victim->?
Fast hit time of direct mapped but with reduced conflict misses
-> Nowadays, more general, L4 in Intel Haswell, L3 in IBM Power5

L1 Data
Cache

Unified L2
CacheRF

CPU

Evicted data from L1

Evicted data from VC
where ?

Hit data (miss in L1)
Victim Cache
FA, 4 blocks

L03-7

MIT 6.5900 (ne 6.823) Fall 2022

Inclusion Policy

• Inclusive multilevel cache:
– Inner cache holds copies of data in outer cache
– On miss, line inserted in inner and outer cache; replacement in

outer cache invalidates line in inner cache
– External accesses need only check outer cache
– Commonly used (e.g., Intel CPUs up to Broadwell)

• Non-inclusive multilevel caches:
– Inner cache may hold data not in outer cache
– Replacement in outer cache doesn’t invalidate line in inner cache
– Used in Intel Skylake, ARM

• Exclusive multilevel caches:
– Inner cache and outer cache hold different data
– Swap lines between inner/outer caches on miss
– Used in AMD processors

Why choose one type or the other?
September 14, 2022 L03-8

MIT 6.5900 (ne 6.823) Fall 2022

Replacement Policy

September 14, 2022

Which block from a set should be evicted?

• Random

• Least Recently Used (LRU)
• LRU cache state must be updated on every access
• true implementation only feasible for small sets (2-way)
• pseudo-LRU binary tree was often used for 4-8 way

• First In, First Out (FIFO) a.k.a. Round-Robin
• used in highly associative caches

• Not Least Recently Used (NLRU)
• FIFO with exception for most recently used block or blocks

• One-bit LRU
• Each way represented by a bit. Set on use, replace first unused.

L03-9

MIT 6.5900 (ne 6.823) Fall 2022

Multiple replacement policies

September 14, 2022

0: Policy A
1: Policy B

Counter

+1

>0

-1

0: Policy A Missed
1: Policy B Missed

Policy A
Policy B

S
et

s

Cache

Miss

How do we decide
which policy to use?

Use the best replacement policy for a program

L03-10

MIT 6.5900 (ne 6.823) Fall 2022

Typical memory hierarchies

September 14, 2022 L03-11

L03-12MIT 6.5900 (ne 6.823) Fall 2022

Mengjia Yan
Computer Science and Artificial Intelligence Laboratory

M.I.T.

Memory Management:
From Absolute Addresses

to Demand Paging

MIT 6.5900 (ne 6.823) Fall 2022

Memory Management

September 14, 2022

• The Fifties
- Absolute Addresses
- Dynamic address translation

• The Sixties
- Atlas and Demand Paging
- Paged memory systems and TLBs

• Modern Virtual Memory Systems

L03-13

MIT 6.5900 (ne 6.823) Fall 2022

Names for Memory Locations

• Machine language address
– as specified in machine code

• Virtual address
– ISA specifies translation of machine code address into

virtual address of program variable (sometimes called
effective address)

• Physical address
- Operating system specifies mapping of virtual address into

name for a physical memory location

September 14, 2022

physical
address

virtual
address

machine
language
address

Address
MappingISA

Physical
Memory
(DRAM)

L03-14

MIT 6.5900 (ne 6.823) Fall 2022

Absolute Addresses

• Only one program ran at a time, with unrestricted
access to entire machine (RAM + I/O devices)

• Addresses in a program depended upon where the
program was to be loaded in memory

• But it was more convenient for programmers to
write location-independent subroutines

September 14, 2022

virtual address = physical memory address

EDSAC, early 50’s

How could location independence be achieved?
Linker and/or loader modify addresses of subroutines
and callers when building a program memory image

L03-15

MIT 6.5900 (ne 6.823) Fall 2022

Multiprogramming

September 14, 2022

Motivation
In the early machines, I/O operations were slow
and each word transferred involved the CPU
Higher throughput if CPU and I/O of 2 or more
programs were overlapped. How?

Þ multiprogramming

Location-independent programs
Programming and storage management ease

Þ need for a base register

Protection
Independent programs should not affect
each other inadvertently

Þ need for a bound register

prog1

prog2 Ph
ys

ic
al

 M
em

or
y

L03-16

MIT 6.5900 (ne 6.823) Fall 2022

Simple Base and Bound Translation

September 14, 2022

Base and bounds registers are visible/accessible only
when processor is running in supervisor mode

Load X

Program
Address
Space

Bound
Register £

Bounds
Violation?

M
ai

n
M

em
or

y

current
segment

Base
Register

+

Physical
AddressEffective

Address

Base Physical Address

Segment Length

L03-17

MIT 6.5900 (ne 6.823) Fall 2022

Separate Areas for Code and Data

September 14, 2022

What is an advantage of this separation?
(Scheme used on all Cray vector supercomputers prior to X1, 2002)

Load X

Program
Address
Space

M
ai

n
M

em
or

y

data
segment

Data Bound
Register

Effective Addr
Register

Data Base
Register

£

+

Bounds
Violation?

Code Bound
Register

Program
Counter

Code Base
Register

£

+

Bounds
Violation?

code
segment

L03-18

MIT 6.5900 (ne 6.823) Fall 2022

Memory Fragmentation

September 14, 2022

As users come and go, the storage is “fragmented”.
Therefore, at some stage programs have to be moved
around to compact the storage.

OS
Space

16K

24K

24K

32K

24K

user 1

user 2

user 3

OS
Space

16K

24K

16K

32K

24K

user 1

user 2

user 3

user 5

user 4
8K

Users 4 & 5
arrive

Users 2 & 5
leave

OS
Space

16K

24K

16K

32K

24K

user 1

user 4
8K

user 3

free

L03-19

MIT 6.5900 (ne 6.823) Fall 2022

Paged Memory Systems

September 14, 2022

0
1
2
3

Virtual Address Space
of User-1

1
0

2

3

L03-20

Physical
Address
Space

MIT 6.5900 (ne 6.823) Fall 2022

Paged Memory Systems
• Processor-generated address can be interpreted as

a pair <page number, offset>

• A page table contains the physical address of the
base of each page

September 14, 2022

Page tables make it possible to store the
pages of a program non-contiguously.

0
1
2
3

0
1
2
3

Virtual Address Space
of User-1

Page Table
of User-1

1
0

2

3

page number offset

L03-21

Physical
Address
Space

MIT 6.5900 (ne 6.823) Fall 2022

A Problem in Early Sixties

• There were many applications whose data could not
fit in the main memory, e.g., payroll
– Paged memory system reduced fragmentation but still required

the whole program to be resident in the main memory

• Programmers moved the data back and forth from
the secondary store by overlaying it repeatedly on
the primary store

tricky programming!

September 14, 2022 L03-22

MIT 6.5900 (ne 6.823) Fall 2022

Manual Overlays
• Assume an instruction can address all the

storage on the drum

• Method 1: programmer keeps track of
addresses in the main memory and
initiates an I/O transfer when required

• Method 2: automatic initiation of I/O
transfers by software address translation

Brooker’s interpretive coding, 1960

September 14, 2022

Ferranti Mercury
1956

40k bits
main

640k bits
drum

Central Store

Problems? Method1: Difficult, error prone
Method2: Inefficient

L03-23

MIT 6.5900 (ne 6.823) Fall 2022

Demand Paging in Atlas (1962)

September 14, 2022

Secondary
(Drum)

32x6 pages

Primary
32 Pages

512 words/page

Central
MemoryUser sees the storage size of the

secondary storage, since data
transfer happens automatically

“A page from secondary
storage is brought into the
primary storage whenever
it is (implicitly) demanded
by the processor.”

Tom Kilburn

Primary memory as a cache
for secondary memory

L03-24

MIT 6.5900 (ne 6.823) Fall 2022

Hardware Organization of Atlas

September 14, 2022

Initial
Address
Decode

16 ROM pages
0.4 ~1 µsec

2 subsidiary pages
1.4 µsec

Main
32 pages
1.4 µsec

Drum (4)
192 pages 8 Tape decks

88 sec/word

48-bit words
512-word pages

1 Page Address
Register (PAR)
per page frame
in main memory

Compare the effective page address against all 32 PARs
match Þ normal access
no match Þ page fault

save the state of the partially executed instruction

Effective
Address

system code
(not swapped)

system data
(not swapped)

0

31

PARs

<effective PN , status>

L03-25

MIT 6.5900 (ne 6.823) Fall 2022

Atlas Demand Paging Scheme

• On a page fault:
– Input transfer into a free page is initiated

– The Page Address Register (PAR) is updated

– If no free page is left, a page is selected to be replaced
(based on usage)

– The replaced page is written on the drum
• to minimize the drum latency effect, the first empty page on

the drum was selected

– The page table is updated to point to the new location of the
page on the drum

September 14, 2022 L03-26

MIT 6.5900 (ne 6.823) Fall 2022

Caching vs. Demand Paging

September 14, 2022

CPU cache primary
memory

secondary
memory

Caching Demand paging
cache entry page frame
cache block (~32 bytes) page (~4K bytes)
cache miss rate (1% to 20%) page miss rate (<0.001%)
cache hit (~1 cycle) page hit (~100 cycles)
cache miss (~100 cycles) page miss (~5M cycles)
a miss is handled a miss is handled

in hardware mostly in software

primary
memory CPU

L03-27

MIT 6.5900 (ne 6.823) Fall 2022

Modern Virtual Memory Systems
Illusion of a large, private, uniform store

September 14, 2022

Protection & Privacy
several users, each with their private
address space and one or more
shared address spaces

page table º name space

Demand Paging
Provides the ability to run programs
larger than the primary memory

Hides differences in machine
configurations

The price is address translation on
each memory reference

OS

useri

Primary
Memory

Swapping
Store

VA PAmapping
TLB

L03-28

MIT 6.5900 (ne 6.823) Fall 2022

Private Address Space per User

September 14, 2022

• Each user has a page table
• Page table contains an entry for each user page

VA1User 1

Page Table

VA1User 2

Page Table

VA1User 3

Page Table

Ph
ys

ic
al

M
em

or
y

free

OS
pages

L03-29

MIT 6.5900 (ne 6.823) Fall 2022

Where Should Page Tables Reside?

• Space required by the page tables (PT) is
proportional to the address space, number of
users, ...

Þ Space requirement is large
Þ Too expensive to keep in registers

• Idea: Keep PT of the current user in special
registers
– may not be feasible for large page tables
– Increases the cost of context swap

• Idea: Keep PTs in the main memory
– needs one reference to retrieve the page base address and

another to access the data word
Þ doubles the number of memory references!

September 14, 2022 L03-30

MIT 6.5900 (ne 6.823) Fall 2022

Linear Page Table

September 14, 2022

VPN Offset
Virtual address

PT Base Register

VPN

Data word

Data Pages

Offset

PPN
PPN

DPN
PPN

PPN
PPN

Page Table

DPN

PPN

DPN
DPN

DPN
PPN

• Page Table Entry (PTE)
contains:
– A bit to indicate if a page

exists
– PPN (physical page number)

for a memory-resident page
– DPN (disk page number) for

a page on the disk
– Status bits for protection

and usage
• OS sets the Page Table

Base Register
whenever active user
process changes

L03-31

MIT 6.5900 (ne 6.823) Fall 2022

Size of Linear Page Table

September 14, 2022

With 32-bit addresses, 4 KB pages & 4-byte PTEs:
Þ 220 PTEs, i.e, 4 MB page table per user
Þ 4 GB of swap space needed to back up the full virtual

address space

Larger pages?
• Internal fragmentation (Not all memory in a page is

used)
• Larger page fault penalty (more time to read from disk)

What about 64-bit virtual address space???
• Even 1MB pages would require 244 8-byte PTEs (35 TB!)

What is the “saving grace”?

L03-32

L03-33MIT 6.5900 (ne 6.823) Fall 2022

Next lecture:

Modern Virtual Memory Systems

