Modern Virtual Memory
Systems

Mengjia Yan
Computer Science and Artificial Intelligence Laboratory

M.I.T.

MIT 6.5900 (ne 6.823) Fall 2022 LO4-1

Recap: Modern Virtual Memory Systems

Illusion of a large, private, uniform store

Protection & Privacy 0S
several users, each with their private
address space and one or more
shared address spaces user;

page table = name space

: Swappin
Demand Paging @%Ee\g
Provides the ability to run programs Primary [Ne—e———
larger than the primary memory Memo_ry/
Hides differences in machine <
configurations
The price is address translation on _
each memory reference VA |MaPPINg | pa
TLB

September 19, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO4-2

Address Translation & Protection

Virtual Address | Virtual Page No. (VPN)

offset

Kernel/User Mode

Read/Write
Protection Address

Check Translation

Exception?

Physical Address Physical Page No. (PPN)

offset

« Every instruction and data access needs address

translation and protection checks

A good VM design needs to be fast (~ one cycle) and

space-efficient

September 19, 2022 MIT 6.5900 (ne 6.823) Fall 2022

LO4-3

Recap: Linear Page Table

e Page Table Entry (PTE) Page Table bata fages
contains: PN
— A bit to indicate if a page gm
exists PPN
- PPN (physical page number) % Data word
for a memory-resident page

— DPN (disk page number) for Offset
a page on the disk
— Status bits for protection /

and usage Bm
e OS sets the Page Table PPN
Base Register BE“

whenever active user 77 e
process changes DPN
PPN
> PPN

PT Base Register VPN Offset

Vir
September 19, 2022 MIT 6.5900 (ne 6.823) Fall 2022 tual address LO4-4

Recap: Size of Linear Page Table

With 32-bit addresses, 4 KB pages & 4-byte PTEs:
= 220 PTEs, i.e, 4 MB page table per user

= 4 GB of swap space needed to back up the full virtual
address space

Larger pages?
e Internal fragmentation (Not all memory in a page is
used)

e Larger page fault penalty (more time to read from disk)

What about 64-bit virtual address space???
e Even 1MB pages would require 24+ 8-byte PTEs (35 TB!)

What is the "saving grace”?

September 19, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L04-5

Atlas Revisited

e One PAR for each physical page
PARs

e PAR’s contain the VPN’s of the
pages resident in primary memory

PPN VPN

e Advantage: The size is
proportional to the size of the
primary memory

o What is the disadvantage?

September 19, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L04-6

Hashed Page Table:

Approximating Associative Addressing

VPN d Virtual Address
l Page Table

Offset PA of PTE
PID || hash @

Base of Table

e Hashed Page Table is typically 2 to 3 times
larger than the number of PPNs to reduce
collision probability

e It can also contain DPNs for some non- L
resident pages (not common)
e If a translation cannot be resolved in this
table then the software consults a data .
structure that has an entry for every Primary
Memory

existing page

September 19, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO4-7

Hierarchical Page Table

Virtual Address
31 2221

1211

pl

p2

offset

\

10%bit 1d-bit
L1 index L2 index

offset
Root of the Current I_,
Page Table _ml p2
plf
\
(Processor Level 1 %
Register) Page Table
Level 2
page in primary memory Page Tables
page in secondary memory
EZ2 PTE of a nonexistent page Data Pages

September 19, 2022

MIT 6.5900 (ne 6.823) Fall 2022

L04-8

Translation Lookaside Buffers

Address translation is very expensive!
In a hierarchical page table, each reference
becomes several memory accesses

Solution: Cache translations in TLB

TLB hit = Single-cycle Translation
TLB miss = Page Table Walk to refill

virtual address VPN offset
|
V R W|Df tég PPN (VPN = virtual page number)
(PPN = physical page number)
| | 1
hit? physical address PPN offset

September 19, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L04-9

TLB Designs

e Keep process information in TLB?
— No process id > Must flush on context switch
— Tag each entry with process id > No flush, but costlier

e Typically 32-128 entries, usually highly associative

e TLB Reach: Size of largest virtual address space
that can be simultaneously mapped by TLB
Example: 64 TLB entries, 4KB pages, one page per entry
TLB Reach = ?

e \Ways to increase TLB reach

— Multi-level TLBs (e.g., Intel Skylake: 64-entry L1 data TLB,
128-entry L1 instruction TLB, 1.5K-entry L2 TLB)

— Multiple page sizes, e.g., x86 (32-bit): 4MB; x86-64: 2MB, 1GB

September 19, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO4-10

Variable-Sized Page Support

Virtual Address
31 2221 1211 0

pl p2 offset

\
10%bit 10-bit
L1 index L2 index

7777 offset[
Root of the Current
Page Table
plf
\:
(Processor Level 1
Register) Page Table A
: : Level 2
page in primary memory Page Tables
large page in primary memory
page in secondary memory
EZ4 PTE of a nonexistent page
Data Pages

September 19, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO4-11

Variable-Size Page TLB

virtual address — small page \VVPN offset
large page VPN offset
|
Y Large
VIRWD| | Tag PPN Ll >_ page?
hit? N
physical address PPN offset

Step 1: Assume 4KB page size, calculate index and probe
Step 2: If miss, assume 2MB page, re-calculate index and probe

September 19, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO4-12

Variable-Size Page TLB

virtual address — small page \VVPN offset
large page VPN offset
TLB for TLB for
small page large page
VIRW[D| | Tag PPN VIRWD] [Tag PPN
hit? } hit?}
physical address PPN offset

Example: Intel Skylake

_ 4KB 2MB 1GB
Alternatively, have a separate TLB L1-D TLB 64 37 4

for each page size (pros/cons?) L1-ITLB 128 . y

L2 STLB 1536 16
September 19, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO4-13

Handling a TLB Miss

Software (MIPS, Alpha)

TLB miss causes an exception and the operating system
walks the page tables and reloads TLB. A privileged
“"untranslated” addressing mode used for walk

Hardware (SPARC v8, x86, PowerPC)

A memory management unit (MMU) walks the page
tables and reloads the TLB

If a missing (data or PT) page is encountered during the
TLB reloading, MMU gives up and signals a Page-Fault
exception for the original instruction

What is the trade-off?

September 19, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO4-14

Hierarchical Page Table Walk:
SPARC v8

Virtual Address |Index 1 Index 2 Index 3 Offset

31 23 17 11 0
Context | Context Table
Table >
Register L1 Table
Context »|root ptr
Register L2 Table
"_PTP > L3 Table
PP :
PTE
31 11
Physical Address PPN Offset

MMU does this table walk in hardware on a TLB miss

September 19, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO4-15

Address Translation: putting it all together

Virtual Address
i [hardware

[hardware or software
[] software

Protection

¢ memory € memory de”iewd
Page Fault Protectlon PhYSICaI
(OS |Oads page) Fau|t Address
J (to cache)
Where? SEGFAULT

September 19, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO4-16

Topics

e Speeding up the common case:
— TLB & Cache organization

e Interrupts

e Modern Usage

September 19, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO4-17

Address Translation in CPU

Inst Inst. ReqFile Data Data

—| TLB [Cache 9 >+ TLB [Cache
TLB miss? Page Fault? TLB miss? Page Fault?
Protection violation? Protection violation?

e Software handlers need a restartable exception on page fault
or protection violation

e Handling a TLB miss needs a hardware or software
mechanism to refill TLB

e Need mechanisms to cope with the additional latency of TLB:

— slow down the clock

— pipeline the TLB and cache access
— virtual-address caches

— parallel TLB/cache access

September 19, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L04-18

Virtual-Address Caches

PA
CPU VA TLB R |Primary
Memory

Alternative: place the cache before the TLB
VA

PA Primary
CPU > o TLB »Memory

Pros and cons?

e one-step process in case of a hit (+)

e cache needs to be flushed on a context switch unless
address space identifiers (ASIDs) included in tags (-)

e aliasing problems due to the sharing of pages (-)

September 19, 2022 MIT 6.5900 (ne 6.823) Fall 2022

L04-19

Aliasing in Virtual-Address Caches

Page Table Tag Data
VAl_’
Data Pages VA1 1St CODV Of Data at PA
PA VA, 2nd Copy of Data at PA
VA, — .
Virtual cache can have two

copies of same physical data.
Writes to one copy not visible
to reads of other!

Two virtual pages share
one physical page

General Solution: Disallow aliases to coexist in cache
Software (i.e., OS) solution for direct-mapped cache

VAs of shared pages must agree in cache index bits; this
ensures all VAs accessing same PA will conflict in direct-
mapped cache (early SPARCs)

September 19, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L04-20

Concurrent Access to TLB & Cache

/ l \ Virtual
VA VPN Index
v \ / !
TLB J[Direct-map Cache
PA PPN Page Offset
< 7
Tag O =) \

- Physical Ta Data
T Phvsical Tag

Index L is available without consulting the TLB
— cache and TLB accesses can begin simultaneously
Tag comparison is made after both accesses are completed

September 19, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO4-21

Concurrent Access to TLB & Cache

/ ' \ Virtual
VA VPN L b Index
¥ \ / ¥
Direct-map Cache
TLB J[: 2L blocks
2b-byte block
PA PPN Page Offset
N / \
Tag O =)

- Physical Ta Data
T Phvsical Tag

Index L is available without consulting the TLB
— cache and TLB accesses can begin simultaneously
Tag comparison is made after both accesses are completed

When does thiswork? L+ b <k L+b=k__ L+b>k

September 19, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L04-22

Concurrent Access to TLB & Large L1

The problem with L1 > Page size

L Virtual Index

/ ' \ L1 PA cache
VA VPN Page Offset | b Direct-map

TLB VA1 | PPN, Data

l VA5 | PPN, Data

PA PPN Page Offset |b
N /
| > . h|t?
Tag

Can VA, and VA, both map to PA?

September 19, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L04-23

Virtual-Index Physical-Tag Caches:

Associative Organization

|
/ Virtual
VA VPN a L = k-b b 2° Index
\ / o 00
irect-map irect-map
TLB + Kk rDZL blocks rDZL blocks
PA PPN Page Offset \
\
| >
Tag hit?

After the PPN is known, 22 physical tags are compared

Is this scheme realistic for larger caches?

September 19, 2022 MIT 6.5900 (ne 6.823) Fall 2022

Data

L04-24

A solution via Second-Level Cache

Memory

Unified L2 Memory
Cache

CPU

Memory

RF

Memory

Usually a common L2 cache backs up both
Instruction and Data L1 caches

L2 is “inclusive” of both Instruction and Data caches

September 19, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO4-25

Anti-Aliasing Using L2: mips R10000

/ : Virtual Index] L1 PA cache
VA VPN a | Page Offset |b
— intol2tag —vA[PPN | bPata
TLB
VA, [PPN, Data
PA PPN Page Offset | b
N /
| PPN (=)= hit?
Tag

e Suppose VA1l and VA2 both map to PA
and VA1 is already in L1, L2 (VA1 = VA2)

e After VA2 is resolved to PA, collision is — PA
detected in L2. Collision = Field a is different.

e VA1 will be purged from L1, and VA2 will
be loaded = no aliasing!

Data

&
N

September 19, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L04-26

Virtually Addressed L1:
Anti-Aliasing using L2

—~ > Virtual
VA VPN Page Offset | b Index & Tag
VAT Data
TLB
1 VA,| Data
PA PPN Page Offset| b L1 VA Cache
~ J
“Virtual
Tag Physical \ | Tag”

Index & Tag

PA | VA, Data

Physically addressed L2 can also be
used to avoid aliases in virtuall
addressed L1 ! e

L2 “contains” L1

September 19, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L04-27

Topics

e Speeding up the common case:
- TLB & Cache organization

e Interrupts

e Modern Usage

September 19, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L04-28

Address Translation: putting it all together

Virtual Address
i [hardware

[hardware or software
[] software

Protection

CAWalk Check
¢ memory € memory de”iewd
Page FaUIt S Protectlon Physical
(OS Ioads page) Fault Address
Where? J (to cache)
SEGFAULT

Need a restartable exception
September 19, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L04-29

Interrupts:
altering the normal flow of control

interrupt

program handler

An external or internal event that needs to be processed by
another (system) program. The event is usually unexpected or
rare from program’s point of view.

September 19, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO4-30

Causes of Interrupts

Interrupt: an event that requests the attention of the processor

e Asynchronous: an external event
— input/output device service-request
- timer expiration
- power disruptions, hardware failure

e Synchronous: an internal event (a.k.a. exception)
- undefined opcode, privileged instruction
— arithmetic overflow, FPU exception
- misaligned memory access

— virtual memory exceptions: page faults,
TLB misses, protection violations

- traps: system calls, e.g., jumps into kernel

September 19, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO4-31

Asynchronous Interrupts
Invoking the interrupt handler

e An I/O device requests attention by asserting one
of the prioritized interrupt request lines

e When the processor decides to process interrupt

— It stops the current program at instruction I,, completing
all the instructions up to I,y (precise interrupt)

— It saves the PC of instruction I, in a special register (EPC)

— It disables interrupts and transfers control to a designated
interrupt handler running in kernel mode

September 19, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L04-32

Interrupt Handler

e Saves EPC before enabling interrupts to allow
nested interrupts =

— need an instruction to move EPC into GPRs

- need a way to mask further interrupts at least until EPC can be
saved

e Needs to read a status register that indicates the
cause of the interrupt

e Uses a special indirect jump instruction RFE

(return-from-exception) that

— enables interrupts

— restores the processor to the user mode

— restores hardware status and control state

September 19, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L04-33

Synchronous Interrupts

e A synchronous interrupt (exception) is caused by a
particular instruction

e In general, the instruction cannot be completed
and needs to be restarted after the exception has
been handled

— With pipelining, requires undoing the effect of one or more
partially executed instructions

e In case of a trap (system call), the instruction is
considered to have been completed

— A special jump instruction involving a change to privileged
kernel mode

September 19, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L04-34

Page Fault Handler

e When the referenced page is not in DRAM:
— The missing page is located (or created)

- It is brought in from disk, and page table is updated

Another job may be run on the CPU while the first job waits
for the requested page to be read from disk

— If no free pages are left, a page is swapped out
Pseudo-LRU replacement policy
e Since it takes a long time to transfer a page
(msecs), page faults are handled completely in

software by the OS

- Untranslated addressing mode is essential to allow kernel
to access page tables

September 19, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO4-35

Topics

e Speeding up the common case:
— TLB & Cache organization

e Interrupts

e Modern Usage

September 19, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO4-36

Virtual Memory Use Today - 1

e Desktop/server/cellphone processors have full

demand-paged virtual memory
— Portability between machines with different memory sizes
— Protection between multiple users or multiple tasks
— Share small physical memory among active tasks
— Simplifies implementation of some OS features

e Vector supercomputers and GPUs have translation
and protection but not demand paging
(Older Crays: base&bound, Japanese & Cray X1: pages)

— Don't waste expensive processor time thrashing to disk (make
jobs fit in memory)

— Mostly run in batch mode (run set of jobs that fits in memory)
— Difficult to implement restartable vector instructions

September 19, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L04-37

Virtual Memory Use Today - 2

e Most embedded processors and DSPs provide
physical addressing only
— Can't afford area/speed/power budget for virtual memory support
— Often there is no secondary storage to swap to!

— Programs custom-written for particular memory configuration in
product

— Difficult to implement restartable instructions for exposed
architectures

September 19, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L04-38

Next lecture: Pipelining!

MIT 6.5900 (ne 6.823) Fall 2022 LO4-39

