
L04-1MIT 6.5900 (ne 6.823) Fall 2022

Mengjia Yan
Computer Science and Artificial Intelligence Laboratory

M.I.T.

Modern Virtual Memory
Systems

MIT 6.5900 (ne 6.823) Fall 2022

Recap: Modern Virtual Memory Systems
Illusion of a large, private, uniform store

Protection & Privacy
several users, each with their private
address space and one or more
shared address spaces

page table º name space

Demand Paging
Provides the ability to run programs
larger than the primary memory

Hides differences in machine
configurations

The price is address translation on
each memory reference

OS

useri

Primary
Memory

Swapping
Store

VA PAmapping
TLB

L04-2September 19, 2022

MIT 6.5900 (ne 6.823) Fall 2022

Address Translation & Protection

• Every instruction and data access needs address
translation and protection checks

A good VM design needs to be fast (~ one cycle) and
space-efficient

Physical Address

Virtual Address

Address
Translation

Virtual Page No. (VPN) offset

Physical Page No. (PPN) offset

Protection
Check

Exception?

Kernel/User Mode

Read/Write

L04-3September 19, 2022

MIT 6.5900 (ne 6.823) Fall 2022

Recap: Linear Page Table

VPN Offset
Virtual address

PT Base Register

VPN

Data word

Data Pages

Offset

PPN
PPN

DPN
PPN

PPN
PPN

Page Table

DPN

PPN

DPN
DPN

DPN
PPN

• Page Table Entry (PTE)
contains:
– A bit to indicate if a page

exists
– PPN (physical page number)

for a memory-resident page
– DPN (disk page number) for

a page on the disk
– Status bits for protection

and usage
• OS sets the Page Table

Base Register
whenever active user
process changes

L04-4September 19, 2022

MIT 6.5900 (ne 6.823) Fall 2022

Recap: Size of Linear Page Table

With 32-bit addresses, 4 KB pages & 4-byte PTEs:
Þ 220 PTEs, i.e, 4 MB page table per user
Þ 4 GB of swap space needed to back up the full virtual

address space

Larger pages?
• Internal fragmentation (Not all memory in a page is

used)
• Larger page fault penalty (more time to read from disk)

What about 64-bit virtual address space???
• Even 1MB pages would require 244 8-byte PTEs (35 TB!)

What is the “saving grace”?

L04-5September 19, 2022

MIT 6.5900 (ne 6.823) Fall 2022

Atlas Revisited

• One PAR for each physical page

• PAR’s contain the VPN’s of the
pages resident in primary memory

• Advantage: The size is
proportional to the size of the
primary memory

• What is the disadvantage?

VPN

PARs

PPN

L04-6September 19, 2022

MIT 6.5900 (ne 6.823) Fall 2022

Hashed Page Table:
Approximating Associative Addressing

• Hashed Page Table is typically 2 to 3 times
larger than the number of PPNs to reduce
collision probability

• It can also contain DPNs for some non-
resident pages (not common)

• If a translation cannot be resolved in this
table then the software consults a data
structure that has an entry for every
existing page

hash
Offset

Base of Table

+ PA of PTE

Primary
Memory

VPN PID PPN

Page Table
VPN d Virtual Address

VPN PID DPN

VPN PID

PID

L04-7September 19, 2022

MIT 6.5900 (ne 6.823) Fall 2022

Hierarchical Page Table

Level 1
Page Table

Level 2
Page Tables

Data Pages

page in primary memory
page in secondary memory

Root of the Current
Page Table

p1

offset

p2

Virtual Address

(Processor
Register)

PTE of a nonexistent page

p1 p2 offset
01112212231

10-bit
L1 index

10-bit
L2 index

L04-8September 19, 2022

MIT 6.5900 (ne 6.823) Fall 2022

Translation Lookaside Buffers

Address translation is very expensive!
In a hierarchical page table, each reference
becomes several memory accesses

Solution: Cache translations in TLB
TLB hit Þ Single-cycle Translation
TLB miss Þ Page Table Walk to refill

VPN offset

V R W D tag PPN

physical address PPN offset

virtual address

hit?

(VPN = virtual page number)

(PPN = physical page number)

L04-9September 19, 2022

MIT 6.5900 (ne 6.823) Fall 2022

TLB Designs

• Keep process information in TLB?
– No process id à Must flush on context switch
– Tag each entry with process id à No flush, but costlier

• Typically 32-128 entries, usually highly associative
• TLB Reach: Size of largest virtual address space

that can be simultaneously mapped by TLB
Example: 64 TLB entries, 4KB pages, one page per entry

TLB Reach = _____________________________________?

• Ways to increase TLB reach
– Multi-level TLBs (e.g., Intel Skylake: 64-entry L1 data TLB,

128-entry L1 instruction TLB, 1.5K-entry L2 TLB)
– Multiple page sizes, e.g., x86 (32-bit): 4MB; x86-64: 2MB, 1GB

L04-10September 19, 2022

MIT 6.5900 (ne 6.823) Fall 2022

Variable-Sized Page Support

Level 1
Page Table

Level 2
Page Tables

Data Pages

page in primary memory
large page in primary memory
page in secondary memory
PTE of a nonexistent page

Root of the Current
Page Table

p1

offset

p2

Virtual Address

(Processor
Register)

p1 p2 offset
01112212231

10-bit
L1 index

10-bit
L2 index

L04-11September 19, 2022

MIT 6.5900 (ne 6.823) Fall 2022

Variable-Size Page TLB
VPN offset

physical address PPN offset

virtual address – small page
large page

hit?

V RWD Tag PPN L

VPN offset

Large
page?

L04-12

Step 1: Assume 4KB page size, calculate index and probe
Step 2: If miss, assume 2MB page, re-calculate index and probe

September 19, 2022

MIT 6.5900 (ne 6.823) Fall 2022

Variable-Size Page TLB
VPN offset

physical address PPN offset

virtual address – small page
large page

hit?

V RWD Tag PPN

Alternatively, have a separate TLB
for each page size (pros/cons?)

VPN offset

L04-13

4KB 2MB 1GB
L1-D TLB 64 32 4
L1-I TLB 128 8 /
L2 STLB 1536 16

Example: Intel Skylake

V RWD Tag PPN

hit?

TLB for
small page

TLB for
large page

September 19, 2022

MIT 6.5900 (ne 6.823) Fall 2022

Handling a TLB Miss

Software (MIPS, Alpha)
TLB miss causes an exception and the operating system
walks the page tables and reloads TLB. A privileged
“untranslated” addressing mode used for walk

Hardware (SPARC v8, x86, PowerPC)
A memory management unit (MMU) walks the page
tables and reloads the TLB

If a missing (data or PT) page is encountered during the
TLB reloading, MMU gives up and signals a Page-Fault
exception for the original instruction

L04-14

What is the trade-off?

September 19, 2022

MIT 6.5900 (ne 6.823) Fall 2022

Hierarchical Page Table Walk:
SPARC v8

31 11
0

Virtual Address Index 1 Index 2 Index 3 Offset
31 23 17 11 0

Context
Table
Register

Context
Register

root ptr

PTP
PTP

PTE

Context Table

L1 Table

L2 Table
L3 Table

Physical Address PPN Offset

MMU does this table walk in hardware on a TLB miss
L04-15September 19, 2022

MIT 6.5900 (ne 6.823) Fall 2022

Address Translation: putting it all together

Virtual Address

TLB
Lookup

Page Table
Walk

Update TLBPage Fault
(OS loads page)

Protection
Check

Physical
Address
(to cache)

miss hit

the page is
Ïmemory Îmemory denied permitted

Protection
Fault

hardware
hardware or software
software

SEGFAULTWhere?

L04-16September 19, 2022

MIT 6.5900 (ne 6.823) Fall 2022

Topics

• Speeding up the common case:
– TLB & Cache organization

• Interrupts

• Modern Usage

L04-17September 19, 2022

MIT 6.5900 (ne 6.823) Fall 2022

Address Translation in CPU

• Software handlers need a restartable exception on page fault
or protection violation

• Handling a TLB miss needs a hardware or software
mechanism to refill TLB

• Need mechanisms to cope with the additional latency of TLB:
– slow down the clock
– pipeline the TLB and cache access
– virtual-address caches
– parallel TLB/cache access

PC
Inst
TLB

Inst.
Cache

Data
TLB

Data
Cache+

TLB miss? Page Fault?
Protection violation?

TLB miss? Page Fault?
Protection violation?

RegFile

L04-18September 19, 2022

MIT 6.5900 (ne 6.823) Fall 2022

Virtual-Address Caches

• one-step process in case of a hit (+)
• cache needs to be flushed on a context switch unless

address space identifiers (ASIDs) included in tags (-)
• aliasing problems due to the sharing of pages (-)

CPU Physical
CacheTLB Primary

Memory
VA

PA

Alternative: place the cache before the TLB

CPU

VA

Virtual
Cache

PA
TLB

Primary
Memory

L04-19

Pros and cons?

September 19, 2022

MIT 6.5900 (ne 6.823) Fall 2022

Aliasing in Virtual-Address Caches

VA1

VA2

Page Table

Data Pages

PA

Two virtual pages share
one physical page

VA1

VA2

1st Copy of Data at PA

2nd Copy of Data at PA

Tag Data

Virtual cache can have two
copies of same physical data.
Writes to one copy not visible

to reads of other!

General Solution: Disallow aliases to coexist in cache
Software (i.e., OS) solution for direct-mapped cache

VAs of shared pages must agree in cache index bits; this
ensures all VAs accessing same PA will conflict in direct-
mapped cache (early SPARCs)

L04-20September 19, 2022

MIT 6.5900 (ne 6.823) Fall 2022

Concurrent Access to TLB & Cache

Index L is available without consulting the TLB
Þ cache and TLB accesses can begin simultaneously

Tag comparison is made after both accesses are completed

VPN

TLB Direct-map Cache

PPN Page Offset

=
hit?

DataPhysical Tag
Tag

VA

PA

Virtual
Index

L04-21September 19, 2022

MIT 6.5900 (ne 6.823) Fall 2022

Concurrent Access to TLB & Cache

Index L is available without consulting the TLB
Þ cache and TLB accesses can begin simultaneously

Tag comparison is made after both accesses are completed

When does this work? L + b < k __ L + b = k __ L + b > k __

VPN L b

TLB Direct-map Cache
2L blocks

2b-byte block
PPN Page Offset

=
hit?

DataPhysical Tag
Tag

VA

PA

Virtual
Index

k

L04-22September 19, 2022

MIT 6.5900 (ne 6.823) Fall 2022

Concurrent Access to TLB & Large L1
The problem with L1 > Page size

Can VA1 and VA2 both map to PA?

VPN Page Offset b

TLB

PPN Page Offset b

Tag

VA

PA

Virtual Index
L1 PA cache
Direct-map

= hit?

PPNa Data

PPNa Data

VA1

VA2

L04-23

L

September 19, 2022

MIT 6.5900 (ne 6.823) Fall 2022

Virtual-Index Physical-Tag Caches:
Associative Organization

Is this scheme realistic for larger caches?

VPN a L = k-b b

TLB Direct-map
2L blocks

PPN Page Offset

=
hit?

Data

Phy.
Tag

Tag

VA

PA

Virtual
Index

k
Direct-map
2L blocks

2a

=
2a

After the PPN is known, 2a physical tags are compared

L04-24September 19, 2022

MIT 6.5900 (ne 6.823) Fall 2022

A solution via Second-Level Cache

Usually a common L2 cache backs up both
Instruction and Data L1 caches

L2 is “inclusive” of both Instruction and Data caches

CPU

L1 Data
Cache

L1
Instruction

Cache Unified L2
Cache

RF Memory

Memory

Memory

Memory

L04-25September 19, 2022

MIT 6.5900 (ne 6.823) Fall 2022

Anti-Aliasing Using L2: MIPS R10000

VPN a Page Offset b

TLB

PPN Page Offset b

Tag

VA

PA

Virtual Index L1 PA cache

= hit?

PPNa Data

PPNa Data

VA1

VA2

L2 cache

PA a1 Data

PPN

into L2 tag

• Suppose VA1 and VA2 both map to PA
and VA1 is already in L1, L2 (VA1 ¹ VA2)

• After VA2 is resolved to PA, collision is
detected in L2. Collision à

• VA1 will be purged from L1, and VA2 will
be loaded Þ no aliasing!

Field a is different.
a2

L04-26September 19, 2022

MIT 6.5900 (ne 6.823) Fall 2022

Virtually Addressed L1:
Anti-Aliasing using L2

VPN Page Offset b

TLB

PPN Page Offset b

Tag

VA

PA

Virtual
Index & Tag

Physical
Index & Tag

L1 VA Cache

L2 PA Cache
L2 “contains” L1

PA VA1 Data

VA1 Data

VA2 Data

“Virtual
Tag”

Physically addressed L2 can also be
used to avoid aliases in virtually
addressed L1

L04-27September 19, 2022

MIT 6.5900 (ne 6.823) Fall 2022

Topics

• Speeding up the common case:
– TLB & Cache organization

• Interrupts

• Modern Usage

L04-28September 19, 2022

MIT 6.5900 (ne 6.823) Fall 2022

Address Translation: putting it all together

Virtual Address

TLB
Lookup

Page Table
Walk

Update TLBPage Fault
(OS loads page)

Protection
Check

Physical
Address
(to cache)

miss hit

the page is
Ïmemory Îmemory denied permitted

Protection
Fault

hardware
hardware or software
software

SEGFAULT
Where?

L04-29
Need a restartable exception
September 19, 2022

MIT 6.5900 (ne 6.823) Fall 2022

Interrupts:
altering the normal flow of control

Ii-1 HI1

HI2

HIn

Ii

Ii+1

program
interrupt
handler

An external or internal event that needs to be processed by
another (system) program. The event is usually unexpected or
rare from program’s point of view.

L04-30September 19, 2022

MIT 6.5900 (ne 6.823) Fall 2022

Causes of Interrupts

• Asynchronous: an external event
– input/output device service-request
– timer expiration
– power disruptions, hardware failure

• Synchronous: an internal event (a.k.a. exception)
– undefined opcode, privileged instruction
– arithmetic overflow, FPU exception
– misaligned memory access
– virtual memory exceptions: page faults,

TLB misses, protection violations
– traps: system calls, e.g., jumps into kernel

Interrupt: an event that requests the attention of the processor

L04-31September 19, 2022

MIT 6.5900 (ne 6.823) Fall 2022

Asynchronous Interrupts
Invoking the interrupt handler

• An I/O device requests attention by asserting one
of the prioritized interrupt request lines

• When the processor decides to process interrupt
– It stops the current program at instruction Ii, completing

all the instructions up to Ii-1 (precise interrupt)
– It saves the PC of instruction Ii in a special register (EPC)
– It disables interrupts and transfers control to a designated

interrupt handler running in kernel mode

L04-32September 19, 2022

MIT 6.5900 (ne 6.823) Fall 2022

Interrupt Handler

• Saves EPC before enabling interrupts to allow
nested interrupts Þ
– need an instruction to move EPC into GPRs
– need a way to mask further interrupts at least until EPC can be

saved

• Needs to read a status register that indicates the
cause of the interrupt

• Uses a special indirect jump instruction RFE
(return-from-exception) that
– enables interrupts
– restores the processor to the user mode
– restores hardware status and control state

L04-33September 19, 2022

MIT 6.5900 (ne 6.823) Fall 2022

Synchronous Interrupts

• A synchronous interrupt (exception) is caused by a
particular instruction

• In general, the instruction cannot be completed
and needs to be restarted after the exception has
been handled
– With pipelining, requires undoing the effect of one or more

partially executed instructions

• In case of a trap (system call), the instruction is
considered to have been completed
– A special jump instruction involving a change to privileged

kernel mode

L04-34September 19, 2022

MIT 6.5900 (ne 6.823) Fall 2022

Page Fault Handler

• When the referenced page is not in DRAM:
– The missing page is located (or created)
– It is brought in from disk, and page table is updated

Another job may be run on the CPU while the first job waits
for the requested page to be read from disk

– If no free pages are left, a page is swapped out
Pseudo-LRU replacement policy

• Since it takes a long time to transfer a page
(msecs), page faults are handled completely in
software by the OS
– Untranslated addressing mode is essential to allow kernel

to access page tables

L04-35September 19, 2022

MIT 6.5900 (ne 6.823) Fall 2022

Topics

• Speeding up the common case:
– TLB & Cache organization

• Interrupts

• Modern Usage

L04-36September 19, 2022

MIT 6.5900 (ne 6.823) Fall 2022

Virtual Memory Use Today - 1
• Desktop/server/cellphone processors have full

demand-paged virtual memory
– Portability between machines with different memory sizes
– Protection between multiple users or multiple tasks
– Share small physical memory among active tasks
– Simplifies implementation of some OS features

• Vector supercomputers and GPUs have translation
and protection but not demand paging
(Older Crays: base&bound, Japanese & Cray X1: pages)
– Don’t waste expensive processor time thrashing to disk (make

jobs fit in memory)
– Mostly run in batch mode (run set of jobs that fits in memory)
– Difficult to implement restartable vector instructions

L04-37September 19, 2022

MIT 6.5900 (ne 6.823) Fall 2022

Virtual Memory Use Today - 2

• Most embedded processors and DSPs provide
physical addressing only
– Can’t afford area/speed/power budget for virtual memory support
– Often there is no secondary storage to swap to!
– Programs custom-written for particular memory configuration in

product
– Difficult to implement restartable instructions for exposed

architectures

L04-38September 19, 2022

L04-39MIT 6.5900 (ne 6.823) Fall 2022

Next lecture: Pipelining!

