Complex Pipelining

Mengjia Yan
Computer Science and Artificial Intelligence Laboratory

M.I.T.

MIT 6.5900 (ne 6.823) Fall 2022 LO6-1

Complex Pipelining: Motivation

Instruction pipelining becomes complex when we
want high performance in the presence of

e Multi-cycle operations, for example:
e Full or partially pipelined floating-point units, or
e Long-latency operations, e.qg., divides

e VVariable-latency operations, for example:
e Memory systems with variable access time

e Replicated function units, for example:
e Multiple floating-point or memory units

September 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO6-2

CDC 6600

Seymour Cray, 1963

September 26, 2022

A fast pipelined machine with 60-bit words

- 128 Kword main memory capacity, 32 banks

Ten functional units (parallel, unpipelined)
- Floating Point: adder, 2 multipliers, divider
- Integer: adder, 2 incrementers, ...

Hardwired control

Dynamic scheduling of instructions using a
scoreboard

Ten Peripheral Processors for Input/Output
- A fast multi-threaded 12-bit integer ALU

Very fast clock, 10 MHz (FP add in 4 clocks)

>400,000 transistors, 750 sq. ft., 5 tons,
150 kW, new freon-based cooling technology

Fastest machine in world for 5 years (until
CDC 7600)

- Over 100 sold ($7-10M each)

MIT 6.5900 (ne 6.823) Fall 2022 LO6-3

CDC 6600: Datapath

Central
Memory

Operand Regs

8 x 60-bit
operand
) "[10 Functional
result d Units
IR
Address Regs | Index Regs
8 x 18-bit 8 x 18-bit
Inst. Stack
oprnd 8 x 60-bit
addr
result
addr

September 26, 2022

MIT 6.5900 (ne 6.823) Fall 2022

LO6-4

CDC 6600:
A Load/Store Architecture

e Separate instructions to manipulate three types of regq.
- 8 60-bit data registers (X)
— 8 18-bit address registers (A)
- 8 18-bit index registers (B)

e All arithmetic and logic instructions are reg-to-reg
6 3 3 3

opcode| i | j| k Ri < (Rj) op (Rk)
e Only Load and Store instructions refer to memory!
6 3 3 18
opcode| |] disp Ri < M[(Rj) + disp]

— Touching address registers 1 to 5 initiates a load
6 to 7 initiates a store
- very useful for vector operations

September 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO6-5

CDC6600: Vector Addition

Bl <« -n
loop: JZE B1, exit
Al « Bl + al load into X1
A2 <« Bl + b1 load into X2
X6 « X1 + X2
A6 «— Bl +cl store X6
Bl « Bl +1
jump loop
Ai = address register
Bi = index register
Xi = data register

more on vector processing later...

September 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO6-6

We will present complex pipelining
issues more abstractly ...

MIT 6.5900 (ne 6.823) Fall 2022 LO6-7

Floating Point ISA

Interaction between the Floating point datapath

and the Integer datapath is determined largely
by the ISA

MIPS ISA

e separate register files for FP and Integer instructions
the only interaction is via a set of move instructions
(some ISAs don’t even permit this)

e separate load/store for FPR’s and GPR’s but both

use GPR'’s for address calculation

e separate conditions for branches

FP branches are defined in terms of condition codes

September 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022

LO6-8

Floating Point Unit

Much more hardware than an integer unit

Single-cycle floating point unit is a bad idea - why?

e it is common to have several floating point units

e it is common to have different types of FPUs
Fadd, Fmul, Fdiv, ...

e an FPU may be pipelined, partially pipelined or not
pipelined

To operate several FPUs concurrently the register
file needs to have more read and write ports

September 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO6-9

Functional Unit Characteristics

fully
pipelined

partially
pipelined

<—busy 1cycllcycllcyc <—accept
m 2 cyc 2 cycC mpt

Functional units have internal pipeline registers

— operands are latched when an instruction
enters a functional unit

= inputs to a functional unit (e.qg., register file)
can change during a long latency operation

September 26, 2022

MIT 6.5900 (ne 6.823) Fall 2022

LO6-10

Realistic Memory Systems

Latency of access to the main memory is usually much
higher than one cycle and often unpredictable
Solving this problem is a central issue in computer architecture

Common approaches to improving memory performance
e separate instruction and data memory ports
= no self-modifying code
e caches
single cycle except in case of a miss = stall
e interleaved memory
multiple memory accesses = bank conflicts
e split-phase memory operations
= out-of-order responses

September 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO6-11

Complex Pipeline Structure

Mem \\\

»

September 26, 2022

/

ALU
IF ID » Issue
Fadd
GPRs
FPRs
Fmul
[)
[)
[)
[)
Fdiv

MIT 6.5900 (ne 6.823) Fall 2022

7

WB

L06-12

Complex Pipeline Control Issues

e Structural hazards at the execution stage if some
FPU or memory unit is not pipelined and takes
more than one cycle

e Structural hazards at the write-back stage due to
variable latencies of different function units

e Qut-of-order write hazards due to variable latencies
of different function units

e How to handle exceptions?

September 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO6-13

Complex In-Order Pipeline

Inst.

Decode H GPRs
Mem
e Delay writeback so all :
operations have same | FPRs

latency to W stage

- Write ports never
oversubscribed (one
inst. in & one inst. out
every cycle)

How to prevent increased
writeback latency from
slowing down single-cycle
integer operations?

Bypassing

September 26, 2022

Fmul

B
-1

|FDiv

Unpipelined
divider

MIT 6.5900 (ne 6.823) Fall 2022

C

ommit
oint

hY

LO6-14

Complex In-Order Pipeline

Data
Mem

'If

Inst. Decode { GPRs
Mem

How should we handle

data hazards for long- Y eprs

latency operations?

Stall pipeline on long
latency operations, e.g.,
divides, cache misses

Exceptions?

Speculate that exceptions
won’t occur and detect them

and recover in program order

at commit point

September 26, 2022

Fmul

|FDiv

)
-1

Unpipelined
divider

MIT 6.5900 (ne 6.823) Fall 2022

C

ommit
oint

hY

LO6-15

Superscalar In-Order Pipeline

September 26, 2022

Dual
Decode

| Inst.
Mem

- GPRs

Fetch two instructions
per cycle; issue both
simultaneously if one is
integer/memory and
other is floating-point

Inexpensive way of
increasing throughput

- Examples:
Alpha 21064 (1992)
MIPS R5000 series (1996)

Can be extended to
wider issue but register
file ports and bypassing
costs grow quickly

- E.g., 4-issue UltraSPARC

Data
Mem

'If

1 FPRs

Fmul

-
—

|FDiv

Unpipelined
divider

=
|

MIT 6.5900 (ne 6.823) Fall 2022

C

ommit
oint

hY

LO6-16

Dependence Analysis

Needed to Exploit Instruction-level Parallelism

MIT 6.5900 (ne 6.823) Fall 2022 LO6-17

Types of Data Hazards

Consider executing a sequence of
e < (r;) op (ry)

type of instructions

Data-dependence

r; < (ry) op (ry) Read-after-Write

re <>(r;) op (rs) (RAW) hazard
Anti-dependence

r37(r1) op (r5) Write-after-Read

ri“<« (ry) op (rs) (WAR) hazard
Output-dependence

r; < (ry) op (ry) Write-after-Write

r; < (rg) op (ry) (WAW) hazard

September 26, 2022

MIT 6.5900 (ne 6.823) Fall 2022

LO6-18

Detecting Data Hazards

Range and Domain of instruction i
R(i) = Registers (or other storage) modified by
instruction i
D(i) = Registers (or other storage) read by
instruction i

Suppose instruction j follows instruction i in the
program order. Executing instruction j before the
effect of instruction i has taken place can cause a

RAW hazard if R(i) n D(j) 2O

WAR hazard if D(i) ~n R() =
WAW hazard if ~ R(i) n R(j) =@

September 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO6-19

Register vs. Memory
Data Dependences

e Data hazards due to register operands can be
determined at the decode stage but

e Data hazards due to memory operands can be
determined only after computing the effective address

store M[(r1l) + displ] « (r2)
load r3 <« M[(r4) + disp2]

Does (r1) + displ == (r4) + disp2 ?

A full lecture on how to handle memory dependency later.
This lecture: focuses on register dependency

September 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO6-20

Data Hazards: An Example

September 26, 2022

DIVD

LD

MULTD

DIVD

SUBD

ADDD \f6, f8, f2

RAW Hazards
WAR Hazards
WAW Hazards

MIT 6.5900 (ne 6.823) Fall 2022

LO6-21

Instruction Scheduling

I DIVD _f6, f6, f4

I LD

I MULTD

P DIVD

I SUBD

5 j/

I, ADDD /‘f\
Valid orderings: u
in-order I, I, I I, Is I

/

OUt-Of—OI‘deI‘ IZ Il I3 I4 I5 I6 é
OUt-Of—OI‘deI‘ I1 IZ I3 I5 I4 I6

September 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L06-22

Out-of-order Completion
In-order Issue

cycle

in-order comp

DIVD
LD
MULTD
DIVD
SuBD
ADDD

out-of-order comp

What problems can out-of-order comp cause?

September 26, 2022

f6, f6,
f2, 45(r3)
fo, f2,
f8, f6,
f10, fo,
f6, f8,

1 2 3 4 5 6 7

1 2 1 2 3

1 2 2 3 1 4 3

f4

f4
2
f6
2

Latency

AW K~

1
1

8 9 10111213 14 15

4

5 5 4 6 6

Structural hazards
Data hazards

MIT 6.5900 (ne 6.823) Fall 2022

3 546 56

Exceptions

LO6-23

Scoreboard:
A Hardware Data Structure to
Detect Hazards Dynamically

MIT 6.5900 (ne 6.823) Fall 2022 LO6-24

Complex Pipeline

Mem

\

ALU
IF ID + Issue
Fadd
GPRs
FPRs
Fmul
Can we solve write e
hazards without e
equalizing all pipeline
depths and without Fdi
bypassing? v

September 26, 2022

MIT 6.5900 (ne 6.823) Fall 2022

7

WB

e——

LO6-25

When is it Safe to Issue an Instruction?

e Approach: Stall issue until sure that issuing will
cause no dependence problems...

e Suppose a data structure keeps track of all the
instructions in all the functional units

e The following checks need to be made before the
Issue stage can dispatch an instruction
- Is the required function unit available?
— Is the input data available? = RAW?
- Is it safe to write the destination? = WAR? WAW?
— Is there a structural conflict at the WB stage?

September 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO6-26

A Data Structure for Correct Issues
Keeps track of the status of Functional Units

Name Busy Op Dest Srcl Src2
Int
Mem
Add1
Add?2
Add3
Multl
Mult2
Div

The instruction i at the Issue stage consults this table

FU available? check the busy column

RAW? search the dest column for i's sources
WAR? search the source columns for i’s destination
WAW? search the dest column for i’s destination

An entry is added to the table if no hazard is detected;
An entry is removed from the table after Write-Back

September 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO6-27

Simplifying the Data Structure
Assuming In-order Issue

e Suppose the instruction is not dispatched by the

Issue stage
e If a RAW hazard exists
e or if the required FU is busy

e Suppose operands are latched by the functional
unit on issue

Can the dispatched instruction cause a

WAR hazard? NO: Operands read at issue
WAW hazard? yES: Out-of-order completion

Name Busy Op Dest Srcl Src2
Int
Mem Write No Re_ad is
Add1l Pending pend_lng
after issue

September 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO6-28

Simplifying the Data Structure

e No WAR hazard
— Nno need to keep srcl and src2

e The Issue stage does not dispatch an instruction in
case of a WAW hazard
— a register name can occur at most once in the dest column
Can be encoded as a bit vector

Name Busy Op Dest Srcl Src2
Int

Mem Write

Add1 Pending

September 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO6-29

Scoreboard for In-order Issues

Busy[FU#] : a bit-vector to indicate FU’s availability.
(FU = Int, Add, Mult, Div)
These bits are hardwired to FU's.

WP[reg#] : a bit-vector to record the registers for which

writes are pending.
These bits are set to true by the Issue stage and set to

false by the WB stage

Issue checks the instruction (opcode dest srcl src2)
against the scoreboard (Busy & WP) to dispatch

FU available? Busy[FU#]

RAW? WP[src1] or WP[src2]
WAR? cannot arise

WAW? WP[dest]

September 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 LO6-30

Scoreboard Dynamics

Functional Unit Status

Registers Reserved

Int(1)Add(1), Mult(3) Div(4) ;WB for Writes
t0 I, f6 f6
tl I,| f2 fel f6, 2
t2 fd |2 f6, 2 L
t3 1, fo 6 f6, f0
t4 fo f6 fe, fO I
t5 fO fo,
t6 fo fo, I3
t7 I f10 f10
t8 f10 , f10 Is
t9
t10 I, f6 f6
t11 f6 f6 I
I, DIVD f6, f6, f4
Z II_/I?JLTD 1% ?25,(6) f4 Check Busy[Fu#]

Check WP[srcl, src2]

Is SUBD f10, fO, f6 Check WP[dest]
I, ADDD f6, f8, f2

September 26, 2022

MIT 6.5900 (ne 6.823) Fall 2022

LO6-31

Summary:
CDC 6600-style Scoreboard

Instructions are issued in order.

An instruction is issued only if
— It cannot cause a RAW hazard

— It cannot cause a WAW hazard

—There can be at most instruction orR e
in the execute phase that can
write in a particular register

WAR hazards are not possible

— Due to in-order issue +
operands read immediately

IF M ID p=»ilssue

Busy[FU#]: Indicates FU’s availability

These bits are hardwired to FU's.
Scoreboard:

Two bit-vectors WP[reg#]: Records if a write is pending
for a register
Set to true by the Issue stage and
set to false by the WB stage

September 29, 2021 MIT 6.5900 (ne 6.823) Fall 2022 LO7-32

Preview: Anatomy of a Modern Out-
of-Order Superscalar Core

1 | 1 Reservation Stations

T > [-Cache
Branch *
s Prodict | Fetch Unit
= A v
2 LT T 7 Instruction Buffer
- A
Decode/Rename
Dispatch
A4
A4 A4 A4
_ C T [T C T [T
e v v v v v
O | imt | [m || FP]| [FP || U | [US|
o 71 COrCoC 3o
3 N G
Hf[
i \ \}
A
,_T Reorder Buffer ISy
() A
'9 .
o Retire
Ei v : ‘
Write Buffer [T | T +—» D-Cache

September 26, 2022

MIT 6.5900 (ne 6.823) Fall 2022

LO6 (Today):
Complex pipes w/
in-order issue
LO7: Out-of-order
exec & renaming

LO8: Branch
prediction

LO9: Speculative
execution and
recovery

L10: Advanced
Memory Ops

LO6-33

