
L06-1MIT 6.5900 (ne 6.823) Fall 2022

Complex Pipelining

Mengjia Yan
Computer Science and Artificial Intelligence Laboratory

M.I.T.

MIT 6.5900 (ne 6.823) Fall 2022

Complex Pipelining: Motivation

Instruction pipelining becomes complex when we
want high performance in the presence of

• Multi-cycle operations, for example:
• Full or partially pipelined floating-point units, or
• Long-latency operations, e.g., divides

• Variable-latency operations, for example:
• Memory systems with variable access time

• Replicated function units, for example:
• Multiple floating-point or memory units

September 26, 2022 L06-2

MIT 6.5900 (ne 6.823) Fall 2022

CDC 6600
Seymour Cray, 1963

• A fast pipelined machine with 60-bit words
– 128 Kword main memory capacity, 32 banks

• Ten functional units (parallel, unpipelined)
– Floating Point: adder, 2 multipliers, divider
– Integer: adder, 2 incrementers, ...

• Hardwired control
• Dynamic scheduling of instructions using a

scoreboard
• Ten Peripheral Processors for Input/Output

– A fast multi-threaded 12-bit integer ALU
• Very fast clock, 10 MHz (FP add in 4 clocks)
• >400,000 transistors, 750 sq. ft., 5 tons,

150 kW, new freon-based cooling technology
• Fastest machine in world for 5 years (until

CDC 7600)
– Over 100 sold ($7-10M each)

September 26, 2022 L06-3

MIT 6.5900 (ne 6.823) Fall 2022

CDC 6600: Datapath

September 26, 2022

Address Regs Index Regs
8 x 18-bit 8 x 18-bit

Operand Regs
8 x 60-bit

Inst. Stack
8 x 60-bit

IR

10 Functional
Units

Central
Memory

result
addr

result

operand

oprnd
addr

L06-4

MIT 6.5900 (ne 6.823) Fall 2022

6 3 3 3
opcode i j k Ri¬ (Rj) op (Rk)

CDC 6600:
A Load/Store Architecture
• Separate instructions to manipulate three types of reg.

– 8 60-bit data registers (X)
– 8 18-bit address registers (A)
– 8 18-bit index registers (B)

• All arithmetic and logic instructions are reg-to-reg

• Only Load and Store instructions refer to memory!

– Touching address registers 1 to 5 initiates a load
6 to 7 initiates a store

- very useful for vector operations

September 26, 2022

6 3 3 18
opcode i j disp Ri ¬ M[(Rj) + disp]

L06-5

MIT 6.5900 (ne 6.823) Fall 2022

CDC6600: Vector Addition

September 26, 2022

B1 ¬ - n
loop: JZE B1, exit

A1 ¬ B1 + a1 load into X1
A2 ¬ B1 + b1 load into X2
X6 ¬ X1 + X2
A6 ¬ B1 + c1 store X6
B1 ¬ B1 + 1
jump loop

Ai = address register
Bi = index register
Xi = data register

more on vector processing later…

L06-6

L06-7MIT 6.5900 (ne 6.823) Fall 2022

We will present complex pipelining
issues more abstractly …

MIT 6.5900 (ne 6.823) Fall 2022

Floating Point ISA

September 26, 2022

Interaction between the Floating point datapath
and the Integer datapath is determined largely
by the ISA

MIPS ISA
• separate register files for FP and Integer instructions

the only interaction is via a set of move instructions
(some ISAs don’t even permit this)

• separate load/store for FPR’s and GPR’s but both
use GPR’s for address calculation

• separate conditions for branches
FP branches are defined in terms of condition codes

L06-8

MIT 6.5900 (ne 6.823) Fall 2022

Floating Point Unit

September 26, 2022

Much more hardware than an integer unit

Single-cycle floating point unit is a bad idea - why?

• it is common to have several floating point units

• it is common to have different types of FPUs
Fadd, Fmul, Fdiv, ...

• an FPU may be pipelined, partially pipelined or not
pipelined

To operate several FPUs concurrently the register
file needs to have more read and write ports

L06-9

MIT 6.5900 (ne 6.823) Fall 2022

Functional Unit Characteristics

September 26, 2022

fully
pipelined

partially
pipelined

Functional units have internal pipeline registers

Þ operands are latched when an instruction
enters a functional unit

Þ inputs to a functional unit (e.g., register file)
can change during a long latency operation

busy1cyc1cyc1cyc accept

busy 2 cyc 2 cyc accept

L06-10

MIT 6.5900 (ne 6.823) Fall 2022

Realistic Memory Systems

September 26, 2022

Latency of access to the main memory is usually much
higher than one cycle and often unpredictable

Solving this problem is a central issue in computer architecture

Common approaches to improving memory performance
• separate instruction and data memory ports

Þ no self-modifying code
• caches

single cycle except in case of a miss Þ stall
• interleaved memory

multiple memory accesses Þ bank conflicts
• split-phase memory operations

Þ out-of-order responses

L06-11

MIT 6.5900 (ne 6.823) Fall 2022

Complex Pipeline Structure

September 26, 2022

IF ID WB

ALU Mem

Fadd

Fmul

Fdiv

Issue

GPRs
FPRs

L06-12

MIT 6.5900 (ne 6.823) Fall 2022

Complex Pipeline Control Issues

• Structural hazards at the execution stage if some
FPU or memory unit is not pipelined and takes
more than one cycle

• Structural hazards at the write-back stage due to
variable latencies of different function units

• Out-of-order write hazards due to variable latencies
of different function units

• How to handle exceptions?

September 26, 2022 L06-13

MIT 6.5900 (ne 6.823) Fall 2022

Complex In-Order Pipeline

• Delay writeback so all
operations have same
latency to W stage
– Write ports never

oversubscribed (one
inst. in & one inst. out
every cycle)

September 26, 2022

Commit
Point

PC
Inst.
Mem D Decode X1 X2

Data
Mem W+GPRs

X2 WFadd X3

X3

FPRs X1

X2 Fmul X3

X2FDiv X3

Unpipelined
divider

How to prevent increased
writeback latency from
slowing down single-cycle
integer operations?

Bypassing

L06-14

MIT 6.5900 (ne 6.823) Fall 2022

Complex In-Order Pipeline

September 26, 2022

Commit
Point

PC
Inst.
Mem D Decode X1 X2

Data
Mem W+GPRs

X2 WFadd X3

X3

FPRs X1

X2 Fmul X3

X2FDiv X3

Unpipelined
divider

Stall pipeline on long
latency operations, e.g.,
divides, cache misses

How should we handle
data hazards for long-
latency operations?

Speculate that exceptions
won’t occur and detect them
and recover in program order
at commit point

Exceptions?

L06-15

MIT 6.5900 (ne 6.823) Fall 2022

Superscalar In-Order Pipeline

September 26, 2022

• Fetch two instructions
per cycle; issue both
simultaneously if one is
integer/memory and
other is floating-point

• Inexpensive way of
increasing throughput
– Examples:

Alpha 21064 (1992)
MIPS R5000 series (1996)

• Can be extended to
wider issue but register
file ports and bypassing
costs grow quickly
– E.g., 4-issue UltraSPARC

Commit
Point

2
PC

Inst.
Mem D

Dual
Decode X1 X2

Data
Mem W+GPRs

X2 WFadd X3

X3

FPRs X1

X2 Fmul X3

X2FDiv X3

Unpipelined
divider

L06-16

L06-17MIT 6.5900 (ne 6.823) Fall 2022

Dependence Analysis
Needed to Exploit Instruction-level Parallelism

MIT 6.5900 (ne 6.823) Fall 2022

Data-dependence
r3 ¬ (r1) op (r2) Read-after-Write
r5 ¬ (r3) op (r4) (RAW) hazard

Types of Data Hazards

September 26, 2022

Consider executing a sequence of
rk ¬ (ri) op (rj)

type of instructions

Anti-dependence
r3 ¬ (r1) op (r2) Write-after-Read
r1 ¬ (r4) op (r5) (WAR) hazard

Output-dependence
r3 ¬ (r1) op (r2) Write-after-Write
r3 ¬ (r6) op (r7) (WAW) hazard

L06-18

MIT 6.5900 (ne 6.823) Fall 2022

Detecting Data Hazards

Range and Domain of instruction i
R(i) = Registers (or other storage) modified by

instruction i
D(i) = Registers (or other storage) read by

instruction i

September 26, 2022

Suppose instruction j follows instruction i in the
program order. Executing instruction j before the
effect of instruction i has taken place can cause a

RAW hazard if R(i) Ç D(j) ¹ Æ
WAR hazard if D(i) Ç R(j) ¹ Æ
WAW hazard if R(i) Ç R(j) ¹ Æ

L06-19

MIT 6.5900 (ne 6.823) Fall 2022

Register vs. Memory
Data Dependences

• Data hazards due to register operands can be
determined at the decode stage but

• Data hazards due to memory operands can be
determined only after computing the effective address

store M[(r1) + disp1] ¬ (r2)
load r3 ¬ M[(r4) + disp2]

Does (r1) + disp1 == (r4) + disp2 ?

September 26, 2022 L06-20

A full lecture on how to handle memory dependency later.
This lecture: focuses on register dependency

MIT 6.5900 (ne 6.823) Fall 2022

Data Hazards: An Example

September 26, 2022

I1 DIVD f6, f6, f4

I2 LD f2, 45(r3)

I3 MULTD f0, f2, f4

I4 DIVD f8, f6, f2

I5 SUBD f10, f0, f6

I6 ADDD f6, f8, f2

RAW Hazards
WAR Hazards
WAW Hazards

L06-21

MIT 6.5900 (ne 6.823) Fall 2022

Instruction Scheduling

September 26, 2022

I6

I2

I4

I1

I5

I3

Valid orderings:
in-order I1 I2 I3 I4 I5 I6

out-of-order

out-of-order

I1 DIVD f6, f6, f4

I2 LD f2, 45(r3)

I3 MULTD f0, f2, f4

I4 DIVD f8, f6, f2

I5 SUBD f10, f0, f6

I6 ADDD f6, f8, f2

I2 I1 I3 I4 I5 I6

I1 I2 I3 I5 I4 I6

L06-22

MIT 6.5900 (ne 6.823) Fall 2022

Out-of-order Completion
In-order Issue

September 26, 2022

Latency
I1 DIVD f6, f6, f4 4

I2 LD f2, 45(r3) 1

I3 MULTD f0, f2, f4 3

I4 DIVD f8, f6, f2 4

I5 SUBD f10, f0, f6 1

I6 ADDD f6, f8, f2 1

in-order comp 1 2

out-of-order comp 1 2

1 2 3 4 3 5 4 6 5 6

2 3 1 4 3 5 5 4 6 6

What problems can out-of-order comp cause? Structural hazards
Data hazards

cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Exceptions L06-23

L06-24MIT 6.5900 (ne 6.823) Fall 2022

Scoreboard:
A Hardware Data Structure to
Detect Hazards Dynamically

MIT 6.5900 (ne 6.823) Fall 2022

Complex Pipeline

September 26, 2022

IF ID WB

ALU Mem

Fadd

Fmul

Fdiv

Issue

GPRs
FPRs

Can we solve write
hazards without
equalizing all pipeline
depths and without
bypassing?

L06-25

MIT 6.5900 (ne 6.823) Fall 2022

When is it Safe to Issue an Instruction?

• Approach: Stall issue until sure that issuing will
cause no dependence problems…

• Suppose a data structure keeps track of all the
instructions in all the functional units

• The following checks need to be made before the
Issue stage can dispatch an instruction
– Is the required function unit available?
– Is the input data available? Þ RAW?
– Is it safe to write the destination? Þ WAR? WAW?
– Is there a structural conflict at the WB stage?

September 26, 2022 L06-26

MIT 6.5900 (ne 6.823) Fall 2022

A Data Structure for Correct Issues
Keeps track of the status of Functional Units

September 26, 2022

The instruction i at the Issue stage consults this table
FU available?
RAW?
WAR?
WAW?

An entry is added to the table if no hazard is detected;
An entry is removed from the table after Write-Back

Name Busy Op Dest Src1 Src2
Int
Mem
Add1
Add2
Add3
Mult1
Mult2
Div

check the busy column
search the dest column for i’s sources
search the source columns for i’s destination
search the dest column for i’s destination

L06-27

MIT 6.5900 (ne 6.823) Fall 2022

Simplifying the Data Structure
Assuming In-order Issue
• Suppose the instruction is not dispatched by the

Issue stage
• If a RAW hazard exists
• or if the required FU is busy

• Suppose operands are latched by the functional
unit on issue
Can the dispatched instruction cause a

WAR hazard?
WAW hazard?

September 26, 2022

NO: Operands read at issue
YES: Out-of-order completion

L06-28

Name Busy Op Dest Src1 Src2
Int
Mem
Add1
……

Write
Pending

No Read is
pending

after issue

MIT 6.5900 (ne 6.823) Fall 2022

Simplifying the Data Structure

• No WAR hazard
Þ no need to keep src1 and src2

• The Issue stage does not dispatch an instruction in
case of a WAW hazard
Þ a register name can occur at most once in the dest column
Can be encoded as a bit vector

September 26, 2022 L06-29

Name Busy Op Dest Src1 Src2
Int
Mem
Add1
……

Write
Pending

No Read is
pending

after issue

MIT 6.5900 (ne 6.823) Fall 2022

Scoreboard for In-order Issues

September 26, 2022

Busy[FU#] : a bit-vector to indicate FU’s availability.
(FU = Int, Add, Mult, Div)

These bits are hardwired to FU's.

WP[reg#] : a bit-vector to record the registers for which
writes are pending.

These bits are set to true by the Issue stage and set to
false by the WB stage

Issue checks the instruction (opcode dest src1 src2)
against the scoreboard (Busy & WP) to dispatch

FU available?
RAW?
WAR?
WAW?

Busy[FU#]
WP[src1] or WP[src2]
cannot arise
WP[dest]

L06-30

MIT 6.5900 (ne 6.823) Fall 2022

Scoreboard Dynamics

September 26, 2022

I1 DIVD f6, f6, f4
I2 LD f2, 45(r3)
I3 MULTD f0, f2, f4
I4 DIVD f8, f6, f2
I5 SUBD f10, f0, f6
I6 ADDD f6, f8, f2

Functional Unit Status Registers Reserved
Int(1) Add(1) Mult(3) Div(4) WB for Writes

t0 I1 f6 f6
t1 I2 f2 f6 f6, f2
t2 f6 f2 f6, f2 I2

t3 I3 f0 f6 f6, f0
t4 f0 f6 f6, f0 I1

t5 I4 f0 f8 f0, f8
t6 f8 f0 f0, f8 I3

t7 I5 f10 f8 f8, f10
t8 f8 f10 f8, f10 I5

t9 f8 f8 I4

t10 I6 f6 f6
t11 f6 f6 I6

L06-31

Check Busy[Fu#]
Check WP[src1, src2]
Check WP[dest]

Issue
time

WB
time

MIT 6.5900 (ne 6.823) Fall 2022

Summary:
CDC 6600-style Scoreboard

September 29, 2021

Instructions are issued in order.
An instruction is issued only if

– It cannot cause a RAW hazard
– It cannot cause a WAW hazard

ÞThere can be at most instruction
in the execute phase that can
write in a particular register

WAR hazards are not possible
– Due to in-order issue +

operands read immediately

IF ID WB

ALU Mem

Fadd

Fmul

Fdiv

Issue

GPR’s
FPR’s

Busy[FU#]: Indicates FU’s availability
These bits are hardwired to FU's.

WP[reg#]: Records if a write is pending
for a register

Set to true by the Issue stage and
set to false by the WB stage

Scoreboard:
Two bit-vectors

L07-32

MIT 6.5900 (ne 6.823) Fall 2022

Preview: Anatomy of a Modern Out-
of-Order Superscalar Core

• L06 (Today):
Complex pipes w/
in-order issue

• L07: Out-of-order
exec & renaming

• L08: Branch
prediction

• L09: Speculative
execution and
recovery

• L10: Advanced
Memory Ops

September 26, 2022

I-Cache

Fetch Unit

Instruction Buffer

Decode/Rename

Dispatch

Branch
Predict

Int Int FP FP L/S L/S

Reservation Stations

Write Buffer

Retire

D-Cache

In
 O

rd
er

In
 O

rd
er

O
ut

 O
f O

rd
er

Reorder Buffer

L06-33

