CDC Programing Card

LO7-1

r

CONTROL DATA 6400/6500/6600/6700
COMPUTER SYSTEMS
CENTRAL PROCESSOR INSTRUCTIONS

BRANCH UNIT

00 PS Program Stop

010 RJ Return Jump to K

013 XJ Central Exchange Jump
02 JP GotoK+Bi

030 ZR Goto K if Xj = zero

031 NZ Goto K if Xj # zero

032 PL Goto K if Xj = positive
033 NG Goto K if Xj = negative
034 IR Go to K if Xj is in range
035 OR Goto K if Xj is out of range
036 DF Go to K if Xj is definite
037 ID Go to K if Xj is indefinite

04 EQ GotoK if Bi = Bj
05 NE GotoK if Bi # Bj
06 GE Goto K if Bi > Bj
07 LT GotoK if Bi<B)

MULTIPLY UNIT

40 FXi Xj* Xk Floating Product
41 RXi Xj* Xk Round Floating Product
42 DXi Xj# Xk Floating DP Product

DIVIDE UNIT

44 FXi Xj/Xk Floating Divide

45 RXi Xj/Xk Round Floating Divide
46, NO No Operation

47 CXi Xk Sum of ones in Xk toXi

BOOLEAN UNIT
10 BXi Xj Xmit Xj to Xi
11 BXi Xj * Xk Logical Product
12 BXi Xj+ Xk Logical Sum
13 BXi Xj - Xk Logical Difference
14 BXi-Xk Xmit Xk comp to Xi
15 BXi-Xk # Xj Log Prod Xj & Xk comp
16 BXi-Xk + Xj Log Sum Xj & Xk comp
17 BXiXk - Xj Log Diff Xj & Xk comp

SHIFT UNIT
20 LXi jk Left Shift Xi by jk
21 AXi jk Right Shift Xi by jk
22 1Xi Bj Xk Left Shift Xk by Bj to Xi
23 AXi Bj Xk Right Shift Xk by Bj to Xi
24 NXi Bj Xk Normalize Xk to Xi & Bj
25 ZXi Bj Xk Round & Normalize Xk
26 UXi Bj Xk Unpack Xk to Xi & Bj
27 PXi Bj Xk Pack Xifrom Xk & Bj
43 MXi jk Form jk mask in Xi

ADD UNIT

30 FXi Xj+ Xk Floating Sum

31 FXi Xj - Xk Floating Diff

32 DXi Xj+ Xk Floating DP Sum
33 DXi X) - Xk Floating DP Diif
34 RXi Xj + Xk Round Floating Sum
35 RXi Xj - Xk Round Floating Diif

INCREMENT UNIT

50 SAi Aj+K Sumof Aj & Kto Al
51 SAi Bj¥K Sum of Bj & K to Al
52 SAL XjTK Sum of Xj & K to Al
53 SAi Xj+ Bk Sum of Xj & Bk to Ai
54 SAL Aj+ Bk Sum of Aj & Bk to Al
55 SAi Aj - Bk Diff of Aj & Bk to Ai
56 SAi Bj+ Bk Sum of Bj & Bk to Ai
57 SAi Bj - Bk Diff of Bj & Bkto Ai
60 SBi Aj+K Sum of Aj & Kto Bi
61 SBi BjfK Sum of Bj & Kto Bi
62 SBi Xj+K Sumof Xj & KtoBi
63 SBi Xj* Bk Sum of Xj & Bk to Bi
64 SBi Aj+ Bk Sum of Aj & Bk to Bi
65 SBi Aj- Bk Diff of Aj & Bk to Bi
66 SBi Bj+ Bk Sum of Bj & Bk to Bi
67 SBi Bj- Bk Diff of Bj & Bk to Bi
70 SXi Aj+K Sum of Aj & Kto Xi
71 SXi Bj+K Sum of Bj & KtoXi
72 SXi Xj+K Sum of Xj & KtoXi
73 S8Xi Xj+ Bk Sum of Xj & Bk to Xi
74 SXi Aj+ Bk Sum of A) & Bkto Xi
75 SXi Aj- Bk Diff of Aj & Bk to Xi
76 SXi Bj+ Bk Sum of Bj & Bkto Xi
77 SXi Bj - Bk Diff of Bj & Bk to Xi

EXTENDED CORE STORAGE

011 RE Bj+K Read ECS
012 WE Bj+K Write ECS

LONG ADD UNIT

36 IXi Xj+ Xk Integer Sum
37 IXi Xj - Xk Integer Difference

| Pub. No. 60164500
: Rev C H

EXIT MODE
Bit
0 Address out of range
3 Operand out of range (Infinite)
2 Indefinite operand

SYMBOLS
Comp = Complement
Double Precision
Xmit = Transmit

September 28, 2022 MIT 6.5900 Fall 2022

Complex Pipelining:

Out-of-Order Execution,
Register Renaming,
and Exceptions

Joel Emer
Computer Science and Artificial Intelligence Laboratory

M.I.T.

MIT 6.5900 Fall 2022 LO7-2

CDC 6600-style Scoreboard

Instructions are issued in order.

An instruction is issued only if
— It cannot cause a RAW hazard

— It cannot cause a WAW hazard

—There can be at most instruction orR e
in the execute phase that can
write to a particular register

WAR hazards are not possible

— Due to in-order issue +
operands read immediately

IF P ID }=»jlssue

Busy[FU#]: Indicates FU’s availability

These bits are hardwired to FU's.
Scoreboard:

Two bit-vectors WP[reg#]: Records if a write is pending

for a register
Set to true by the Issue stage and

set to false by the WB stage

September 28, 2022 MIT 6.5900 Fall 2022

LO7-3

Scoreboard Dynamics

Functional Unit Status Registers Reserved $
$ Int(1)Add(1), Mult(3} Div(4) WB for Writes (WP

t0 I, f6 f6
t1 .| f2 f6 f6, 2
t2 fq [f2 f6, f2 L
t3 I, fO f6 f6, fO
t4 fO f6 | f6, fO I,
t5 fO fo,
t6 fo | fo, I
t7 1. f10 f10
t8 f10 , f10 I
t9
t10 I f6 f6
t11 f6 f6 I,

I, DIVD f6, f6, f4

I, LD f2, 45(r3)

I MULTD fo, f2, f4

Is SUBD f10, fo, f6

I, ADDD f6, f8, f2

September 28, 2022 MIT 6.5900 Fall 2022 LO6-4

In-Order Issue Limitations

An example

latency
1 LD F2, 34(R2) 1
2 LD F4, 45(R3) long
3 MULTD F6, F4, F2 3 ‘
4 SUBD F8, F2, F2 1
5 DIVD F4, F2, F8 4 \
6 ADDD F10, F6, F4 1
In-order: 12, 2344 35. . .566

In-order restriction prevents instruction 4
from being dispatched

September 28, 2022 MIT 6.5900 Fall 2022 LO7-5

Out-of-Order Issue

How can we address the delay caused by a RAW dependence
associated with the next in-order instruction?

ALU Mem J
IF |—| 1D —4{»Issu 1 wB

Fadd 7
Fmul

e Issue stage buffer holds multiple instructions waiting to issue.

e Decode adds next instruction to buffer if there is space and
the instruction does not cause a WAR or WAW hazard.

e (Can issue any instruction in buffer whose RAW hazards are
satisfied (for now at most one dispatch per cycle).
Note: A writeback (WB) may enable more instructions.

September 28, 2022 MIT 6.5900 Fall 2022 LO7-6

In-Order Issue Limitations

An example

latency
1 LD F2, 34(R2) 1
2 LD F4, 45(R3) long
3 MULTD F6, F4, F2 3 ‘
4 SUBD F8, F2, F2 1
5 DIVD F4, F2, F8 4 \
6 ADDD F10, F6, F4 1
In-order: 1(2,1). 2344 35. . .566
Out-of-order: 1(2,1)44235.3.566

™ WAR/WAW hazards prevent instruction 5
from being dispatched

Out-of-order execution did not produce a significant improvement!
September 28, 2022 MIT 6.5900 Fall 2022 LO7-7

How many Instructions can be in
the pipeline

Throughput is limited by number of instructions
in flight, but which feature of an ISA limits the
number of instructions in the pipeline?

Out-of-order dispatch by itself does not provide a
significant performance improvement!

How can we better understand the impact of
number of registers on throughput?

September 28, 2022 MIT 6.5900 Fall 2022 LO7-8

Little’s Law

Throughput (T) = Number in Flight (N) / Latency (L)

Issue |,

Example:

4 floating point registers

8 cycles per floating point operation

—

September 28, 2022

MIT 6.5900 Fall 2022

WB

LO7-9

Overcoming the Lack of
Register Names

Floating Point pipelines often cannot be kept filled

with small number of registers.
IBM 360 had only 4 Floating Point Registers

Can a microarchitecture use more registers than
specified by the ISA without loss of ISA

compatibility ?

September 28, 2022 MIT 6.5900 Fall 2022 LO7-10

Instruction-level Parallelism via Renaming

v @ @
1

1 LD F2, 34(R2)
2 LD F4, 45(R3) long l
3 MULTD F6, F4, F2 3 @
4 SUBD F8, F2, F2 1
5 DIVD F4" F2, F8 4 \
6 ADDD F10, F®6, F4’ 1
In-order: 1(2,1). 2 344 35.. .566
Out-of-order: 1(2,1)445 . (2,53 ..366
Renaming eliminates WAR and WAW hazards
(renaming = additional storage)
September 28, 2022 MIT 6.5900 Fall 2022 LO7-11

Handling register dependencies

ALU Mem \ J
IF |—| 1D —a{»Issu >l wB
Fadd 7
Fmul

e Decode does register renaming, providing a new spot for each
register write

- Renaming eliminates WAR and WAW hazards by allowing use of
more storage space

e Renamed instructions added to an issue stage structure,
called the reorder buffer (ROB). Any instruction in the ROB
whose RAW hazards have been satisfied can be dispatched

— Qut-of-order or dataflow execution handles RAW hazards

September 28, 2022 MIT 6.5900 Fall 2022 LO7-12

Reorder Buffer
Smith and Pleszkun, 1985

Register File Reorder buffer
Ins# wuse exec op pl srcl p2 src2

F1
F2

ptr, —
F3 next to
F4 deallocate
F5
F6
F7

ptrl—»
F8 next t

available

Instruction slot is candidate for execution when:
e It holds a valid instruction (“use” bit is set)
e It has not already started execution (“exec” bit is clear)
e Both operands are available (“present” bits p1 and p2 are set)

Is it obvious where an architectural register value is?

September 28, 2022 MIT 6.5900 Fall 2022 LO7-13

Renaming & Out-of-order Issue

Renaming table & reg file Reorder buffer
p data Ins# use exec op pl srcl p2 src2

F1 £
F2 %
F3 b
F4 Ly
F5 '
F6 '
F7 /|
F8

e When are names in sources

Holds data (v;) replaced by data?
or tag(t;)

e When can a nhame be reused?

September 28, 2022 MIT 6.5900 Fall 2022 LO7-14

Renaming & Out-of-order Issue
An example

Renaming table & reg file Reorder buffer
p data Ins# use exec op pl srcl p2 src2

F1 1 o | o | LD t;
F2|o| i 2 0| o | LD t;
F3 3 |1 |0 [Mo w 1] i t3
F4lo| 3 4 | ol o |suB 1] w1 1] v ty
F5 5 1 [o [oDiv [1] v 0| ts
F6|0| 3

F7 |

F8[o] wa

data (v;) / tag(t)

LD F2, 34(R2)
LD F4, 45(R3)
MULTD F6, F4, F2
SUBD F8, F2, F2
DIVD F4, F2, F8
ADDD F10, F6, F4

September 28, 2022 MIT 6.5900 Fall 2022 LO7-15

e Insert instruction in ROB

e Jssue instruction from ROB
e Complete instruction

e Empty ROB entry

AU ANWNKN

Simplifying Allocation/Deallocation

Ins# useexec op pl srcl p2 src2

ptr, —
next to
deallocate

ptr; —

next t

. n
available

Reorder buffer

Instruction buffer is managed circularly
e Set “"exec” bit when instruction begins execution
e When an instruction completes its “use” bit is marked free
e Increment ptr, only if the “use” bit is marked free

September 28, 2022 MIT 6.5900 Fall 2022 LO7-16

Data-Driven Execution

Renaming
table & \ \

reg file

Ins# |use [exec] op [pl] srcl |[p2 src2 t

Reorder
buffer

Replacing the] T 1 1 , l
Fag Dy its Va!ue Load FU FU Store
Is an expensive Unit Unit
operation

< t, result >

e Instruction template (i.e., tag t) is allocated by the
Decode stage, which also stores the tag in the reg file

e When an instruction completes, its tag is deallocated

September 28, 2022 MIT 6.5900 Fall 2022 LO7-17

IBM 360/91 Floating Point Unit

R. M. Tomasulo, 196/

1 |oad instructions p data Floating
: buffers Point
4 (from Reg
5 memory)
6

distribute v l v \

instruction i§ p data p data v Vo

femplates | |3 R

by
funCtlona/ \ Adder / \ Mult /
units

< t, result > |

I Common bus ensures that data is made

P data
store buffers - available immediately to all the instructions
(to memory) waiting for it

September 28, 2022 MIT 6.5900 Fall 2022 LO7-18

Effectiveness?

Renaming and Out-of-order execution was first
implemented in 1969 in IBM 360/91 but was
effective only on a very small class of problems

and thus did not show up in the subsequent models
until mid-nineties. Why?

September 28, 2022 MIT 6.5900 Fall 2022 LO7-19

Reminder: Precise Exceptions

Exceptions are relatively unlikely events that need special
processing, but where adding explicit control flow instructions is
not desired, e.qg., divide by 0, page fault

Exceptions can be viewed as an implicit conditional subroutine
call that is inserted between two instructions.

Therefore, it must appear as if the exception is taken between
two instructions (say I,and I 4)

e the effect of all instructions up to and including I, is complete
e no effect of any instruction after I, has taken place

The handler either aborts the program or restartsitat ., .

September 28, 2022 MIT 6.5900 Fall 2022 LO7-20

Effect on Exceptions
Out-of-order Completion

I, DIVD f6, f6, f4
L LD 2, 45(r3)

I MULTD fo, f2, f4
1, DIVD f8, f6, f2
I SUBD f10, f0, f6
I, ADDD f6, f8, f2

out-of-ordercomp 1 2 2 3 1 4 3 5 5 4 6 6

Consider exceptions
on "DIVD”s

Precise exceptions are difficult to implement at high speed
- want to start execution of later instructions before
exception checks finished on earlier instructions

September 28, 2022 MIT 6.5900 Fall 2022 LO7-21

Exceptions

Exceptions create a dependence on the value of the next PC

Options for handling this dependence:

- Stall

* Bypass

« Find something else to do
« Change the architecture

« Speculate!

e How can we handle rollback on mis-speculation?

Note: earlier exceptions must override later ones

September 28, 2022 MIT 6.5900 Fall 2022 LO7-22

Reminder: Exception Handling
(In-Order Five-Stage Pipeline) : Point

PC Inst. 4 | 1l becode H & _ﬁ M Datai | f [,
<I> Mem + Mem:
PC Address Illegal Overflow Data Addr /= Kill
Exceptions Opcode Except / Wiriteback

- Cause
Asynchronous E
R Interrupts E EPC
Select Kill F Kill D Kill E "
Handler -
pC Stage Stage Stage .

Hold exception flags in pipeline until commit point (M stage)
oIf exception at commit:
e update Cause/EPC registers
e Kkill all stages
e fetch at handler PC
Inject external interrupts at commit point

September 28, 2022 MIT 6.5900 Fall 2022 LO07-23

Phases of Instruction Execution

A P*C
: H Fetch: Instruction bits retrieved
'Caf €[from cache.
In order Eatch
Buifer Decode: Instructions placed in appropriate
! Tssue issue (aka “dispatch”) stage buffer
A Buffer
! Execute: Instructions and operands sent to
Out of Func. execution units.
order Units When execution completes, all results and
! exception flags are available.
v L1 Results
Buffer | Commit: Instruction irrevocably updates
In-order y architectural state (aka “graduation” or
Arch. | “completion”).
State

September 28, 2022 MIT 6.5900 Fall 2022 LO7-24

In-Order Commit for Precise Exceptions

In-order Out-of-order In-order

Fetch " Decode ——| Reorder Buffer }——| Commit

’M ‘ ill
Kill = |

| Execute

Inject handler PC

e Instructions fetched and decoded into instruction
reorder buffer in-order

e Execution is out-of-order (= out-of-order completion)

e Commit (write-back to architectural state, i.e., redfile &
memory) is in-order

Temporary storage needed to hold results before commit
(shadow registers and store buffers)

September 28, 2022 MIT 6.5900 Fall 2022 LO7-25

Extensions for Precise Exceptions

Inst# use exec op pl srcl p2 src2 pd dest data cause

otr U I
next to U I
commit U I

ptri Do
next W
available Y 2 A

Reorder buffer

e add <pd, dest, data, cause> fields in the instruction template
e commit instructions to reg file and memory in program
order = buffers can be maintained circularly
e on exception, clear reorder buffer by resetting ptry=ptr,
(stores must wait for commit before updating memory)

September 28, 2022 MIT 6.5900 Fall 2022 LO7-26

Rollback and Renaming

Register File
(now holds only
committed state)

Reorder
buffer

| ! !
Ins# |use|exeq op [pl srcl p2| src2 t
\\\\\\\W\ f
NAmt_n -
M .
N t
I
Loacél Store| |Commit
Unit FU FU FU Unit I

1

1

1

1

< t, result >

Register file does not contain renaming tags any more.
How does the decode stage find the tag of a source register?

September 28, 2022

MIT 6.5900 Fall 2022

LO7-27

Renaming Table

Rename Tt fvi tag Register .
Table ry valid bit File
| ! !
Ins# fuse|exed op |pl] srcl Pp2| src2 wmm@@\\\ t,
Reorder &Q\\\\\\Q Y ¢,
buffer 3 .
| N t
Load Store| |[Commit
Unit FU FU FU Unit
1 1 1 1 < t, result >

Renaming table is a cache to speed up register name lookup.
It needs to be cleared after each exception taken.
When else are valid bits cleared?
September 28, 2022 MIT 6.5900 Fall 2022 LO7-28

Physical Register Files

e Reorder buffers are space inefficient — a data value
may be stored in multiple places in the reorder
buffer

e Idea: Keep all data values in a physical register file

— Tag represents the name of the data value and name of the
physical register that holds it

— Reorder buffer contains only tags

Thus, 64-bit data values may be replaced
by 8-bit tags for a 256-element physical
register file

More on this in later lectures ...

September 28, 2022 MIT 6.5900 Fall 2022 LO7-29

Branch Penalty

Next fetch
started

I-cache

How many instructions
need to be killed on a
misprediction?

Fetch
Buffer

Issue
Buffer

Modern processors may
have > 10 pipeline stages
between nextPC calculation
and branch resolution !

Func.
Units

Branch executed

Buffer

Next lecture:

Branch prediction &
Speculative execution

Arch.
State
September 28, 2022 MIT 6.5900 Fall 2022 LO7-30

	CDC Programing Card
	Slide Number 2
	CDC 6600-style Scoreboard
	Scoreboard Dynamics�
	In-Order Issue Limitations�An example
	Out-of-Order Issue
	In-Order Issue Limitations�An example
	How many Instructions can be in the pipeline
	Little’s Law
	Overcoming the Lack of�Register Names
	Instruction-level Parallelism via Renaming
	Handling register dependencies
	Reorder Buffer�Smith and Pleszkun, 1985
	Renaming & Out-of-order Issue
	Renaming & Out-of-order Issue�An example
	Simplifying Allocation/Deallocation
	Data-Driven Execution
	IBM 360/91 Floating Point Unit�R. M. Tomasulo, 1967
	Effectiveness?
	Reminder: Precise Exceptions
	Effect on Exceptions�Out-of-order Completion
	Exceptions
	Reminder: Exception Handling�(In-Order Five-Stage Pipeline)
	Phases of Instruction Execution
	In-Order Commit for Precise Exceptions
	Extensions for Precise Exceptions
	Rollback and Renaming
	Renaming Table
	Physical Register Files
	Branch Penalty

