Branch Prediction

Joel Emer
Computer Science and Artificial Intelligence Laboratory

M.I.T.

MIT 6.5900 Fall 2022 LO8-1

Control Flow Penalty

Next fetch
started
Modern processors may have
> 10 pipeline stages between
next PC calculation and branch
resolution!
Loose loop
How much work is lost if
pipeline doesn’t follow
correct instruction flow? Branch
executed

~ Loop length x pipeline width

October 3, 2022

MIT 6.5900 Fall 2022

PC

v

I-cache

v

Fetch
Buffer

v

Issue
Buffer

v

Func.
Units

v

Result
Buffer

v

Arch.
State

Fetch

Decode

Execute

Commit

LO8-2

Average Run-Length between Branches

Average dynamic instruction mix of SPEC CPU 2017
[Limaye and Adegbiya, ISPASS’18]:

SPECint SPECfp
Branches 19 % 11 %
Loads 24 % 26 %
Stores 10 % 7 %
Other 47 % 56 %

SPECintl17: perlbench, gcc, mcf, omnetpp, xalancbmk, x264,
deepsjeng, leela, exchange2, xz
SPECfpl17: bwaves, cactus, Ibm, wrf, pop2, imagick, nab, fotonik3d, roms

What is the average run length between branches?
Roughly 5-10 instructions

October 3, 2022 MIT 6.5900 Fall 2022 LO8-3

http://www2.engr.arizona.edu/%7Etosiron/papers/2018/SPEC2017_ISPASS18.pdf

MIPS Branches and Jumps

Each instruction fetch depends on one or two pieces
of information from the preceding instruction:

1) Is the preceding instruction a taken branch?

2) If so, what is the target address?

Instruction Taken known? Target known?
] After Inst. Decode After Inst. Decode
IR After Inst. Decode After Reg. Fetch

BEQZ/BNEZ After Reg. Fetch” After Inst. Decode

*Assuming zero detect on register read

October 3, 2022 MIT 6.5900 Fall 2022 LO8-4

Example Branch Penalties

UltraSPARC-III instruction fetch pipeline stages
(in-order issue, 4-way superscalar, 750MHz, 2000)

A | PC Generation/Mux
P | Instruction Fetch Stage 1
Branch F | Instruction Fetch Stage 2
Target B | Branch Address Calc/Begin Decode
Address
I | Complete Decode
Known . : :
5 , J | Steer Instructions to Functional units
ranc : .
Direction & R | Register File Read
Jump E | Integer Execute
Register : Remainder of execute pipeline
Target " (4 another 6 stages)
Known

October 3, 2022 MIT 6.5900 Fall 2022 LO8-5

Reducing Control Flow Penalty

e Software solutions
— Eliminate branches — loop unrolling
Increases run length between branches
— Reduce resolution time - instruction scheduling

Compute the branch condition as early as possible
(of limited value)

e Hardware solutions
— Bypass - usually results are used immediately
— Change architecture - find something else to do

Delay slots — replace pipeline bubbles with useful work
(requires software cooperation)

— Speculate — branch prediction
Speculative execution of instructions beyond the branch

October 3, 2022 MIT 6.5900 Fall 2022 LO8-6

Branch Prediction

Motivation:
Branch penalties limit performance of deeply pipelined
processors

Modern branch predictors have high accuracy
(>95%) and can reduce branch penalties significantly

Required hardware support:
Prediction structures:
e Branch history tables, branch target buffers, etc.

Mispredict recovery mechanisms:
e Keep result computation separate from commit
e Kill instructions following branch in pipeline
e Restore state to state following branch

October 3, 2022 MIT 6.5900 Fall 2022 LO8-7

Static Branch Prediction

Overall probability a branch is taken is ~60-70% but:

backward : forward
90% 50%
BE

ISA can attach preferred direction semantics to branches,
e.g., Motorola MC88110
bneO (preferred taken) beqO (not taken)

ISA can allow arbitrary choice of statically predicted direction,

e.g., HP PA-RISC, Intel IA-64
typically reported as ~80% accurate

October 3, 2022 MIT 6.5900 Fall 2022 LO8-8

Dynamic Prediction

Input

Truth/Feedback

Prediction as a feedback control process

October 3, 2022

Pregliction

MIT 6.5900 Fall 2022

Operations
e Predict
e Update

LO8-9

Dynamic Branch Prediction
Learning based on past behavior

Temporal correlation
The way a branch resolves may be a good
predictor of the way it will resolve at the next
execution

Spatial correlation
Several branches may resolve in a highly
correlated manner (a preferred path of
execution)

October 3, 2022 MIT 6.5900 Fall 2022 LO8-10

Predictor Primitive
Emer & Gloy, 1997

e Indexed table holding values

Index
e Operations
~ Predict Prediction
- Update -
Update

e Algebraic notation

Prediction = P[Width, Depth](Index; Update)

October 3, 2022 MIT 6.5900 Fall 2022 LO8-11

One-bit Predictor
aka Branch History Table (BHT)

Simple temporal prediction
1 bit
PC

> Prediction

Taken

A21064(PC; T) = P[1, 2K J(PC; T)

What happens on loop branches?

At best, mispredicts twice for every use of loop

October 3, 2022 MIT 6.5900 Fall 2022 LO8-12

Two-bit Predictor
Smith, 1981

e Use two bits per entry instead of one bit
e Manage them as a saturating counter:

1|1

1|0

0|1

00

— Direction prediction changes only after
two wrong predictions

How many mispredictions per loop? 1

October 3, 2022 MIT 6.5900 Fall 2022 LO8-13

Two-bit Predictor
Smith, 1981

2 bits
PC A

> Prediction

:

Taken

Counter[W,D](I: T) = P[W, D](I; if T then P+1 else P-1)
A21164(PC: T) = MSB(Counter[2, 2K](PC: T))

October 3, 2022 MIT 6.5900 Fall 2022 LO8-14

Branch History Table

Fetch PC |0 0
g J
e I
? k L { 2k-entry
[-Cache BHT Index L | BHT,
2 bits/entry
Instruction
Opcode offset
| v | |
s /
,, : \
Branch? Target PC Taken/—~Taken?

4K-entry BHT, 2 bits/entry, ~80-90% correct predictions

October 3, 2022

MIT 6.5900 Fall 2022

LO8-15

Exploiting Spatial Correlation
Yeh and Patt, 1992

if (x[i] < 7) then
y +=1;

if (x[i] < 5) then
c -= 4;

If first condition false, second condition also false

History register records the direction of the last N
branches executed by the processor

October 3, 2022 MIT 6.5900 Fall 2022 LO8-16

History Registers
aka Pattern History Table (PHT)

PC

History(PC; T) = P(PC; P || T)

October 3, 2022 MIT 6.5900 Fall 2022 LO8-17

Global-History Predictor

Global History

| —

P
<«

Prediction

B
»

L

Taken

GHist(;T) = MSB(Counter(History(0, T); T))

Can we take advantage of a pattern at a particular PC?

October 3, 2022

MIT 6.5900 Fall 2022

LO8-18

Local-History Predictor

Prediction

| —

Local History

PC

\ 4

L —

P
<«

Taken

LHist(PC; T) = MSB(Counter(History(PC; T); T))

Can we take advantage of the global pattern at a particular PC?

October 3, 2022 MIT 6.5900 Fall 2022 LO8-19

Global-History Predictor with
Per-PC Counters

Global

PC

GHistPA(PC; T) = MSB(Counter(History(0; T)||PC; T))

Prediction

—

L

Taken

GShare(PC; T) = MSB(Counter(History(0; T) ~ PC; T))

October 3, 2022

MIT 6.5900 Fall 2022

LO8-20

Two-Level Branch Predictor
(Pentium Pro, 1995)

Pentium Pro uses the result from the last two branches
to select one of the four sets of BHT bits (~95% correct)

0,0 | | | |

Fetch PC I; k | | | |

2-bit global branch
history shift register

Shift in L H | | | |
Taken/—~Taken _T_/

results of each M M M M
branch \ /

! Taken/—-Taken?

October 3, 2022 MIT 6.5900 Fall 2022 LO8-21

Choosing Predictors

1 » Prediction

Chooser = MSB(P(PC; P + (A==T) - (B==T))
or
Chooser = MSB(P(GHist(PC; T); P + (A==T) - (B==T))

October 3, 2022 MIT 6.5900 Fall 2022 L0O8-22

Tournament Branch Predictor
(Alpha 21264, 1996)

: Global Prediction
Local history Local (4,096x2b)
table | prediction '
(1,024x10b) (1,024x3b)
PC ! ! Choice Prediction [,
\ / (4,096x2b)
Prediction Global History (12b)

e Choice predictor learns whether best to use local or global
branch history in predicting next branch

e Global history is speculatively updated but restored on
mispredict

e Claim 90-100% success on range of applications

October 3, 2022 MIT 6.5900 Fall 2022 LO8-23

TAGE predictor
Seznec & Michaud, 2006

PC E

v
My Use
I/ guess me?
v
TAGE_TREE[L1, L2, L3](PC; T) = ‘ Final
TAGE[L3](PC, Prediction

TAGE[L2](PC,
TAGE[L1](PC, Bimodal(PC;T)
:T) ;T ;1)

October 3, 2022 MIT 6.5900 Fall 2022 LO8-24

TAGE component

Next
Predictor

Prediction

My
guess

Use
me?

| GHist |—
| PC |—

v

October 3, 2022 MIT 6.5900 Fall 2022 LO8-25

TAGE predictor component

TAGE[L](PC, NEXT: T) =

idx = hash(PC, GHIST[L](;T))
tag = hash’(PC, GHIST[L](;T))

TAGE.U = SA(idx, tag; ((TAGE ==T) && (NEXT '=T))?1:SA)
TAGE.Counter = SA(idx, tag; T?SA+1:SA-1)

use_me = TAGE.U && isStrong(TAGE.Counter)
TAGE = use_me?MSB(TAGE.Counter):NEXT

Notes:
SA is a set-associative structure
SA allocation occurs on mispredict (not shown)
TAGE.U cleared on global counter saturation

October 3, 2022 MIT 6.5900 Fall 2022 LO8-26

Limitations of branch predictors

Only predicts branch direction. Therefore, cannot redirect
fetch stream until after branch target is determined.

Correctly A | PC Generation/Mux
predicted P | Instruction Fetch Stage 1
taken branch F | Instruction Fetch Stage 2
penalty B | Branch Address Calc/Begin Decode
I | Complete Decode
Jump Register J | Steer Instructions to Functional units
penalty R | Register File Read
E | Integer Execute

Remainder of execute pipeline
(+ another 6 stages)

UltraSPARC-III fetch pipeline

October 3, 2022 MIT 6.5900 Fall 2022 LO8-27

Branch Target Buffer (untagged)

IMEM

predicted ||BPbh
] target
Branch
. - * | Target
. - * | Buffer
] (BTB)
— Tk (2k entries)
— PC
o /\
—] target |[BP

BP bits are stored with the predicted target address.

IF stage: If (BP=taken) then nPC=target else nhPC=PC+4
check prediction, if wrong then kill the instruction
and update BTB & BPb, else update BPb

later:

October 3, 2022

MIT 6.5900 Fall 2022

LO8-28

Address Collisions

132 |Jump 100

Assume a
128-entry
BTB 1028 Add
target BPb
— 236 take

»
»

Instruction

What will be fetched after the instruction at 1028? Memory
BTB prediction 236
Correct target 1032

= kill PC=236 and fetch PC=1032

Is this a common occurrence?
Can we avoid these mispredictions?

October 3, 2022 MIT 6.5900 Fall 2022 LO8-29

BTB is only for Control Instructions

BTB contains useful information for branch and
jump instructions only

— Do not update it for other instructions
For all other instructions the next PC is (PC)+4 !

How to achieve this effect without decoding the
instruction?

October 3, 2022 MIT 6.5900 Fall 2022

LO8-30

Branch Target Buffer (tagged)

T
0
Q
0
=
™

2k-entry direct-mapped BTB

PC (can also be associative)
Entry PC \alid predicted
> target PC
K . . :
match valid target

e Keep both the branch PC and target PC in the BTB
e PC+4 is fetched if match fails

e Only taken branches and jumps held in BTB
e Next PC determined before branch fetched and decoded

October 3, 2022

MIT 6.5900 Fall 2022

LO8-31

Consulting BTB Before Decoding

l 132 |Jump 100
entry PC target BPb
132 236 take 1028 | Add

e The match for PC=1028 fails and 1028+4 is fetched
= eliminates false predictions after ALU instructions

e BTB contains entries only for control transfer instructions
= more room to store branch targets

October 3, 2022 MIT 6.5900 Fall 2022 LO8-32

Combining BTB and BHT

e BTB entries are considerably more expensive than BHT, but
can redirect fetches at earlier stage in pipeline and can
accelerate indirect branches (JR)

e BHT can hold many more entries and is more accurate

O
L A | PC Generation/Mux

BTB Instruction Fetch Stage 1
Instruction Fetch Stage 2
Branch Address Calc/Begin Decode
Complete Decode
Steer Instructions to Functional units

Register File Read
/ Integer Execute

BHT in later BHT
pipeline stage
corrects when
BTB misses a
predicted

taken branch

m|O|w|—~|m|T|o

BTB/BHT only updated after branch resolves in E stage

October 3, 2022 MIT 6.5900 Fall 2022 LO8-33

Uses of Jump Register (JR)

e Switch statements (jump to address of matching case)

BTB works well if same case used repeatedly
e Dynamic function call (jump to run-time function address)

BTB works well if same function usually called, (e.g., in
C++ programming, when objects have same type in
virtual function call)

e Subroutine returns (jump to return address)
BTB works well if usually return to the same place
= Often one function called from many distinct call sites!

How well does BTB work for each of these cases?

October 3, 2022 MIT 6.5900 Fall 2022 LO8-34

Subroutine Return Stack

Small structure to accelerate JR for subroutine
returns, typically much more accurate than BTBs.

fa() { fb(); }
fb() { fc(); }

fc() { fd(); }
Pop return address

Fumction coll exeeuteds” N when subroutine
return decoded

&£d () k entries
&fc () (typically k=8-16)

&fb ()

October 3, 2022 MIT 6.5900 Fall 2022 LO8-35

Line Prediction
(Alpha 21[234]64)

e For superscalar, useful to predict next cache line(s) to fetch

Instr
Cache

Branch

Predictor
Line | Decode &

Predictor 1 PC calc
Return :

Stack

v

Indirect Mispredict
Branch

Predictor

e Line Predictor predicts line to fetch each cycle (tight loop)
— Untagged BTB structure — Why?
- 21464 was to predict 2 lines per cycle

e Icache fetches block, and predictors improve target prediction
e PC Calc checks accuracy of line prediction(s)

\ 4

October 3, 2022 MIT 6.5900 Fall 2022 LO8-36

Overview of Branch Prediction

BTB

/..

Need next PC
immediately

O o

Tight loop

BP,
JMP,
Ret

PN

Best predictors
reflect program
behavior

~

)

/.

Reg

® 0o ®

Decode Read

Instr type, Simple

PC relative conditions,
targets register targets
available available

Loose loop Loose loop

Must speculation check always be correct? No...

October 3, 2022

MIT 6.5900 Fall 2022

Execute

Complex

conditions and
exceptions

available

Loose loop

LO8-37

Next Lecture:
Speculative Execution
& Value Management

MIT 6.5900 Fall 2022 LO8-38

	Slide Number 1
	Control Flow Penalty
	Average Run-Length between Branches
	MIPS Branches and Jumps
	Example Branch Penalties
	Reducing Control Flow Penalty
	Branch Prediction
	Static Branch Prediction
	Dynamic Prediction
	Dynamic Branch Prediction�Learning based on past behavior
	Predictor Primitive�Emer & Gloy, 1997
	One-bit Predictor�aka Branch History Table (BHT)
	Two-bit Predictor�Smith, 1981
	Two-bit Predictor�Smith, 1981
	Branch History Table
	Exploiting Spatial Correlation�Yeh and Patt, 1992
	History Registers�aka Pattern History Table (PHT)
	Global-History Predictor
	Local-History Predictor
	Global-History Predictor with�Per-PC Counters
	Two-Level Branch Predictor�(Pentium Pro, 1995)
	Choosing Predictors
	Tournament Branch Predictor�(Alpha 21264, 1996)
	TAGE predictor�Seznec & Michaud, 2006
	TAGE component
	TAGE predictor component
	Limitations of branch predictors
	Branch Target Buffer (untagged)
	Address Collisions
	BTB is only for Control Instructions
	Branch Target Buffer (tagged)
	Consulting BTB Before Decoding
	Combining BTB and BHT
	Uses of Jump Register (JR)
	Subroutine Return Stack
	Line Prediction�(Alpha 21[234]64)
	Overview of Branch Prediction
	Slide Number 38

