
L08-1MIT 6.5900 Fall 2022

Joel Emer
Computer Science and Artificial Intelligence Laboratory

M.I.T.

Branch Prediction

MIT 6.5900 Fall 2022

Control Flow Penalty

October 3, 2022

I-cache

Fetch
Buffer

Issue
Buffer

Func.
Units

Arch.
State

Execute

Decode

Result
Buffer Commit

PC

Fetch
Modern processors may have
> 10 pipeline stages between
next PC calculation and branch
resolution!

How much work is lost if
pipeline doesn’t follow
correct instruction flow?

~ Loop length x pipeline width

Loose loop

Branch
executed

Next fetch
started

L08-2

MIT 6.5900 Fall 2022

Average Run-Length between Branches

October 3, 2022

Average dynamic instruction mix of SPEC CPU 2017
[Limaye and Adegbiya, ISPASS’18]:

SPECint SPECfp
Branches 19 % 11 %
Loads 24 % 26 %
Stores 10 % 7 %
Other 47 % 56 %

SPECint17: perlbench, gcc, mcf, omnetpp, xalancbmk, x264,
deepsjeng, leela, exchange2, xz

SPECfp17: bwaves, cactus, lbm, wrf, pop2, imagick, nab, fotonik3d, roms

What is the average run length between branches?
Roughly 5-10 instructions

L08-3

http://www2.engr.arizona.edu/%7Etosiron/papers/2018/SPEC2017_ISPASS18.pdf

MIT 6.5900 Fall 2022

MIPS Branches and Jumps

October 3, 2022

Instruction Taken known? Target known?

J

JR
BEQZ/BNEZ

Each instruction fetch depends on one or two pieces
of information from the preceding instruction:

1) Is the preceding instruction a taken branch?

2) If so, what is the target address?

After Reg. Fetch* After Inst. Decode

After Inst. Decode After Inst. Decode

After Inst. Decode After Reg. Fetch

*Assuming zero detect on register read

L08-4

MIT 6.5900 Fall 2022

Example Branch Penalties

October 3, 2022

A PC Generation/Mux
P Instruction Fetch Stage 1
F Instruction Fetch Stage 2
B Branch Address Calc/Begin Decode
I Complete Decode
J Steer Instructions to Functional units
R Register File Read
E Integer Execute

Remainder of execute pipeline
(+ another 6 stages)

UltraSPARC-III instruction fetch pipeline stages
(in-order issue, 4-way superscalar, 750MHz, 2000)

Branch
Target
Address
Known

Branch
Direction &
Jump
Register
Target
Known

L08-5

MIT 6.5900 Fall 2022

Reducing Control Flow Penalty

• Software solutions
– Eliminate branches – loop unrolling

Increases run length between branches
– Reduce resolution time – instruction scheduling

Compute the branch condition as early as possible
(of limited value)

• Hardware solutions
– Bypass – usually results are used immediately
– Change architecture – find something else to do

Delay slots – replace pipeline bubbles with useful work
(requires software cooperation)

– Speculate – branch prediction
Speculative execution of instructions beyond the branch

October 3, 2022 L08-6

MIT 6.5900 Fall 2022

Branch Prediction

October 3, 2022

Motivation:
Branch penalties limit performance of deeply pipelined
processors

Modern branch predictors have high accuracy
(>95%) and can reduce branch penalties significantly

Required hardware support:
Prediction structures:

• Branch history tables, branch target buffers, etc.

Mispredict recovery mechanisms:
• Keep result computation separate from commit
• Kill instructions following branch in pipeline
• Restore state to state following branch

L08-7

MIT 6.5900 Fall 2022

Static Branch Prediction

October 3, 2022

Overall probability a branch is taken is ~60-70% but:

ISA can attach preferred direction semantics to branches,
e.g., Motorola MC88110

bne0 (preferred taken) beq0 (not taken)

ISA can allow arbitrary choice of statically predicted direction,
e.g., HP PA-RISC, Intel IA-64

typically reported as ~80% accurate

BEQ

BEQbackward
90%

forward
50%

L08-8

MIT 6.5900 Fall 2022

Dynamic Prediction

October 3, 2022

Input

Truth/Feedback

Prediction
Predictor

Operations

• Predict

• UpdatePrediction as a feedback control process

L08-9

MIT 6.5900 Fall 2022

Dynamic Branch Prediction
Learning based on past behavior

October 3, 2022

Temporal correlation
The way a branch resolves may be a good
predictor of the way it will resolve at the next
execution

Spatial correlation
Several branches may resolve in a highly
correlated manner (a preferred path of
execution)

L08-10

MIT 6.5900 Fall 2022

Predictor Primitive
Emer & Gloy, 1997

• Indexed table holding values

• Operations
– Predict
– Update

• Algebraic notation

Prediction = P[Width, Depth](Index; Update)

October 3, 2022

Index

Prediction

Update

Depth

Width

P

UI

L08-11

MIT 6.5900 Fall 2022

One-bit Predictor
aka Branch History Table (BHT)

October 3, 2022

PC

Taken

Prediction

A21064(PC; T) = P[1, 2K](PC; T)

P

U

I

1 bit

What happens on loop branches?

At best, mispredicts twice for every use of loop

Simple temporal prediction

L08-12

MIT 6.5900 Fall 2022

Two-bit Predictor
Smith, 1981

• Use two bits per entry instead of one bit
• Manage them as a saturating counter:

– Direction prediction changes only after
two wrong predictions

How many mispredictions per loop?

October 3, 2022

O
n not-taken 


O

n taken

1 1 Strongly taken

1 0 Weakly taken

0 1 Weakly not-taken

0 0 Strongly not-taken

1

L08-13

MIT 6.5900 Fall 2022October 3, 2022

Two-bit Predictor
Smith, 1981

PC

+/- Adder

Taken
Prediction

Counter[W,D](I; T) = P[W, D](I; if T then P+1 else P-1)

A21164(PC; T) = MSB(Counter[2, 2K](PC; T))

P

U

I

2 bits

L08-14

MIT 6.5900 Fall 2022

Branch History Table

October 3, 2022

4K-entry BHT, 2 bits/entry, ~80-90% correct predictions

0 0Fetch PC

Branch? Target PC

+

I-Cache

Opcode offset
Instruction

k

BHT Index
2k-entry
BHT,
2 bits/entry

Taken/¬Taken?

L08-15

MIT 6.5900 Fall 2022

Exploiting Spatial Correlation
Yeh and Patt, 1992

October 3, 2022

History register records the direction of the last N
branches executed by the processor

if (x[i] < 7) then
y += 1;

if (x[i] < 5) then
c -= 4;

If first condition false, second condition also false

L08-16

MIT 6.5900 Fall 2022

History Registers
aka Pattern History Table (PHT)

October 3, 2022

PC

Concatenate

Taken
History

History(PC; T) = P(PC; P || T)

P

U

I

L08-17

MIT 6.5900 Fall 2022

Global-History Predictor

October 3, 2022

GHist(;T) = MSB(Counter(History(0, T); T))

Taken

0

Concat

Global History

+/-

Prediction

Can we take advantage of a pattern at a particular PC?

L08-18

MIT 6.5900 Fall 2022

Local-History Predictor

October 3, 2022

PC

Concat

Local History

+/-

Prediction

Taken

LHist(PC; T) = MSB(Counter(History(PC; T); T))

Can we take advantage of the global pattern at a particular PC?

L08-19

MIT 6.5900 Fall 2022

Global-History Predictor with
Per-PC Counters

October 3, 2022

0

Concat

Global
History

+/-

Prediction

Taken

GHistPA(PC; T) = MSB(Counter(History(0; T)||PC; T))

Concat

PC

L08-20

GShare(PC; T) = MSB(Counter(History(0; T) ^ PC; T))

MIT 6.5900 Fall 2022

Two-Level Branch Predictor
(Pentium Pro, 1995)

October 3, 2022

Pentium Pro uses the result from the last two branches
to select one of the four sets of BHT bits (~95% correct)

0 0

kFetch PC

Shift in
Taken/¬Taken
results of each
branch

2-bit global branch
history shift register

Taken/¬Taken?
L08-21

MIT 6.5900 Fall 2022

Choosing Predictors

October 3, 2022

LHist

GHist

Chooser

Chooser = MSB(P(PC; P + (A==T) - (B==T))
or

Chooser = MSB(P(GHist(PC; T); P + (A==T) - (B==T))

Prediction

L08-22

MIT 6.5900 Fall 2022

Tournament Branch Predictor
(Alpha 21264, 1996)

• Choice predictor learns whether best to use local or global
branch history in predicting next branch

• Global history is speculatively updated but restored on
mispredict

• Claim 90-100% success on range of applications

October 3, 2022

Local history
table

(1,024x10b)

PC

Local
prediction
(1,024x3b)

Global Prediction
(4,096x2b)

Choice Prediction
(4,096x2b)

Global History (12b)Prediction

L08-23

MIT 6.5900 Fall 2022

TAGE predictor
Seznec & Michaud, 2006

October 3, 2022

TAGE_TREE[L1, L2, L3](PC; T) =
TAGE[L3](PC,

TAGE[L2](PC,
TAGE[L1](PC, Bimodal(PC;T)

;T) ;T ;T)

TAGE[L3]

Final
Prediction

TAGE[L2]TAGE[L1]Bimodal

PC

Use
me?

My
guess

L08-24

MIT 6.5900 Fall 2022

TAGE component

October 3, 2022

Counter

Prediction

Useful

Tag

Use
me?

My
guess

PC

Next
Predictor

GHist

L08-25

MIT 6.5900 Fall 2022

TAGE predictor component

October 3, 2022

TAGE[L](PC, NEXT; T) =

idx = hash(PC, GHIST[L](;T))
tag = hash’(PC, GHIST[L](;T))

TAGE.U = SA(idx, tag; ((TAGE == T) && (NEXT != T))?1:SA)
TAGE.Counter = SA(idx, tag; T?SA+1:SA-1)

use_me = TAGE.U && isStrong(TAGE.Counter)
TAGE = use_me?MSB(TAGE.Counter):NEXT

Notes:
SA is a set-associative structure
SA allocation occurs on mispredict (not shown)
TAGE.U cleared on global counter saturation

L08-26

MIT 6.5900 Fall 2022

Limitations of branch predictors

October 3, 2022

Only predicts branch direction. Therefore, cannot redirect
fetch stream until after branch target is determined.

UltraSPARC-III fetch pipeline

Correctly
predicted
taken branch
penalty

Jump Register
penalty

A PC Generation/Mux
P Instruction Fetch Stage 1
F Instruction Fetch Stage 2
B Branch Address Calc/Begin Decode
I Complete Decode
J Steer Instructions to Functional units
R Register File Read
E Integer Execute

Remainder of execute pipeline
(+ another 6 stages)

L08-27

MIT 6.5900 Fall 2022

Branch Target Buffer (untagged)

October 3, 2022

BP bits are stored with the predicted target address.

IF stage: If (BP=taken) then nPC=target else nPC=PC+4
later: check prediction, if wrong then kill the instruction

and update BTB & BPb, else update BPb

IMEM

PC

Branch
Target
Buffer
(BTB)
(2k entries)k

BPbpredicted

target BP

target

L08-28

MIT 6.5900 Fall 2022

Address Collisions

October 3, 2022

What will be fetched after the instruction at 1028?
BTB prediction =
Correct target =

⇒

Assume a
128-entry
BTB

BPbtarget
take236

1028 Add

132 Jump 100

Instruction
Memory

236
1032

kill PC=236 and fetch PC=1032

Is this a common occurrence?
Can we avoid these mispredictions?

L08-29

MIT 6.5900 Fall 2022

BTB is only for Control Instructions

October 3, 2022

BTB contains useful information for branch and
jump instructions only

⇒ Do not update it for other instructions

For all other instructions the next PC is (PC)+4 !

How to achieve this effect without decoding the
instruction?

L08-30

MIT 6.5900 Fall 2022

Branch Target Buffer (tagged)

October 3, 2022

• Keep both the branch PC and target PC in the BTB
• PC+4 is fetched if match fails
• Only taken branches and jumps held in BTB
• Next PC determined before branch fetched and decoded

2k-entry direct-mapped BTB
(can also be associative)I-Cache PC

k

Valid

valid

Entry PC

=

match

predicted

target

target PC

L08-31

MIT 6.5900 Fall 2022

Consulting BTB Before Decoding

October 3, 2022

1028 Add

132 Jump 100

BPbtarget
take236

entry PC
132

• The match for PC=1028 fails and 1028+4 is fetched
⇒ eliminates false predictions after ALU instructions

• BTB contains entries only for control transfer instructions
⇒ more room to store branch targets

L08-32

MIT 6.5900 Fall 2022

Combining BTB and BHT
• BTB entries are considerably more expensive than BHT, but

can redirect fetches at earlier stage in pipeline and can
accelerate indirect branches (JR)

• BHT can hold many more entries and is more accurate

October 3, 2022

A PC Generation/Mux
P Instruction Fetch Stage 1
F Instruction Fetch Stage 2
B Branch Address Calc/Begin Decode
I Complete Decode
J Steer Instructions to Functional units
R Register File Read
E Integer Execute

BTB

BHTBHT in later
pipeline stage
corrects when
BTB misses a
predicted
taken branch

BTB/BHT only updated after branch resolves in E stage
L08-33

MIT 6.5900 Fall 2022

Uses of Jump Register (JR)
• Switch statements (jump to address of matching case)

• Dynamic function call (jump to run-time function address)

• Subroutine returns (jump to return address)

October 3, 2022

How well does BTB work for each of these cases?

BTB works well if same case used repeatedly

BTB works well if same function usually called, (e.g., in
C++ programming, when objects have same type in
virtual function call)

BTB works well if usually return to the same place
⇒ Often one function called from many distinct call sites!

L08-34

MIT 6.5900 Fall 2022

Subroutine Return Stack

Small structure to accelerate JR for subroutine
returns, typically much more accurate than BTBs.

October 3, 2022

&fb()

&fc()

Push call address when
function call executed

Pop return address
when subroutine
return decoded

fa() { fb(); }

fb() { fc(); }

fc() { fd(); }

&fd() k entries
(typically k=8-16)

L08-35

MIT 6.5900 Fall 2022

Line Prediction
(Alpha 21[234]64)

• Line Predictor predicts line to fetch each cycle (tight loop)
– Untagged BTB structure – Why?
– 21464 was to predict 2 lines per cycle

• Icache fetches block, and predictors improve target prediction
• PC Calc checks accuracy of line prediction(s)

October 3, 2022

• For superscalar, useful to predict next cache line(s) to fetch

Line
Predictor

Instr
Cache

Branch
Predictor

Return
Stack

Indirect
Branch

Predictor

Decode &
PC Calc

Mispredict

L08-36

MIT 6.5900 Fall 2022

Overview of Branch Prediction

October 3, 2022

P
C

Need next PC
immediately

Decode Reg
Read Execute

Instr type,
PC relative

targets
available

Simple
conditions,

register targets
available

Complex
conditions and

exceptions
available

BTB

BP,
JMP,
Ret

Loose loop Loose loop Loose loopTight loop

Must speculation check always be correct? No…

Best predictors
reflect program

behavior

L08-37

L08-38MIT 6.5900 Fall 2022

Next Lecture:
Speculative Execution
& Value Management

	Slide Number 1
	Control Flow Penalty
	Average Run-Length between Branches
	MIPS Branches and Jumps
	Example Branch Penalties
	Reducing Control Flow Penalty
	Branch Prediction
	Static Branch Prediction
	Dynamic Prediction
	Dynamic Branch Prediction�Learning based on past behavior
	Predictor Primitive�Emer & Gloy, 1997
	One-bit Predictor�aka Branch History Table (BHT)
	Two-bit Predictor�Smith, 1981
	Two-bit Predictor�Smith, 1981
	Branch History Table
	Exploiting Spatial Correlation�Yeh and Patt, 1992
	History Registers�aka Pattern History Table (PHT)
	Global-History Predictor
	Local-History Predictor
	Global-History Predictor with�Per-PC Counters
	Two-Level Branch Predictor�(Pentium Pro, 1995)
	Choosing Predictors
	Tournament Branch Predictor�(Alpha 21264, 1996)
	TAGE predictor�Seznec & Michaud, 2006
	TAGE component
	TAGE predictor component
	Limitations of branch predictors
	Branch Target Buffer (untagged)
	Address Collisions
	BTB is only for Control Instructions
	Branch Target Buffer (tagged)
	Consulting BTB Before Decoding
	Combining BTB and BHT
	Uses of Jump Register (JR)
	Subroutine Return Stack
	Line Prediction�(Alpha 21[234]64)
	Overview of Branch Prediction
	Slide Number 38

