
L10-1MIT 6.5900 Fall 2022

Joel Emer
Computer Science and Artificial Intelligence Laboratory

M.I.T.

Advanced Memory Operations

MIT 6.5900 Fall 2022

Reminder: Direct-Mapped Cache

October 12, 2022

Tag Data BlockV

=

Block
Offset

Tag Index

t k b

t

HIT Data Word or Byte

2k

lines

L10-2

MIT 6.5900 Fall 2022

Write Performance

October 12, 2022

Tag DataV

=

Block
OffsetTag Index

t k b

t

HIT Data Word or Byte

2k

lines

WE

How does write timing compare to read timing?

L10-3

MIT 6.5900 Fall 2022

Reducing Write Hit Time
Problem: Writes take two cycles in memory stage, one cycle for

tag check plus one cycle for data write if hit

View: Treat as data dependence on micro-architectural value
‘hit/miss’

Solutions:
• Wait – delivering data as fast as possible:

– Fully associative (CAM Tag) caches: Word line only enabled if hit

• Speculate predicting hit with greedy data update:
– Design data RAM that can perform read and write in one cycle
– Restore old value after tag miss (abort)

• Speculate predicting miss with lazy data update:
– Hold write data for store in single buffer ahead of cache
– Write cache data during next idle data access cycle (commit)

October 12, 2022 L10-4

MIT 6.5900 Fall 2022October 12, 2022

Pipelined/Delayed Write Timing

Time

Data

Tag LD0

LD0

ST1

ST1

ST2

LD3

LD3

Buffer ST1 ST2 ST2

ST4

ST2

ST4

LD5

LD5

ST4

LD0

ST1

ST2

LD3

ST4

LD5

Problem: Need to commit lazily saved write data

Solution: Write data during idle data cycle of next store’s tag check

L10-5

MIT 6.5900 Fall 2022

Pipelining Cache Writes

October 12, 2022

Tags Data

Tag Index Store Data

Address and Store Data From CPU

Delayed Write DataDelayed Write Addr.

=?

=?

Load Data to CPU

Load/Store

L
S

1 0

Hit?

What if instruction needs data in delayed write buffer?

L10-6

MIT 6.5900 Fall 2022

Write Policy Choices

• Cache hit:
– Write-through: write both cache & memory

• generally higher traffic but simplifies multi-processor design
– Write-back: write cache only

(memory is written only when the entry is evicted)
• a dirty bit per block can further reduce the traffic

• Cache miss:
– No-write-allocate: only write to main memory
– Write-allocate (aka fetch on write): fetch into cache

• Common combinations:
– write-through and no-write-allocate
– write-back with write-allocate

October 12, 2022 L10-7

MIT 6.5900 Fall 2022

Reducing Read Miss Penalty

Problem: Write buffer may hold updated value of location
needed by a read miss – RAW data hazard

Stall: On a read miss, wait for the write buffer to go empty
Bypass: Check write buffer addresses against read miss

addresses, if no match, allow read miss to go ahead of writes,
else, return value in write buffer

October 12, 2022

Data
Cache

Unified
L2 Cache

RF

CPU

Write
buffer

Evicted dirty lines for writeback cache
OR

All writes in writethrough cache

L10-8

MIT 6.5900 Fall 2022

O-o-O With Physical Register File
(MIPS R10K, Alpha 21264, Pentium 4)

October 12, 2022

Rename
Table

r1 ti
r2 tj

FU FU Store
Unit

< t, result >

FULoad
Unit FU

t1
t2
.
tn

Reg
File

Snapshots for
mispredict recovery

(ROB not shown)

We’ve handled the register dependencies, but
what about memory operations?

L10-9

MIT 6.5900 Fall 2022

Speculative Loads / Stores

• Problem: Just like register updates, stores should
not permanently change the architectural memory
state until after the instruction is committed

• Choice: Data update policy: greedy or lazy?
Lazy: Add a speculative store buffer, a structure to lazily hold
speculative store data.

• Choice: Handling of store-to-load data hazards:
stall, bypass, speculate…?

Bypass: …

October 12, 2022 L10-10

MIT 6.5900 Fall 2022

Store Buffer Responsibilities
• Lazy store of data: Buffer new data values for

stores

• Commit/abort: The data from the oldest
instructions must either be committed to memory
or forgotten

• Bypass: Data from older instructions must be
provided (or forwarded) to younger instructions
before the older instruction is committed

October 12, 2022

Commits are generally done in order – why?

L10-11

MIT 6.5900 Fall 2022

Store Buffer – Lazy data management

• On store execute:
– mark valid and speculative; save tag, data, and instruction number

• On store commit:
– clear speculative bit and eventually move data to cache

• On store abort:
– clear valid bit

October 12, 2022

Data

Store Address

Tags

Store Commit Path

Speculative
Store
Buffer

L1 Data
Cache

Load Data

Inum TagSV Data
Inum TagSV Data
Inum TagSV Data
Inum TagSV Data
Inum TagSV Data
Inum TagSV Data

L10-12

MIT 6.5900 Fall 2022

Store Buffer - Bypassing

• If data in both store buffer and cache, which should we use?

• If same address in store buffer twice, which should we use?

• Calculating entry needed in the store buffer can be considered a
dependence on the index needed to access the store buffer. So store
buffer bypassing can be managed speculatively by building a simple
predictor that guesses that the specific entry in the store buffer the
load needs. So what happens if we guessed the wrong entry?

October 12, 2022

Load Address
Inum TagSV Data
Inum TagSV Data
Inum TagSV Data
Inum TagSV Data
Inum TagSV Data
Inum TagSV Data

What fields must be examined for
bypassing?

L10-13

MIT 6.5900 Fall 2022

Memory Dependencies

For registers, we used tags or physical register
numbers to determine dependencies. What about
memory operations?

st r1, (r2)
ld r3, (r4)

When is the load dependent on the store?

October 12, 2022

Does our ROB know this at issue time?

L10-14

MIT 6.5900 Fall 2022

In-Order Memory Queue

Stall naively:

• Execute all loads and stores in program order

=> Load and store cannot start execution until all previous loads
and stores have completed execution

• Can still execute loads and stores speculatively, and out-of-
order with respect to other instructions

October 12, 2022

st r1, (r2)
ld r3, (r4)

L10-15

MIT 6.5900 Fall 2022

Conservative O-o-O Load Execution

Stall intelligently:

• Split execution of store instruction into two phases:
address calculation and data write

• Can execute load before store, if addresses known and r4 != r2

• Each load address compared with addresses of all previous
uncommitted stores (can use partial conservative check,
e.g., bottom 12 bits of address)

• Don’t execute load if any previous store address not known

(MIPS R10K, 16 entry address queue)

October 12, 2022

st r1, (r2)
ld r3, (r4)

L10-16

MIT 6.5900 Fall 2022

Address Speculation

1. Guess that r4 != r2, and execute load before store address known

2. If r4 != r2 commit…

3. But if r4==r2, squash load and all following instructions

– To support squash we need to hold all completed but
uncommitted load/store addresses/data in program order

October 12, 2022

st r1, (r2)
ld r3, (r4)

How do we resolve the speculation, i.e., detect when we need
to squash?

L10-17

MIT 6.5900 Fall 2022

Speculative Load Buffer

• On load execute:
– mark entry valid, and instruction number and tag of data.

• On load commit:
– clear valid bit

• On load abort:
– clear valid bit

October 12, 2022

Load AddressSpeculative
Load Buffer

Speculation check:
Detect if a load has
executed before an
earlier store to the
same address – missed
RAW hazard

InumV
InumV
InumV
InumV
InumV Tag

Tag
Tag
Tag
Tag

L10-18

MIT 6.5900 Fall 2022

Speculative Load Buffer

• If data in load buffer with instruction younger than
store:
– Speculative violation – abort!

October 12, 2022

Store AddressSpeculative
Load Buffer

=> Large penalty for inaccurate address speculation

InumV
InumV
InumV
InumV
InumV Tag

Tag
Tag
Tag
Tag

Does tag match have to be perfect?

L10-19

How do we reduce the change is mis speculation?

MIT 6.5900 Fall 2022

Memory Dependence Prediction
(Alpha 21264)

st r1, (r2)
ld r3, (r4)

1. Guess that r4 != r2 and execute load before store

2. If later find r4==r2, squash load and all following instructions, but
mark load instruction as store-wait

• Subsequent executions of the same load instruction will wait for all
previous stores to complete

• Periodically clear store-wait bits

October 12, 2022

Notice the general problem of predictors that learn
something but can’t unlearn it

L10-20

MIT 6.5900 Fall 2022

Store Sets
(Alpha 21464)

October 12, 2022

PC 8

{Empty}

PC 0
PC 12

PC 8

Multiple Readers

Multiple Writers
- multiple code paths
- multiple components

of a single location

Store0
PC

Store4
Store8
Store12

Load28
Load32
Load36
Load40

Program
Order

L10-21

MIT 6.5900 Fall 2022

Memory Dependence Prediction
using Store Sets
• A load must wait for any stores in its store set that

have not yet executed

• The processor approximates each load’s store set
by initially allowing naïve speculation and recording
memory-order violations

October 12, 2022 L10-22

MIT 6.5900 Fall 2022

The Store Set Map Table

October 12, 2022

Index

Index
V

V

Program
Order

Store
Set A

Writer

Reader

Store

Load

Index

IndexStore

Load

IndexLoad

..

....

..

.

..

- Store/Load Pair causing Memory Order Violation

Store Set Map Table

L10-23

MIT 6.5900 Fall 2022

Store Set Sharing for Multiple Readers

October 12, 2022

Index

Index
V

V

Program
Order

Store
Set A

Store

Load

Index

IndexStore

Load

IndexLoad

..

....

..

.

..

- Store/Load Pair causing Memory Order Violation

V

Store Set Map Table

L10-24

MIT 6.5900 Fall 2022

Store Set Map Table, cont.

October 12, 2022

Index

Index
V

V

Program
Order

Store
Set A

Store

Load

Index

IndexStore

Load

IndexLoad

..

....

..

.

..

- Store/Load Pair causing Memory Order Violation

V

V

V

Store
Set B

Store Set Map Table

L10-25

MIT 6.5900 Fall 2022

Prefetching
• Execution of a load ‘depends’ on the data it needs

being in the cache…

• Speculate on future instruction and data accesses
and fetch them into cache(s)
– Instruction accesses easier to predict than data accesses

• Varieties of prefetching
– Hardware prefetching
– Software prefetching
– Mixed schemes

• How does prefetching affect cache misses?

October 12, 2022

Compulsory Conflict Capacity

L10-26

MIT 6.5900 Fall 2022

Issues in Prefetching

• Usefulness – should produce hits
• Timeliness – not late and not too early
• Cache and bandwidth pollution

October 12, 2022

L1 Data

L1
Instruction

Unified L2
Cache

RF

CPU

Prefetched data

L10-27

MIT 6.5900 Fall 2022

Hardware Instruction Prefetching
Instruction prefetch in Alpha AXP 21064

– Fetch two blocks on a miss; the requested block (i) and the next
consecutive block (i+1)

– Requested block placed in cache, and next block in instruction
stream buffer

– If miss in cache but hit in stream buffer, move stream buffer block
into cache and prefetch next block (i+2)

October 12, 2022

L1
Instruction

Unified L2
Cache

RF

CPU

Stream
Buffer

Prefetched
instruction blockReq

block

Req
block

L10-28

MIT 6.5900 Fall 2022

Hardware Data Prefetching
• Prefetch-on-miss:

–Prefetch b + 1 upon miss on b

• One Block Lookahead (OBL) scheme
–Initiate prefetch for block b + 1 when block b is accessed
–Why is this different from doubling block size?
–Can extend to N-block lookahead (called stream prefetching)

• Strided prefetch
–If observe sequence of accesses to block b, b+N, b+2N,
then prefetch b+3N etc.

Example: IBM Power 5 [2003] supports eight independent
streams of strided prefetch per processor, prefetching 12 lines
ahead of current access

October 12, 2022 L10-29

L10-30MIT 6.5900 Fall 2022

Thank you!

Next lecture:
Multi-threading

	Slide Number 1
	Reminder: Direct-Mapped Cache
	Write Performance
	Reducing Write Hit Time
	Pipelined/Delayed Write Timing
	Pipelining Cache Writes
	Write Policy Choices
	Reducing Read Miss Penalty
	O-o-O With Physical Register File�(MIPS R10K, Alpha 21264, Pentium 4)
	Speculative Loads / Stores
	Store Buffer Responsibilities
	Store Buffer – Lazy data management
	Store Buffer - Bypassing
	Memory Dependencies
	In-Order Memory Queue
	Conservative O-o-O Load Execution
	Address Speculation
	Speculative Load Buffer
	Speculative Load Buffer
	Memory Dependence Prediction�(Alpha 21264)
	Store Sets�(Alpha 21464)
	Memory Dependence Prediction using Store Sets
	The Store Set Map Table
	Store Set Sharing for Multiple Readers
	Store Set Map Table, cont.
	Prefetching
	Issues in Prefetching
	Hardware Instruction Prefetching
	Hardware Data Prefetching
	Slide Number 30

