Advanced Memory Operations

Joel Emer
Computer Science and Artificial Intelligence Laboratory

M.I.T.

MIT 6.5900 Fall 2022 L10-1

Reminder: Direct-Mapped Cache

Block
Tag Index Offcet
— ,)
t K b
V, Tag Data Block
2k
lines
1t
A
HIT

October 12, 2022

MIT 6.5900 Fall 2022

Data Word or Byte

L10-2

Write Performance

HIT *

Block
Tag Index Offset
T LKL
Vi Tag Data X
2k
lines

2\

Data Word or Byte

How does write timing compare to read timing?

October 12, 2022

MIT 6.5900 Fall 2022

L10-3

Reducing Write Hit Time

Problem: Writes take two cycles in memory stage, one cycle for
tag check plus one cycle for data write if hit

View: Treat as data dependence on micro-architectural value
‘hit/miss’

Solutions:

o Wait - delivering data as fast as possible:
— Fully associative (CAM Tag) caches: Word line only enabled if hit

e Speculate predicting hit with greedy data update:
— Design data RAM that can perform read and write in one cycle
— Restore old value after tag miss (abort)

e Speculate predicting miss with lazy data update:
- Hold write data for store in single buffer ahead of cache
— Write cache data during next idle data access cycle (commit)

October 12, 2022 MIT 6.5900 Fall 2022 L10-4

Pipelined/Delayed Write Timing

Problem: Need to commit lazily saved write data

Solution: Write data during idle data cycle of next store’s tag check

LD,
ST,

ST,
LD,

ST,

11l

LD.

October 12, 2022

Time —
Tag LD, | ST, |ST,|LD;|ST,|LDs
BUffer ST]_ STZ ST2 ST4 ST4

MIT 6.5900 Fall 2022

L10-5

Pipelining Cache Writes

What if instruction needs data in delayed write buffer?

Address and Store Data From CPU

October 12, 2022

Tag Index Store Data
D Delayed Write Addr. D Delayed Write Data
/_v Load/Store ﬁ
(D J‘I '
» S -
Tags T Data
=? \x U/
Load Data to CPU
Hit?

MIT 6.5900 Fall 2022

L10-6

Write Policy Choices

e Cache hit:

— Write-through: write both cache & memory
e generally higher traffic but simplifies multi-processor design

- Write-back: write cache only
(memory is written only when the entry is evicted)

e a dirty bit per block can further reduce the traffic

e Cache miss:
- No-write-allocate: only write to main memory
— Write-allocate (aka fetch on write): fetch into cache

e Common combinations:

— write-through and no-write-allocate
- write-back with write-allocate

October 12, 2022 MIT 6.5900 Fall 2022 L10-7

Reducing Read Miss Penalty

b 7
CPU Data Unified
11l Cache L2 Cache
RF > Write |—
buffer

Evicted dirty lines for writeback cache
OR
All writes in writethrough cache

Problem: Write buffer may hold updated value of location
needed by a read miss — RAW data hazard

Stall: On a read miss, wait for the write buffer to go empty

Bypass: Check write buffer addresses against read miss
addresses, if no match, allow read miss to go ahead of writes,
else, return value in write buffer

October 12, 2022 MIT 6.5900 Fall 2022 L10-8

0O-0-0 With Physical Register File

(MIPS R10K, Alpha 21264, Pentium 4)

Ly
_____ e { Snap shots for tz Reg
ri | mispredict recovery . File
I t,
Rename — '
Load Store
Table Unit FU FU FU Unit
(ROB not shown) < t, result >

We've handled the register dependencies, but
what about memory operations?

October 12, 2022 MIT 6.5900 Fall 2022 L10-9

Speculative Loads / Stores

e Problem: Just like register updates, stores should
not permanently change the architectural memory
state until after the instruction is committed

e Choice: Data update policy: greedy or lazy?

Lazy: Add a speculative store buffer, a structure to lazily hold
speculative store data.

e Choice: Handling of store-to-load data hazards:
stall, bypass, speculate...?
Bypass: ...

October 12, 2022 MIT 6.5900 Fall 2022 L10-10

Store Buffer Responsibilities

e Lazy store of data: Buffer new data values for
stores

e Commit/abort: The data from the oldest
instructions must either be committed to memory
or forgotten

e Bypass: Data from older instructions must be
provided (or forwarded) to younger instructions
before the older instruction is committed

Commits are generally done in order — why?

October 12, 2022 MIT 6.5900 Fall 2022 L10-11

Store Buffer — Lazy data management

Speculative Store Address
P | L1 Data
Store Cache
Buffer
VIS| Inum Tag | Data
VIS] Inum Tag | Data
VIS| Inum Tag [Data Tags Data
VIS| Inum Tag | Data
VIS] Inum Tag | Data
VIS| Inum Tag | Data

Store Commit Path Load Data

v

e On store execute:
— mark valid and speculative; save tag, data, and instruction number

e On store commit:
— clear speculative bit and eventually move data to cache

e On store abort:
- clear valid bit

October 12, 2022 MIT 6.5900 Fall 2022 L10-12

Store Buffer - Bypassing

Load Address

What fields must be examined for
bypassing?

VIS| Inum Tag | Data
VIS] Inum Tag Data
VIS| Inum Tag | Data
VIS|] Inum Tag | Data
VIS] Inum Tag Data
VIS| Inum Tag | Data

e If data in both store buffer and cache, which should we use?

e If same address in store buffer twice, which should we use?

e (Calculating entry needed in the store buffer can be considered a

dependence on the index needed to access the store buffer. So store
buffer bypassing can be managed speculatively by building a simple
predictor that guesses that the specific entry in the store buffer the

load needs. So what happens if we guessed the wrong entry?

October 12, 2022

MIT 6.5900 Fall 2022

Memory Dependencies

For registers, we used tags or physical register
numbers to determine dependencies. What about
memory operations?

strl, (r2)
id r3, (r4)

When is the load dependent on the store?

Does our ROB know this at issue time?

October 12, 2022 MIT 6.5900 Fall 2022 L10-14

In-Order Memory Queue

strl, (r2)
id r3, (r4)

Stall naively:

e Execute all loads and stores in program order

=> Load and store cannot start execution until all previous loads
and stores have completed execution

e Can still execute loads and stores speculatively, and out-of-
order with respect to other instructions

October 12, 2022 MIT 6.5900 Fall 2022 L10-15

Conservative O-0-0 Load Execution

strl, (r2)
id r3, (r4)

Stall intelligently:

Split execution of store instruction into two phases:
address calculation and data write

e (Can execute load before store, if addresses known and r4 !'= r2

e Each load address compared with addresses of all previous
uncommitted stores (can use partial conservative check,
e.g., bottom 12 bits of address)

e Don’t execute load if any previous store address not known

(MIPS R10K, 16 entry address queue)

October 12, 2022 MIT 6.5900 Fall 2022 L10-16

Address Speculation

strl, (r2)
id r3, (r4)

1. Guess that r4 '=r2, and execute load before store address known
2. If r4 '=r2 commit...
3. But if rd==r2, squash load and all following instructions

— To support squash we need to hold all completed but
uncommitted load/store addresses/data in program order

How do we resolve the speculation, i.e., detect when we need
to squash?

October 12, 2022 MIT 6.5900 Fall 2022 L10-17

Speculative Load Buffer

Speculation check:
Detect if a load has
executed before an
earlier store to the
same address — missed
RAW hazard

e On load execute:

— mark entry valid, and instruction number and tag of data.

e On load commit:
— clear valid bit

e On load abort:
- clear valid bit

October 12, 2022

Speculative
Load Buffer

MIT 6.5900 Fall 2022

Load Address

V]| Inum Tag
VI Inum Tag
V[Inum Tag
V] Inum Tag
VI Inum Tag

L10-18

Speculative Load Buffer

Speculative

| oad Buffer Store Address
V[Inum Tag
V]| Inum Tag
V[Inum Tag
V]| Inum Tag
V]| Inum Tag

e If data in load buffer with instruction younger than
store:
— Speculative violation - abort!

=> Large penalty for inaccurate address speculation

Does tag match have to be perfect?
How do we reduce the change is mis speculation?

October 12, 2022 MIT 6.5900 Fall 2022 L10-19

Memory Dependence Prediction
(Alpha 21264)

strl, (r2)
id r3, (r4)

1. Guess that r4 '= r2 and execute load before store

2. If later find r4==r2, squash load and all following instructions, but
mark load instruction as store-wait

e Subsequent executions of the same load instruction will wait for all
previous stores to complete

e Periodically clear store-wait bits

Notice the general problem of predictors that learn
something but can’t unlearn it

October 12, 2022 MIT 6.5900 Fall 2022 L10-20

Store Sets
(Alpha 21464)

Multiple Readers

PC
0 | Store
Program 4 |Store |

Order 8 | Store
12 | Store

Multiple Writers
28 | Load - multiple code paths

- multiple components
32 | Load l of a single location
36 | Load

40 | Load

October 12, 2022 MIT 6.5900 Fall 2022 L10-21

Memory Dependence Prediction
using Store Sets

e A load must wait for any stores in its store set that
have not yet executed

e The processor approximates each load’s store set

by initially allowing naive speculation and recording
memory-order violations

October 12, 2022 MIT 6.5900 Fall 2022 L10-22

The Store Set Map Table

Store Set Map Table

Program
Order Store | |Ind|ex | | X
*Store | |Ind<|ax | |
g v Writer
Load | [Indtlex []
. Store
! Set A
* Load | | Indlex [] /
. g v Reader
Load | [Indtlex []

* - Store/Load Pair causing Memory Order Violation

October 12, 2022 MIT 6.5900 Fall 2022 L10-23

Store Set Sharing for Multiple Readers

Store Set Map Table

Program
Order Store | |Ind|ex | |

* Store | [Index [|
' V

A 4

\ 4

Load | IIndtlex []

A 4

Store
Set A

A\ 4

Load | [Index [| /
' Vv

* Load | [Tndex 1]
' \V

* - Store/Load Pair causing Memory Order Violation
October 12, 2022 MIT 6.5900 Fall 2022 L10-24

A\ 4

Store Set Map Table, cont.

Store Set Map Table

Program
Order * Store | [Index | |
| > V \
. Store
Store | |Ind<|ax |] : v Set B
* Load | [Tndex]
[> \V
. Store
Set A

\ 4

Load | [Index [| /
' Vv

Load | |Ind|ex []

v
<

* - Store/Load Pair causing Memory Order Violation
October 12, 2022 MIT 6.5900 Fall 2022 L10-25

Prefetching

e Execution of a load ‘depends’ on the data it needs
being in the cache...

e Speculate on future instruction and data accesses
and fetch them into cache(s)

— Instruction accesses easier to predict than data accesses

e Varieties of prefetching
- Hardware prefetching
— Software prefetching
- Mixed schemes

e How does prefetching affect cache misses?
Compulsory Conflict Capacity

October 12, 2022 MIT 6.5900 Fall 2022 L10-26

Issues in Prefetching

e Usefulness — should produce hits
e Timeliness — not late and not too early
e Cache and bandwidth pollution

L1
Instruction

h

CPU
Unified L2
t11 Cache

RF | (&=%»| L1 Data

Prefetched data

October 12, 2022 MIT 6.5900 Fall 2022 L10-27

Hardware Instruction Prefetching

Instruction prefetch in Alpha AXP 21064

— Fetch two blocks on a miss; the requested block (i) and the next
consecutive block (i+1)

— Requested block placed in cache, and next block in instruction
stream buffer

— If miss in cache but hit in stream buffer, move stream buffer block
into cache and prefetch next block (i+2)

Re Prefetched
b.(,f:'k Stream instruction block
Buffer
CPU
le— L1 l Unified L2
L1l Instruction | Req Cache
RF block

October 12, 2022 MIT 6.5900 Fall 2022 L10-28

Hardware Data Prefetching

e Prefetch-on-miss:
—Prefetch b + 1 upon miss on b

e One Block Lookahead (OBL) scheme
—Initiate prefetch for block b + 1 when block b is accessed
-Why is this different from doubling block size?
—Can extend to N-block lookahead (called stream prefetching)

e Strided prefetch

—If observe sequence of accesses to block b, b+N, b+2N,
then prefetch b+3N etc.

Example: IBM Power 5 [2003] supports eight independent
streams of strided prefetch per processor, prefetching 12 lines
ahead of current access

October 12, 2022 MIT 6.5900 Fall 2022 L10-29

Thank you!

Next lecture:
Multi-threading

MIT 6.5900 Fall 2022 L10-30

	Slide Number 1
	Reminder: Direct-Mapped Cache
	Write Performance
	Reducing Write Hit Time
	Pipelined/Delayed Write Timing
	Pipelining Cache Writes
	Write Policy Choices
	Reducing Read Miss Penalty
	O-o-O With Physical Register File�(MIPS R10K, Alpha 21264, Pentium 4)
	Speculative Loads / Stores
	Store Buffer Responsibilities
	Store Buffer – Lazy data management
	Store Buffer - Bypassing
	Memory Dependencies
	In-Order Memory Queue
	Conservative O-o-O Load Execution
	Address Speculation
	Speculative Load Buffer
	Speculative Load Buffer
	Memory Dependence Prediction�(Alpha 21264)
	Store Sets�(Alpha 21464)
	Memory Dependence Prediction using Store Sets
	The Store Set Map Table
	Store Set Sharing for Multiple Readers
	Store Set Map Table, cont.
	Prefetching
	Issues in Prefetching
	Hardware Instruction Prefetching
	Hardware Data Prefetching
	Slide Number 30

